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Abstract: In this paper, the high-temperature rheological behavior of 1420 aluminum–lithium alloy
under experimental conditions (temperatures of 350–475 ◦C and strain rates of 0.01–10 s−1) was
systematically investigated using a Gleeble-3500 thermal simulation tester (temperature 350~475 ◦C,
strain rate of 0.01~10 s−1). Based on the flow stress curves of this alloy, four different types of
high-temperature constitutive models of the alloy were constructed: the Arrhenius (AR) model, the
Modified Johnson–Cook (MJC) model, the Modified Zerilli–Armstrong (MZA) model, and the VOCE
model. The prediction accuracy of the four constitutive models was compared, and the response of
the accuracy of the four constitutive models to the deformation parameters (temperature, deformation
rate, and strain) was analyzed. The results showed that the VOCE, AR, and MZA models had high
overall prediction accuracy with average absolute relative error (AARE) of 1.8933%, 3.9912%, and
7.8422%, respectively. The VOCE model could achieve the prediction of large strain deformation
resistance under small strain with small batch experimental conditions for the corresponding condi-
tions. The AR model had optimal prediction accuracy for the high-rate deformation process. The MJC
model had the optimal prediction accuracy for the low-temperature low-rate deformation process.
The MZA model had better prediction accuracy for the low-rate high-temperature deformation
process. The 1420 aluminum–lithium alloy process parameters selection area constitutive model
matching diagram was constructed.

Keywords: 1420 aluminum–lithium alloy; AR model; MJC model; MZA model; VOCE model;
constitutive equation; flow stress

1. Introduction

Aluminum–lithium alloys are widely used in modern aerospace applications due
to the addition of the lightest metal element, Li. Compared with traditional aerospace
aluminum alloys, Al–Li alloys can reduce the structural weight by 10–15% and increase
the stiffness by more than 15%. with good heat resistance and corrosion resistance, while
meeting the service requirements [1,2]. Al–Li alloys are considered strategic materials for
the 21st century [3,4]. The 1420 Al–Li alloy is a typical second-generation Al–Li alloy, which
is commonly used in the preparation of thin-shell structures, such as in rocket fuel tanks,
and is extremely sensitive to the temperature and rate of the thermal deformation process.
The study of high-temperature rheological properties of materials and the establishment of
the intrinsic structural model of materials is the basis for the study of thermal processing
processes and the formulation of process parameters [5]. Therefore, the establishment of
high-precision intrinsic structural models is of great engineering and academic significance
for the development of the hot-forming process of aerospace aluminum–lithium alloys.

As a basis for studying the thermal deformation behavior of metal materials and defor-
mation processes, the constitutive model describes the relationship between deformation
stresses and key deformation parameters (temperature, rate, etc.) during the deformation
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of metal materials in thermal deformation by mathematical methods, to guide practical
process formulation. For decades, many researchers have been working to develop effective
constitutive models for metal heat deformation. Currently, the more applied constitutive
models are divided into three main categories: image-only constitutive models, based on
experimental experience, constitutive models, based on the actual physical signs of the
material, and constitutive models, based on artificial neural networks [6]. Ashtiani et al. [7]
studied the thermal deformation of AA1070 aluminum alloy by proposing a new intrinsic
constitutive model, which can obtain the key parameters by reducing the number of tests,
while improving the material properties. Shi et al. [8] investigated the effect of deforma-
tion temperature and strain rate on the activation energy of AA7150 aluminum alloy by
constructing a hyperbolic sinusoidal intrinsic structure, and then guided the development
of deformation process parameters. Meanwhile, a suitable intrinsic structural model is
important for the numerical simulation and analytical study of the thermoforming process
of metallic materials. Liu et al. [9] investigated the roll-forging technology of Hastelloy
C-276 alloy, and the reliability of the numerical simulation results depended largely on the
accuracy of the intrinsic constitutive equations describing the flow stresses. Zhao et al. [10]
investigated the flow stress model of 7A04 aluminum alloy, which is considered the most
important sub-model in the finite element simulation model of the hot forming process.
Therefore, the establishment of accurate intrinsic constitutive equations is essential to opti-
mize the parameters of the material thermoforming process to obtain higher mechanical
properties. However, the current academic research on the present constitutive equations
mainly focuses on matching materials with a single model, i.e., determining a certain
best-fit intrinsic constitutive model by comparing the accuracy of different models. By
comparing four constitutive models of TG6 alloy, Yu et al. [11] found that the MJC and AR
models can be considered the best choice to describe and predict the flow stress behavior of
TG6 titanium alloy relatively accurately by calculating the average absolute relative error
(AARE) and correlation coefficient R2 of the four models. However, such models ignore
the effect of deformation conditions on the accuracy of the models. It is well known that
Al–Li alloy is a deformation parameter-sensitive material. The deviation of deformation
parameters leads to strong changes in the microstructure and properties of the material, and
different processes possess different processing conditions (temperature, rate, deformation),
so there is an urgent need to propose different intrinsic model construction methods for
different process parameter ranges and process R&D needs.

In this study, the high-temperature rheological curves of the extruded 1420 Al–Li alloy
were obtained by hot compression tests with an advanced Gleeble-3500 thermal simulation
tester. Based on the collected data, four commonly used constitutive models were con-
structed: the Arrhenius (AR) model, the Modified Johnson–Cook (MJC) model, the VOCE
model, and the Modified Zerilli–Armstrong (MZA) model based on physical significance.
The predictive capability of the four constitutive models and their accuracy at different tem-
peratures, rates, and strain variables were analyzed and compared to classify the conditions
of applicability of the different constitutive models. It is expected to provide a theoretical
basis for the selection of the constitutive model for the subsequent study of the rheological
behavior of 1420 Al–Li alloy under different conditions, and to lay the foundation for the
application of the constitutive model in finite element numerical simulations.

2. Experiments and Methods

The material used in this experiment was an aerospace 1420 Al–Li alloy which was
prepared by using spray deposition continuous extrusion. The experimentally obtained
chemical composition is shown in Table 1. The experimental 1420 Al–Li alloy was ma-
chined into a cylindrical specimen of ϕ10 mm × 20 mm by wire electrical discharge
machining (Taizhou Xianglong CNC Machine Tool Co., Ltd., Taizhou, China), and the
cylindrical specimen was ultrasonically cleaned and polished before being subjected to a
single-pass high-temperature compression test using a Gleeble-3500 thermal simulation
tester (Dynamic Systems Inc., Texas, USA). To reduce the friction between the two ends
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of the specimen and the indenter during the compression process, and to prevent the
“bulging” effect, two graphite sheets were pasted on the two ends of the specimen before
compression. The specimens were heated to the heat deformation temperature (350 °C,
375 °C, 400 °C, 425 °C, 450 °C, 475 °C) according to the heat deformation process parameters
shown in Figure 1 and then held for 30 s. After the specimens were uniformly heated,
compression tests were conducted at different strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 5 s−1,
10 s−1). The specimens were removed immediately after deformation and quenched and
cooled to room temperature. The temperature, true stress, true strain, and strain rates from
the thermal simulation tester were imaged to obtain flow stress curves and to conduct
subsequent studies.

Table 1. Composition of the experimental 1420 Al–Li alloys (wt%).

Mg Li Si Fe Zn Zr Cr Cu Mn Ni Al

4.272 2.000 0.976 0.545 0.295 0.252 0.187 0.140 0.134 0.90 Bal.
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Figure 1. Hot deformation process flow diagram.   
Figure 1. Hot deformation process flow diagram.

3. Results
3.1. True Stress–Strain Curve of the Material

Figure 2 shows the flow stress curves of 1420 Al–Li alloy under different deforma-
tion conditions (deformation temperature of T = 350 ◦C~475 ◦C, deformation rate of
.
ε = 0.01 s−1~10 s−1). The temperature range and rate range selected for the experiments in
this paper included all common processing conditions for the high-temperature plastic de-
formation process of 1420 Al–Li alloy. It can be seen from Figure 2 that 1420 Al–Li alloy was
very sensitive to deformation parameters. The flow stress showed a negative correlation
with temperature and a positive correlation with strain rate, and the change of deformation
conditions strongly affected the type of rheological curves (work-hardening, dynamic
recrystallization, and dynamic reversion). Usually, when processing process parameters are
formulated, different curve types represent the softening tendency of the tissue obtained
by the material at that temperature [12], and its rheological stress represents the size of its
deformation resistance and the ease of deformation, and the process parameters are judged
based on these two points. At the initial stage of deformation, the specimen showed an ob-
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vious strain hardening phenomenon, due to the rapid increase of dislocation density inside
the material, the flow curves grew linearly, and the growth rates were the strain hardening
rates of the material. With the increase of true strain, the internal storage energy of the
material increased, and softening occurred gradually, so that the slope of the flow curve
decreased until it reached the peak stress when the softening effect exceeded the strain
hardening effect, and the softening effect caused by dynamic recovery and recrystallization
began to dominate. When the strain hardening and softening effects reached dynamic
equilibrium, the flow curve showed a flat stress plateau. It is worth noting that 1420 Al–Li
alloy showed a more obvious decreasing trend after the peak stress at low temperature
and high rate (350 °C-5 s−1, 375 °C-5 s−1, 350 °C-10 s−1, 375 °C-10 s−1), which is a typical
softening type curve. The internal substructure of the grain cannot change continuously
at low temperature, due to the lack of stored energy, so it is difficult to reach the dynamic
equilibrium. However, the large-angle grain boundaries can migrate at a larger rate at a
lower temperature, and the material rapidly proliferates a large number of dislocations at
a high rate, prompting the migration of large-angle grain boundaries and, thus, resulting
in discontinuous dynamic recrystallization. Compared with dynamic reversion and con-
tinuous dynamic recrystallization, the stress reduction caused by discontinuous dynamic
recrystallization is more obvious, which is consistent with the results of Zhang et al. [13].
Under low-rate conditions, 1420 Al–Li alloy showed a process-hardening type curve, where
internal dislocation proliferation dominated, the internal storage energy of the material
was low, and the softening effect was mainly dominated by dynamic reversion.
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Figure 2. Flow stress curves of the 1420 Al–Li alloy. (a)strain rate = 0.01s−1; (b) strain rate = 0.1s−1;
(c) strain rate = 1s−1; (d) strain rate = 5s−1; (e) strain rate = 10s−1.

3.2. Arrhenius (AR) Model

The classical Arrhenius (AR) constitutive model was first proposed by Sellars et al. [14].
The AR model is widely used to predict the flow behavior of metals because it can accurately
reflect the relationship between material strain rate, deformation temperature, and true
stress [15,16]. The expressions are as follows:

.
ε =


Aσn1 exp

(
−Q
RT

)
ασ<0.8

Aexp(βσ)exp
(
−Q
RT

)
ασ>1.2

A[sinh(ασ)]nexp
(
−Q
RT

)
f or all σ

 (1)
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In Equation (1), α = β/n1.
.
ε is the strain rate, T is the deformation temperature (K), σ is

the true stress (MPa) and n is the apparent stress index. The size of the n value is closely
related to the plastic deformation control mechanism [17], and can be used to determine
the material plastic deformation mechanism. The apparent stress index value has a certain
correspondence with its pair of plastic deformation control mechanism (for aluminum alloy,
3 < n < 5 is the dislocation slip mechanism, 5 < n < 7 is the dislocation climb mechanism). Q
is the deformation activation energy (kJ·mol−1). R refers to the molar gas constant, which
is about 8.314 J·(mol·K)−1. α, β, n, n1, and A are material constants.

This model is used to construct a peak stress constitutive model for 1420 Al–Li alloy
using the computational procedure shown in Figure 3, where Equation (1) is first deformed
to obtain:

ln
.
ε = lnA1 + n1lnσ− Q

RT
(2)

ln
.
ε = lnA2 + βσ− Q

RT
(3)

ln
.
ε = lnA + nln[sinh(ασ)]− Q

RT
(4)

ln[sinh(ασ)] =
1
n

ln
.
ε +

1
n

Q
RT
− 1

n
lnA (5)
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Figure 3. Flow chart for solving AR model parameters.

The data in Table 2 were brought into Equations (2)–(5), as shown in Figure 4a–d, for a
linear fit, which was calculated by slope and intercepts and averaged to obtain β = 0.0725;
n1 = 6.3234; α = 0.01146; n = 4.6253; Q = 151.80 kJ·mol−1. To calculate the effect of tempera-
ture T and strain rate

.
ε on the deformation behavior of the material, the Zener–Hollomon index

(Z-index) is introduced:

Z =
.
εexp

(
Q
RT

)
= A[sinh(ασ)]n (6)

Table 2. Data filtration for peak stress (MPa).

Strain Rate/s−1
Temperature/°C

350 375 400 425 450 475

0.01 71.9 65.9 51.9 42.4 33.8 26.3
0.1 122.4 97.3 86.5 68.3 57.9 46.5
1 156.7 135.4 119.2 105.4 92.5 79.5
5 177.0 156.7 139.1 123.8 110.3 95.5

10 182.5 169.2 151.7 136.4 121.4 108.8
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Figure 4. The constitutive model of the 1420 Al–Li alloy for peak stress. (a) ln
.
ε − σ; (b) ln

.
ε − lnσ;

(c) ln
.
ε − ln[sinh(ασ)]; (d) 1000/T − ln[sinh(ασ)]; (e) ln[sinh(ασ)] − lnZ.

The logarithmic operation of Equation (6) yields Equation (7), and the least-squares
method is used in ln(Z) − ln[sinh(ασ)]. The linear fit is shown in Figure 4e, and the
intercept of the line is taken as the natural exponent to obtain A = 4.90 × 1010.

lnZ = lnA + nln[sinh(ασ)] (7)

The final peak stress constitutive equation for this material is obtained as:

.
ε = 4.90× 1010[sinh(0.01146·σ)]4.625exp

(
−1.518× 105

RT

)
(8)

The peak stress point reflects the equilibrium point between work hardening and
dynamic softening of the material, which is more representative than other strains (ε),
but this constitutive equation does not consider the significant influence of strain factors
on the flow behavior of the material. Therefore, this paper coupled the strain variables
into the original constitutive equation, based on the above study, as shown in Figure 3,
to better reflect the flow behavior of the material. As shown in Table 3, 27 strain points
were selected on average, from 0.05 to 0.7, and six polynomial fits were performed for
each covariate, as shown in Figure 5. The average correlation coefficient was greater than
0.98, indicating that the six polynomials had better fitting accuracy for the relationship
between each covariate and the strain. The predicted flow stresses of the 1420 Al–Li alloy,
under different deformation conditions, could be obtained by bringing the deformation
parameters of the material into the AR model with the above-coupled strain variables.
Figure 6 shows the comparison between the experimental values and the predicted values.
It can be observed that the predictions of the AR model showed good accuracy as a whole,
especially at 5 s−1. However, the error was larger at low temperatures and low rates
(350 ◦C-0.01 s−1; 350 ◦C-0.1 s−1), which was due to the abnormal valleys in the flow curves
caused by the instability of the material during thermal compression.
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Table 3. Relationship between material constant and true strain.

Strain α n Q/(kJ/mol) lnA Strain α n Q/(kJ/mol) lnA

0.050 0.012209 4.559042 137.9106 22.30845 0.400 0.011745 4.614320 158.0668 25.73670
0.075 0.012118 4.338828 139.7770 22.61232 0.425 0.011763 4.649310 158.6621 25.83112
0.100 0.012068 4.266068 142.5544 23.08178 0.450 0.011789 4.690368 159.2710 25.92943
0.125 0.012042 4.235275 143.7912 23.29156 0.475 0.011816 4.738713 160.5228 26.13667
0.150 0.012013 4.224244 144.3740 23.38943 0.500 0.011818 4.776697 160.4899 26.12919
0.175 0.012001 4.246913 145.9445 23.65418 0.525 0.011838 4.823432 161.2820 26.25799
0.200 0.011935 4.272918 146.6128 23.76984 0.550 0.011864 4.871419 162.1239 26.39138
0.225 0.011859 4.325442 149.2594 24.23295 0.575 0.011898 4.927463 163.2333 26.57052
0.250 0.011792 4.390176 152.3493 24.77550 0.600 0.011934 4.976719 164.6733 26.81127
0.275 0.011732 4.442624 154.1441 25.08933 0.625 0.011939 5.016171 164.7395 26.82268
0.300 0.011719 4.477367 155.5945 25.33984 0.650 0.011957 5.070479 165.5309 26.95745
0.325 0.011694 4.511795 156.2837 25.45718 0.675 0.011975 5.124941 166.5735 27.13054
0.350 0.011732 4.543699 156.9145 25.54825 0.700 0.011992 5.174292 167.8194 27.34495
0.375 0.011736 4.575884 157.4512 25.63442 - - - - -
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3.3. Modified Johnson–Cook (MJC) Model

The Johnson–Cook model was proposed by Johnson G R and Cook W H. [18] This
model considers that plastic strain, temperature, and strain rate affect the flow stress
independently of each other, and, thus, has a large error in predicting the flow behavior
of materials. To address this drawback Lin Y C et al. [19] proposed the Modified Johnson–
Cook (MJC) model by combining the coupling effect of the three on the stress. Its expression
is shown as follows:

σ =
(

A + B1ε + B2ε2
)(

1 + C0ln
.

ε∗
)

exp
[(

λ1 + λ2ln
.

ε∗
)

T∗
]

(9)

where σ is the true stress; ε is the true strain.
.

ε∗ =
.
ε/

.
εr,

.
ε is the strain rate, and

.
εr is the

reference strain rate. T∗ = T − Tr, T is the experimental temperature, Tr is the reference
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temperature; A, B1, B2, C0, λ1, λ2 are the material constants. The solution process of the
parameters in the MJC model is shown in Figure 7.
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Ye et al. [20] pointed out that the reference strain rate of MJC is generally chosen from
0.1~0.001 s−1, and in this paper, 0.1 s−1 was chosen as the reference rate i.e.,

.
ε = 0.1 s−1

and 350 ◦C as the reference temperature i.e., Tr = 623.15 K. Equation (8) was obtained
when T = Tr, and

.
ε =

.
εr. Fitting the ε-σ curve with a quadratic polynomial, as shown in

Figure 8a, yielded A = 113.57174, B1 = 36.87639, and B2 = −34.91999.

σ =
(

A + B1ε + B2ε2
)

(10)
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Figure 8. Relationship curve of various MJC constitutive parameters of 1420 Al–Li alloy. (a) ε-σ;
(b) ln

.
ε∗ − σ/

(
A + B1ε + B2ε2)− 1; (c) T* − ln{σ/[(A + B1 ε + B2 ε

2)(1 + C0 ln
.

ε∗)]}; (d) ln
.

ε∗ − λ.

When T = Tr exp
[(

λ1 + λ2ln
.

ε∗
)

T∗
]
= 1, the deformation of Equation (9) yielded

Equation (11). Taking a point every 0.05 in the flow data of strain 0.1~0.7, a linear fit of
ln

.
ε∗ − σ/

(
A + B1ε + B2ε2)− 1 was performed, as shown in Figure 8b, and C0 = 0.12365

could be obtained, based on the slope of the fitted line.

σ

A + B1ε + B2ε2 − 1 = C0ln
.

ε∗ (11)

The relationship curve of T* and ln{σ/[(A + B1 ε + B2 ε
2)(1 + C0 ln

.
ε∗)]} was fitted at

different rates, as shown in Figure 8c, and then the slope λ of each line was fitted linearly
with ln

.
ε∗, and the intercept of the straight line shown in Figure 8d was λ1 = −0.00731 and

the slope was λ2 = 0.000668. Therefore, the MJC constitutive equation of the experimental
material was obtained:

σ =
(
113.57174 + 36.87639ε− 34.91999ε2)(1 + 0.12365ln

.
ε∗
)

exp
[(
−0.00721 + 0.00668ln

.
ε∗
)

T∗
] (12)

The experimental values shown in Figure 9 were compared with the predicted values
of the MJC constitutive equation by bringing the different deformation parameters of
the material into Equation (12), and it could be seen that the MJC constitutive model
gave approximately accurate predictions, but could not reflect the rheological behavior of
1420 Al–Li alloy very precisely.
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rate = 10 s−1.

3.4. Modified Zerilli–Armstrong (MZA) Model

The Zerilli–Armstrong model, based on physical significance, considers the effect of
the material dislocation mechanism [21]. Samantaray et al. [22] proposed the Modified
Zerilli–Armstrong (MZA) model, based on this model, considering the effects of work
hardening, isotropic hardening, and dynamic softening, which had been well applied in
predicting the flow behavior of alloys with FCC structure [23–25]. In this paper, the MZA
model was used to construct the constitutive equations of 1420 Al–Li alloy by the process
shown in Figure 10, and the model is represented as follows:

σ = (C1 + C2εn) exp
[
−(C3 + C4ε)T∗ + (C5 + C6T∗)ln

.
ε∗
]

(13)

where C1, C2, C3, C4, C5, C6, and n are material constants. The same reference temperature
and reference rate as the MJC model were chosen. At the reference rate, Equation (13) could
be rewritten as:

σ = (C1 + C2εn) exp[−(C3 + C4ε)T∗] (14)

Logarithmic operation on both sides of the equal sign of Equation (14) yielded:

lnσ = ln(C1 + C2εn)− (C3 + C4ε)T∗ (15)

Order I = ln(C1 + C2εn), S = C3 + C4ε. The flow data of ε = 0.1~0.7 at each deforma-
tion temperature were selected at an interval of 0.05 and linearly fitted to lnσ and T*. The I
and S values at each strain shown in Table 4 were obtained by the arithmetic processing of
the slope and intercept of the curves.
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Table 4. Values of I and S at different strains.

Strain I S Strain I S

0.10 4.74976 0.00808 0.45 4.80621 0.00818
0.15 4.75166 0.00808 0.50 4.80387 0.00807
0.20 4.76634 0.00816 0.55 4.80377 0.00795
0.25 4.77914 0.00818 0.60 4.80385 0.00783
0.30 4.79092 0.00821 0.65 4.80443 0.00779
0.35 4.79841 0.00822 0.70 4.80472 0.00773
0.40 4.80337 0.00819

C1 was the yield stress of the material at reference temperature and reference strain rate,
and C1 = 116 MPa was taken from the flow data. lnε − ln(expI − C1) and ε-S relationship
curves were fitted as shown in Figure 11, respectively, and by processing the intercept and
slope of the fitted curves we obtained: C2 = 10.68189 MPa; n = 0.92305; C3 = 0.00801 K−1;
C4 = 6.34286 × 10−4 K−1.
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Figure 11. Parameter relationship fitting related to I and S (a) lnε − ln(expI − C1); (b) ε-S.

Taking the logarithm of Equation (13) yielded:

lnσ = ln(C1 + C2εn)− (C3 + C4ε)T∗ + (C5 + C6T∗)ln
.

ε∗ (16)
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The slope of the fitted line S2 = C5 + C6T∗ was fitted by the least-squares method for
lnσ and ln

.
ε∗ at different temperatures. The fitted curves of T*-S2 for strain variables of 0.1,

0.3, 0.45, 0.6, and 0.7 are shown in Figure 12. Fitting the T*-S2 relationship curves for each
strain variable, the mean of the curve intercept C5 = 0.12191 and the mean of the slope of
the curve, i.e., C6 = 6.56022 × 10−4.
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This led to the MZA constitutive model for the material.

σ =
(
116 + 10.68189ε0.92305) exp[−

(
0.00801 + 6.34286× 10−4ε

)
T∗

+
(
0.12191 + 6.56022× 10−4T∗

)
ln

.
ε∗]

(17)

The corresponding stress values were obtained by bringing the material strains, strain
rates, and deformation temperatures into the MZA constitutive model described above.
Figure 13 shows the flow curves of the 1420 Al–Li alloy compared with the predicted
values from the MZA model. It can be seen that the flow law of the material under various
deformation parameters was roughly predicted by the MZA model. In particular, the MZA
model accurately predicted the flow behavior at each temperature at the reference rate
of 0.1 s−1, but it did not predict the flow behavior of the material well at the reference
temperature of 350 ◦C.

3.5. VOCE Model

The VOCE constitutive model is a phenomenological constitutive model proposed by
Voce E [26]. Its expression is shown in Equation (18). The study of its differential form by
Sainath G et al. [27] gave some physical meaning to the parameters of the model, so that
the VOCE constitutive model had a greater scope of application.

σ = σs + (σ1 − σs) exp[−(ε− ε1)/εc] (18)

where σs is the saturation stress, σ1 is the stress value corresponding to the start of plastic
strain, ε1 indicates the strain at the start of plastic deformation, and εc is the characteristic
strain, which responds to the rate at which the material reaches the saturation stress value.

Equation (18) was fitted using the Universal Global Optimization (UGO) algorithm.
The predicted flow behavior of this 1420 Al–Li alloy by the VOCE constitutive equation for
each deformation condition was plotted against the experimental measurements, as shown
in Figure 14. It can be seen from Figure 14 that the VOCE model accurately predicted the
flow behavior of this test material at all deformation rates and temperatures. However, at
low temperatures and high rates (350 °C-5 s−1, 375 °C-5 s−1, 350 °C-10 s−1, 375 °C-10 s−1),
there was a large deviation, which was due to the downward trend in the action conditions
of dynamic recrystallization at low temperature and high rate, which meant it was difficult
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to achieve a higher prediction accuracy due to the inherent mathematical model of the
VOCE model.
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Figure 13. Prediction results of the MZA model with various deformation parameters. (a) strain
rate = 0.01 s−1; (b) strain rate = 0.1 s−1; (c) strain rate = 1 s−1; (d) strain rate = 5 s−1; (e) strain
rate = 10 s−1.
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Figure 14. Prediction results of the VOCE model with various deformation parameters. (a) strain
rate = 0.01 s−1; (b) strain rate = 0.1 s−1; (c) strain rate = 1 s−1; (d) strain rate = 5 s−1; (e) strain
rate = 10 s−1.
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4. Discussion
4.1. Comparison of Ontogenetic Model Predictions

To compare the predictive ability of the AR model, MJC model, MZA model, and
VOCE model for the flow behavior of 1420 Al–Li alloy, the correlation coefficient (R2),
the average absolute relative error (AARE), and the root mean square error (RMSE) were
introduced in this paper for quantitative analysis. Their calculation equations are shown
as follows.

R =
∑N

i=1
(
Ei − E

)(
Pi − P

)√
∑N

i=1
(
Ei − E

)2
√

∑N
i=1
(

Pi − P
)2

(19)

RMSE =

√
1
N ∑N

i=1 (Ei − Pi)
2 (20)

AARE(%) =
1
N ∑N

i=1
|Ei − Pi|

Ei
× 100% (21)

In the formula, E and P are the experimental flow stress and predicted values, E and P
are their average values, and N is the total amount of data.

The accuracy of the predictions of the four models was measured by R2, as shown in
Figure 15. It can be seen that the linear correlation between the predicted and experimental
values calculated by the three models AR, MZA, and VOCE, R2, was greater than 0.96 with
good agreement. However, the MJC model R2 was only 0.71862 with a large error.
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Figure 15. Comparison of correlation coefficients of prediction stress by different models (a) AR
Model; (b) MJC Model; (c) MZA Model; (d) VOCE Model.

The correlation coefficient indicated the strength of the linear relationship between
the predicted and tested values. However, higher values of R2 did not necessarily indicate
better prediction accuracy because the trend of the equation might be biased. AARE and
RMSE were calculated by comparing relative errors one by one. The smaller their values
were the higher the prediction accuracy of the equation was. From the analysis of R2, RMSE,
and AARE of the four models in Figure 16, it was not difficult to find that the VOCE model
and the AR model, with coupled strain variables, had significantly higher accuracy than
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the MJC and MZA constitutive models, and the VOCE model had the highest prediction
accuracy with AARE and RMSE of only 1.8933% and 3.9822, respectively. However, the
phenomenological constitutive model MJC had a larger error and could not accurately
predict the flow behavior of the 1420Al–Li alloy. Although the MZA constitutive equation
took into account the coupling effect between the deformation parameters, it still had a
large error compared to the AR and VOCE models. This was because the VOCE model used
a complex nonlinear fitting iterative algorithm when fitting using the UGO algorithm, while
the AR model considered the coupling effects of temperature and rate in the calculation, the
coupling strain was calculated using as many data points as possible, and the calculation
process was significantly more complex and used more data points, compared to both the
MJC and MZA models.
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Figure 16. Comparison of R2, AARE, and RMSE for stress values predicted by different models.

It is worth mentioning that there was only one independent variable (ε) in the VOCE
constitutive model, compared with the other three models, which lacked two indepen-
dent variables, temperature (T) and strain rate (

.
ε). This was one of the reasons for the

higher prediction accuracy than those of the other three constitutive models, but it also
led to the inability of the VOCE model to reflect the flow behavior of the material under
continuous changes in temperature and strain rate, which limits the practical application
of the model. However, the physical significance of the parameters in the differential
form of the VOCE equation can be used to analyze the flow behavior of the material, thus
providing a preliminary understanding of the microscopic mechanism of the material
during plastic deformation. Therefore, the role of the VOCE model should not be limited to
the predicted stress values of the phenomenological constitutive model, and its possible
value in subsequent studies deserves attention. It can be considered that the theoretical
value of the VOCE model is greater than that of both the AR and MJC phenomenological
constitutive models.

4.2. Effect of Deformation Parameters on the Accuracy of the Intrinsic Model

The overall predictive ability of the four constitutive models for the flow behavior
of the 1420 Al–Li alloy used in the tests, as described in the previous section, had a large
difference, but the different models presented different accuracies at different temperatures,
rates, and strain variables. In this study, the errors of the four constitutive models under
these three factors were discussed separately to provide a theoretical basis for the selection
of the constitutive model when studying the heat deformation behavior of 1420 Al–Li alloy
under different conditions.
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The distribution of AARE with strain for the four models, shown in Figure 17, showed
that the VOCE and AR models, with high overall prediction accuracy, showed the advan-
tage of their accuracy in predicting flow stress for this material at each strain variable. The
average relative error of the VOCE model fitted with the UGO algorithm had a weaker
sensitivity for the corresponding variables. The AR model constructed, based on fixed
strain variables with post-coupling, showed an increasing trend of AARE with increasing
strain variables, which might be due to the different degrees of continuous dynamic recrys-
tallization, discontinuous dynamic recrystallization, and dynamic reversion of the material
at different temperatures and rates at high strain variables, with different trends of smooth
stress plateaus and stress decreases, increasing the prediction difficulty of the AR model.
However, the MZA model and MJC model of AARE with strain showed opposite trends.
The overall less accurate MJC model predicted the flow stress of 1420 Al–Li alloy at strains
higher than 0.518 with higher accuracy than the MZA model with a similar prediction
range and construction difficulty.
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Figure 17. Schematic diagram of the effect of true strain on AARE.

Figure 18 shows the AARE of the four constitutive models at different temperatures
and rates, and it can be seen that the AR model and the VOCE model, which had a more
complicated model-building process, had higher accuracy at each deformation parameter.
By comparison, it could be found that the accuracy of the prediction of all models, except
the AR model, showed a certain trend with the change of temperature and rate. The
exception of the AR models was because the AR model was built based on the data of
different temperatures and rates under certain strain variables, and its prediction accuracy
was less affected by the temperature and rate.

From the analysis of the four models at different rates in Figure 18a, it was easy to
find that the three models, VOCE, MZA, and MJC, showed a tendency of larger errors with
larger strain rates, except for the rate at 0.01 s−1, where the error was largely due to the
special fluctuation of the true stress–strain curves. This was probably due to the adiabatic
heating during the thermal deformation of the specimens at high strain rates [11]. The
temperature of the specimen was higher than the preset temperature, while the stress value
decreased, causing an increase in the AARE of the three constitutive models.

It is worth mentioning that, although the overall accuracy of the MJC model was
significantly lower than that of the MZA model, which was similar to it in terms of
calculation difficulty and independent variables, it is easy to see in Figure 18c that MJC
had a lower average relative error at low temperatures. Therefore, in this study, the AARE
and 1-R2 of the two models at different experimental temperatures were subjected to a five-
times multinomial fit, as shown in Figure 19. Comparing the variation patterns presented
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by the two parameters, it could be ascertained that the accuracy of the MJC model was
better than that of the MZA model at low temperatures (350–373 ◦C). The average relative
error of the MJC model was higher than that of the MZA model at 373~408 ◦C, but it still
outperformed the MZA model in terms of linear correlation with the experimental values.
The prediction accuracy of the MZA constitutive model was significantly higher than that
of the MJC model when the temperature was higher than 408 ◦C.
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Figure 18. Schematic diagram of the effect of different deformation conditions on AARE.
(a,b) Temperature; (c,d) Strain rate.
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Figure 19. The effect of deformation on the accuracy of the MJC and MZA models.
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4.3. Conditions of Application of Different Intrinsic Structure Models

Different constitutive models have different guiding meanings in the process of process
parameter formulation, due to their construction characteristics and data selection methods.
Figure 20 shows a description of the four model data characteristics and model features.
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The VOCE model constructs the relationship between stress and strain under fixed
certain deformation conditions (temperature, rate) in the rheological curve through dense
multi-point data on a single curve, and the UGO algorithm mathematizes the experi-
mentally obtained rheological curve into a physical curve by a mathematical equation,
i.e., any rheological curve obtained corresponds to a unique mathematical equation. The
mathematical model focuses on portraying the changing trend of a single curve, and the
accuracy is improved by decreasing the interval between data-taking points. When the
deformation process of 1420 aluminum–lithium alloy is developed, it is possible to predict
the deformation resistance of large strains under small strains in small batch experimental
conditions (the experimental strain is only 0.8, but it is possible to predict the rheological
stress when the strain is >1.2 such as in the spinning process). The construction characteris-
tics of the VOCE model make it impossible to use the model for predicting a wider range
of deformation condition stresses.

The AR model constructs the relationship between deformation rate, deformation
temperature, and rheological stress. The relationship between each parameter (n, α, Q, A)
is constructed by a coupling method (polynomial fitting) between different strain variables.
The prediction of the parameters (n, α, Q, A) is used to achieve the stress prediction
under different deformation conditions. The improvement of AR model accuracy depends
on the increase of experimental conditions (temperature, deformation rate). The large
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experimental system and small strain interval make it easier to accurately portray different
rheological stress curves by involving more stress data in the AR model. The matrix-like
data fetching makes the AR model applicable to a larger range of deformation conditions
prediction (the prediction range is larger than the experimental range).

The MJC model and the MZA model require the selection of a reference temperature
and reference rate before construction, and the selection method was elucidated in the
previous model construction process. Both models can still predict a larger range of process
parameter rheological stress values by reducing the number of experiments and the amount
of data. The difference is that the MJC model consists of an initial modeling array through
a line of dense fetch points and a number table, while the MZA model consists of two
number tables. The denseness of the number table fetch points affects the model accuracy.

By calculating the point-by-point errors of the AR model, MJC model, and MZA
model under different process conditions, the error distributions of the three models were
obtained, as shown in Figure 21a–c. The model with the lowest error, under the same
conditions, was taken as the recommended model under this process parameter to get the
best matching model under different process parameters, Figure 21i. Figure 21d–h shows
the planar detail disassembly graph of Figure 21i. It can be seen that the AR model had
the best prediction accuracy when the strain rate was large (strain rate ≥ 5/s), and the AR
model should be used as the preferred model for stress prediction for high-rate deformation
process. The MJC model had the optimal prediction accuracy for low temperature and
low-rate deformation processes. The MZA model had better prediction accuracy for the
low-rate high-temperature deformation process.
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(d–h) Diagram of the best-fit model with different process parameters-2D; (i) Diagram of the best-fit
model with different process parameters-3D.



Metals 2022, 12, 2029 20 of 21

In summary, within the experimental parameters of this paper, the actual process
could be guided by the model matching diagram of the process parameter selection area in
the actual process production, at which time the model had the optimal accuracy and had
the best guidance significance for the process formulation and performance research.

5. Conclusions

In this study, four constitutive models of 1420 Al–Li alloy were constructed to investi-
gate the flow behavior of this material at high temperatures. The predictive capabilities
of the four constitutive models, and their responses under different deformation condi-
tions, were analyzed and compared to classify the conditions under which the different
constitutive models are applicable. The main conclusions are as follows:

Comparison of model errors: The AR model, MZA model, and VOCE model have
higher overall prediction accuracy: the linear correlation coefficients R2 were 0.9875, 0.9651,
and 0.9927, respectively, and the average relative errors AARE were 3.9912%, 7.8422%,
and 1.8933%, respectively. The linear correlation coefficient R2 of the MJC model was only
0.7186, but the accuracy of the MJC model was better than that of the MZA model under
the conditions of strain greater than 0.518 or temperature lower than 373 ◦C.

Model building features: The VOCE model enables the prediction of large strain
deformation resistance for corresponding conditions at small strains in small experimental
quantities and cannot be used to predict a wider range of deformation condition stresses.
The AR model is suitable for the prediction of a wider range of deformation conditions (the
predicted range is larger than the experimental range) but relies on a huge experimental
volume. MZA and MJC models can predict a wider range of flow stress values for process
parameters and have a significantly reduced number of experiments and data.

Model application classification: Model matching plots were obtained for the se-
lected process parameters of 1420 Al–Li alloy in the range of experimental parameters
(temperature: 350–475 ◦C, rate: 0.01–10/s−1, strain maximum 0.8). The AR model had
optimal prediction accuracy for the high-rate deformation process. The MJC model
had the optimal prediction accuracy for low-temperature low-rate deformation pro-
cess. The MZA model had better prediction accuracy for the low-rate high-temperature
deformation process.
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