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Abstract: This paper aimed to develop synchronous chemical conversion coating on multi-metal
substrates with good corrosion resistance to meet the primer process of new energy light vehicle
bodies. Titanium/zirconium-based chemical conversion coatings were prepared on 6061 aluminum
alloy/7075 aluminum alloy/galvanized steel substrates. By measuring the open circuit potential
(OCP), the formation of a muti-metal synchronous conversion coating can be roughly divided into
three steps. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS)
techniques showed that the self-corrosion current density of the conversion coating decreased signifi-
cantly while the resistance increased. The surface morphology and composition of the conversion
coatings were observed by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy
(XPS). Additionally, the micro-zone characteristics of conversion coatings were analyzed by an elec-
tron probe microanalyzer (EPMA). The synchronous conversion coatings exhibit uniformity and
relative smoothness. Additionally, a number of tiny cracks, pores, intermetallic compounds, en-
richments and inclusions provide efficient active sites for the nucleation of chemical conversion.
Consequently, in the synchronous conversion coating, the structure of aluminum alloy mainly consists
of Al2O3/TiO2/ZrO2/ZrF4, while the structure of conversion coating of galvanized steel contains
TiO2/Fe2O3/ZrO2.

Keywords: synchronous conversion coating; aluminum alloy; galvanized steel; titanium/zirconium-based

1. Introduction

In order to achieve the goal of reducing fuel consumption, reducing environmental
pollution and saving resources, the automobile industry is moving towards new-energy and
lightweight direction development [1,2]. In recent years, the Model S sedan was developed
and manufactured by Tesla, an American manufacturer of pure electric vehicles. It adopts
an all-aluminum body with both lightweight and high-strength characteristics, including
the bottom coating technology of aluminum alloy and high-strength steel materials, such
as six series of aluminum materials for the front compartment of the roof and bottom,
seven series of aluminum materials for the front bumper and five series of aluminum
materials for the four-door bracket. Because the body uses a large number of aluminum
alloy parts, if the traditional phosphating technology is applied to an all-aluminum body
as the bottom coating pretreatment process [3–5], due to the entry of Al3+, the phosphating
liquid is rapidly poisoned, the phosphating coating generated cannot meet the needs of
automobile corrosion resistance and paint adhesion. Various metal body bottom coating
manufacturing technology has become the focus of many new energy vehicles lightweight
body manufacturing demand brands.
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Chemical conversion technology is widely used in the surface treatment of aluminum
alloy due to the simple advantages of materials and manufacturing methods. Among them,
hexavalent chromate chemical conversion technology has a stable process and excellent
corrosion resistance to passivation coating. The coating layer is uniform and golden yellow,
which is the most widely used process product in the existing market [6–9]. Nevertheless,
hexavalent chromium is a highly toxic pollution substance and carcinogenicity, and the
European Union issued a series of RoHS directives banning the use of hexavalent chromium
earlier. Scholars have researched the substitution of the hexavalent chromium chemical
oxidation method, titanium/zirconium conversion coating, rare earth conversion coating,
permanganate conversion coating, vanadate conversion coating, silicone coating and other
aspects [10–18]. Nordlien, J.H. et al. [19] discussed the characteristics of Alodine2840 on
6060 aluminum alloy chemical conversion coating. The presence of mixed oxides of Zr,
Ti and Al in the passivated elements of the aluminum alloy after 30 s was tested. It is
suggested that Ti/Zr oxide coatings grow preferentially around the intermetallic particles,
which is beneficial in reducing the cathode reaction of grains. Lunder, O. et al. [20] focused
on the effects of intermetallic particles, stirring and pH value on the formation and growth
of Ti/Zr oxide coating on 6060 aluminum alloy. It was pointed out that the Ti/Zr oxide
coating is composed of thin Ti in the far region of metal particles and the potential growth
range of a-Al (Fe, Mn)Si phase particles. The cathodic reaction current changed very little
with the treatment time, and the cathodic activity did not decrease with the coating, which
was beneficial to the increase in the thickness of the chemical conversion coating. Andreatta,
F. et al. [21] elaborated on the deposition behavior of Ti/Zr oxide coating at different growth
stages, pointing out that the negative polarity uneven area of aluminum alloy is the driving
force for the formation of Ti/Zr coating and F− can promote the natural formation of
Ti/Zr coating at the early stage of coating formation. Hence, Ti/Zr oxide coating grows
beside the negative polarity intermetallic particles. The conversion coating can reduce the
matrix’s potential difference and improve the aluminum alloy’s corrosion resistance by
covering the intermetallic region of opposing polarity. The phosphating technology of the
high-strength steel body is mature and practical. Researchers have also carried out research
on the chemical conversion coating and its corrosion mechanism instead of phosphating
technology. Sarabi et al. [22] studied the coating formation behavior of Ti-based chemical
conversion coating on a cold rolled steel plate. Ni2+ can promote uniform and thick coating
growth. The electrochemical test showed that TiNiCC coating takes significant polarization
resistance and low corrosion current. TiMoCC coating generated by adding Molybdenum
salt has a network structure with many cracks and relatively small polarization resistance,
which is not conducive to improving corrosion resistance. The addition of phytic acid helps
refine the deposited grain, smooth the surface, and has good bonding with the coating, but
the corrosion resistance is not apparent. Zhang et al. [23] explored the growth model of
lanthanum metal chemical conversion coating on galvanized steel sheets. They found that
the lanthanum conversion coating first grew rapidly along the edge of the zinc grain. This
region was formed first at a particular stage and gradually expanded to the whole surface.

Most scholars have generally recognized the influence of different intermetallic com-
pounds on the growth mechanism of the chemical conversion coating of aluminum al-
loy [24–26], which is similar to the model of Cu-rich or Fe-rich cathode region proposed
by previous scholars studying the chemical conversion mechanism of traditional chromite.
There are few reports on the mechanism of synchronous chemical conversion of multi-metal
surfaces. This paper identified the deposition and corrosion mechanism and the microzones
structure evolution of multi-metal chemical conversion composed of six-series aluminum
alloy/seven-series aluminum alloy and galvanized steel.

2. Materials and Methods

The 6061 aluminum alloy/7075 aluminum alloy/galvanized steel samples of
20 mm × 20 mm × 2 mm were prepared as substrate materials for investigation. After
polished (employing 400-mesh, 1200-mesh and 2000-mesh sandpaper successively) and
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acid degreasing treatment (including 5% ZHM-1026 production employed by Wuhan Re-
search Institute of Materials Protection, Wuhan, China), the pretreated 6061, 7075 aluminum
alloys and galvanized steel were immersed simultaneously into the conversion bath, which
is made up of H2TiF6 2.2 mL/L, H2ZrF6 1 mL/L, adjusting solution pH 3.9 by ammonia
and conversion temperature at 35 ◦C. Different conversion times (from 100 s to 140 s) were
used to investigate the conversion coating process. Finally, the coated specimens were
rinsed in deionized water, dried with air and used further for characterization.

Electrochemical studies such as potentiodynamic polarization (PDP) and electro-
chemical impedance spectroscopy (EIS) techniques were employed using the CHI760E
electrochemical workstation supplied by Shanghai Chenhua Instruments Inc, Shanghai,
China. The tests were carried out in 3.5 mass% NaCl solution for 25 min to obtain a steady
open circuit potential (OCP), using the standard three-electrode cell equipped with the
coated sample (1 cm × 1 cm) as a working electrode, platinum foil as the counter electrode,
and a saturated calomel electrode (SCE) as the reference electrode. The initial and final
potential of the polarization was set from −1.0 to −0.4 V, and the scanning speed was
0.001 V/s. It was remarked that potential scan rate has an important role in order to
minimize the effects of distortion in Tafel slopes and corrosion current density analyses,
as previously reported [27–29]. However, based on these reports, the adopted 0.001 mV/s
has no deleterious effects on those Tafel extrapolations to determine the corrosion current
densities of the examined samples. After the experiment, Tafel fitting was performed to
obtain the self-corrosion potential (Ecorr) and corrosion current density (icorr). Electrochemi-
cal impedance spectra were obtained at the OCP in the frequency range from 10 kHz to
0.01 Hz, with 10 mV as the amplitude of the perturbation signal. The impedance data were
displayed as Nyquist curves, which could establish the electrical equivalent circuits (EEC)
by the fitting of ZSimPwin 3.10 (E Chem Software, Ann Arbor, MI, USA).

The surface morphology of the chemical conversion coatings on different metals was
observed using Sigma 300 SEM (ZEISS, Oberkochen, Germany), and their chemical com-
positions were analyzed based on the energy spectrum (EDS). A Kratos AXIS SUPRA
spectrometer (Al-Kα = 1486.6 eV) equipped with an aluminum anode was used for qualita-
tive analysis of the valence state and compound type of each element in the conversion
coating. The obtained X-ray photoelectron spectroscopy (XPS) spectra were calibrated
with the adventitious carbon peak (1 s) as a reference at 284.6 eV. The variation in the
microstructure of the aluminum alloy in different coating formation stages was studied by
the EPMA-1720H Electron Probe X-ray Microanalyzer (EPMA) of Shimadzu Corporation
of Japan, Kyoto, Japan, and the coating formation process was inferred.

3. Results and Discussion
3.1. OCP Measurements during the Formation of Conversion Coating

The formation of synchronous chemical conversion was followed by measuring the
OCP of 6061 aluminum alloy/7075 aluminum alloy/galvanized steel samples immersed
in a conversion bath of H2TiF6 2.2 mL·L−1, H2ZrF6 1 mL·L−1 (Figure 1). The OCP test is
carried out in the conversion solution, and the formation process of the conversion film
is judged by its potential change. There are three distinct phases of all coating formation.
(i) The natural multi-metal oxide film is thinned by the attack by F− ions, and the surface is
activated for coating formation. The OCP of 6061/7075 aluminum alloy/galvanized steel
samples dropped rapidly to more negative values within the first 93.4 s. At this stage, the
surface of the sample begins to nucleate, but the film formation rate is far less than the
dissolution rate of natural oxide film, so the potential drops rapidly. (ii) After the removal
of natural multi-metal oxide, hydrogen evolution and oxygen reduction reactions, due to
the increase in local alkalinity, synchronous chemical conversion coatings start to form on
cathodic areas of the substrate, afterward growing in a lateral direction until completely
covering the substrate. The maximum in the OCP curves (the OCP of 6061 aluminum
alloy/7075 aluminum alloy/galvanized steel samples increased to 805.2 s/119.9 s/120.1 s,
respectively) were taken as the optimal conversion time, at which the coating is fully formed.
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Furthermore, the position of optimal conversion time could be checked previously by
measuring electrochemical properties and analyzing the morphology surface by SEM/EDS
of samples prepared at different synchronous conversion times. (iii) The complete formation
of synchronous chemical conversion coatings, when the potential plateau is established
after 200 s, the coatings tend to grow further. However, due to internal stress and the
formation of hydrogen microbubbles or pores, it cracks and loses anticorrosion properties.
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Figure 1. Open circuit potential during the formation of synchronous chemical conversion coatings
of multi-metal.

3.2. Electrochemical Analysis

PDP and EIS techniques were utilized to investigate the electrochemical behavior
without and with the synchronous chemical conversion of multi-metal in 3.5 wt% NaCl
solution at conversion times 120 s are shown in Figure 2. The EEC of the 6061 aluminum
alloy/7075 aluminum alloy/galvanized steel samples was curved fit for the obtained
plots in Figure 3. Since an equivalent circuit was used (as shown in Figure 3) in order
to determine the simulated values and compare them with experimental data, a CNLS
(complex non-linear least squares) simulation was used, as previously reported [27,30–33].
In the EEC models, Rs presents the electrolyte solution resistance between the sample
and reference electrode, and Rf refers to the access of the electrolyte to the alloy through
pores and cracks of partial protective coating in parallel with Q1, which is a constant phase
element related with the entire barrier layer. Rct is the charge transfer resistance showing
the protective properties of the coating, while Q2 is the capacitance related to the electrical
double layer. The values of the Tafel and EEC analysis are given in Table 1. The relevant
analysis of the Bode and Bode Phase is shown in the Supplementary Materials Figure S1.
Bode and Bode Phase graphs.

Compared with the untreated blank sample, the icorr of 6061 aluminum alloy syn-
chronous conversion coating decreased from 1.096 µA/cm2 to 0.174 µA/cm2, and the
Ecorr was positively shifted from −1.151 to −1.084 V. After EIS fitting, the Rct of the blank
sample is only 0.268 Ω, while the Rct of conversion coating resistance suddenly increases to
846,10 Ω. In general, the greater the film resistance, the stronger the corrosion resistance
of the conversion coating [34,35]. This is consistent with the previous Tafel polarization
curve experimental results. The icorr of 7075 aluminum alloy decreases from 1.470 µA/cm2

without conversion sample to 0.018 µA/cm2 with the synchronous chemical conversion,
and the film resistance increases from 19,330 to 23,250 Ω, respectively. The results show
that the formation of synchronous chemical conversion coating can improve the corrosion
resistance of 7075 aluminum alloy to a certain extent, but the Rct is not significantly in-
creased due to there being some copper-enriched phases in samples [36]. At the same time,
the icorr of galvanized steel without a conversion sample decreases from 6.312 µA/cm2 to
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1.012 µA/cm2 after the chemical conversion treatment. The self-corrosion current density
decreased significantly, which was only 1/6 of the former. The Ecorr changes from−0.938 to
−0.838 V, and the film resistance increases from 5441 to 13,010 Ω, respectively. Compared
with aluminum alloy, the improvement degree of these electrochemical performance in-
dexes is slightly lower. This may be affected by the intrinsic characteristics of the galvanized
steel substrate and the based system effect on the conversion coating. All these indicate
that the corrosion resistance of 6061 aluminum alloy/7075 aluminum alloy/galvanized
steel was enhanced at different levels after synchronous chemical conversion.

1 

 

 

F2 

 

 

F7 

 

F8 

Figure 2. Electrochemical analysis for without and with synchronous chemical conversion coatings
of multi−metal samples: (a) Polarization curves of AA6061, (b) polarization curves of AA7075,
(c) polarization curves of galvanized steel, (d) Nyquist plots of AA6061, (e) Nyquist plots of AA7075,
(f) Nyquist plots of galvanized steel.
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Table 1. The values of the Tafel and EEC analysis for without and with the synchronous chemical
conversion of multi-metal samples.

Samples icorr/µA·cm−2 Ecorr/V Rct/Ω Rs/Ω Rf/Ω Q1 Q2

with conversion AA6061 0.174 −1.084 84610 8.66 3675 6.317 × 10−5 9.334 × 10−5

without conversion AA6061 1.096 −1.151 0.268 12.97 919 8.661 × 10−4 6.221 × 10−4

with conversion AA7075 0.018 −0.603 23250 7.03 2876 9.112 × 10−5 3.666 × 10−5

without conversion AA7075 1.470 −0.653 19330 11.64 799 7.663 × 10−4 2.729 × 10−4

with conversion galvanized steel 1.012 −0.838 13010 6.07 2017 1.117 × 10−4 3.915 × 10−4

without conversion galvanized steel 6.312 −0.938 5441 9.88 366 7.664 × 10−4 9.226 × 10−3

3.3. Surface Characterization

Figure 4 shows the morphology of 6061 aluminum alloy samples with synchronous
chemical conversion at different treatment times. At 100 s (Figure 4a), there are many tiny
pores on the surface of 6061 aluminum alloy, which is mainly due to the hydrogen evolution
of the cathode reaction at the early stage of film formation. After 110 s (Figure 4b–e), the
pores were significantly reduced, and white granular materials with a size of 1–3 µm
appeared inside and outside the pores, which were mainly intermetallic compounds (IMC).
It is mainly composed of the α-Al (Fe, Mn)Si secondary phase [37], which provides the
cathode potential for chemical transformation and promotes the uniformity and integrity
of the transformation film. Due to the dominant factor of coating growth, rapid deposition
leads to the film stacking phenomenon and local cracks in chemical conversion deposition.
The distribution of Ti and Zr elements are small white aggregates in the pores (Figure 4f),
and the distribution of Fe elements and Ti/Zr are mostly overlapped, which verifies the rule
that the deposition of chemical conversion is preferentially on intermetallic compounds.
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Figure 5 shows the uniform and dense morphology of 7075 aluminum alloy samples
with synchronous chemical conversion at different conversion treatment times. Addition-
ally, there are also some tiny cracks and pores after 110 s (Figure 5b–e), and the cracks
occurred on the local accumulation in the vicinity of the grain boundaries. A small amount
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of white granular material with a 1 µm particle size distributed around it represents the
existence of IMC. The interlaced cracks contain white granular materials with a particle
size of 3–5 µm, which are mainly Cu enrichment IMC [38,39]. There are many titanium
or zirconium oxides around IMC and enrichment, which provides an effective active site
for nucleation of chemical conversion. The appearance of grain boundary cracks is easy
to cause intergranular corrosion. The existence of a copper enrichment phase in the grain
boundary enhances the potential difference in this microzone to a certain extent, which is
beneficial to the conversion and deposition of the chemical conversion coating. However,
the grain boundary cracks were not improved obviously from the morphology of SEM. At
a reaction time of 120 s, the concentrations of Ti and Zr reached 14.5 and 7.4 wt% (Figure 5f),
which was identical to the formation stage of OCP measurements.
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The surface morphology of galvanized steel is shown to be uniform and relatively
smooth, with few holes and no intermetallic compounds found on the surface (Figure 6).
However, titanium or zirconium oxide film white granular material distribution in the
protrusion or depression. When the conversion reaches 120 s (Figure 6c), cracks can be
observed on the oxide surface distributed in the white block enrichment, mainly due to
the uneven thickness caused by the excessive accumulation of film particles, resulting in
stress fission. The coating has a few inclusions, including antimony/calcium/carbon oxide,
which could be derived from the metallurgical process. By means of EDS (Figure 6f), it
is speculated that the chemical conversion coating on the surface of galvanized steel is
preferentially formed around the inclusion of carbon oxide, and the rest is distributed
dispersively. In addition, the dissolution of Al3+ in the two species of aluminum alloys
reacted on the surface of galvanized steel to form a small amount of aluminide.
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different times: (a) at 100 s, (b) at 110 s, (c) at 120 s, (d) at 130 s, (e) at 140 s, (f) the EDS result of the
conversion coating.

3.4. EPMA Analysis

In particular, intermetallic compounds, enrichment and inclusions have a certain effect
on the growth of the chemical conversion coating. In order to further judge the influence of
the main characteristics of various metal microzones on the conversion coating evolution,
electron probe technology was used to investigate the element change rule of the microzone
characteristic region under different conversion times.

Figure 7 shows the intermetallic compounds’ characteristic region of 6061 aluminum
alloy samples as the treatment time from 100 to 140 s. There are many elements, Ti and
Zr, near the intermetallic compound, with Fe as the main component. With the increase in
time, the amount of Ti and Zr shows a trend of increasing first and then decreasing, and the
content of Ti on the intermetallic compound surface is higher than that of Zr. Similarly, the
Cu-rich characteristic of 7075 aluminum alloy from 100 to 140 s was shown in Figure 8. The
white spots and pores in the backscattering electron map mainly contain O, Cu, Ti and Zr
elements, and the Cu-enriched phase easily occurs between the pores. Ti and Zr oxides are
concentrated around the enrichment, increasing their contents and then decreasing them.
It can be seen from Figure 9 that the microzone of galvanized steel appears bubble-like
black substances, which are mainly composed of C, O, Ti and Zr elements. Due to its
large particle size, it is speculated that the carbon oxides are inclusions precipitated by
metallurgical processes. The Ti/Zr oxide deposited by chemical conversion is easy to grow
on its surface and gradually accumulates and distributes diffusely. It was evidenced that
the Ti/Zr conversion layers were firstly formed on the surface of cathodic α-Al (Fe, Mn) Si
particles/Cu enrichment/carbon oxides inclusions and the surrounding areas, leading to a
significant variation in the evolution of synchronous chemical coating conversion.
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3.5. XPS Analysis

The XPS spectra of synchronous chemical conversion coatings of 6061 aluminum
alloy/7075 aluminum alloy/galvanized steel were recorded to characterize the chemical
compositions shown in Figure 10, which indicated the existence of Al, Ti, Zr, O and F species
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for 6061 aluminum alloy/7075 aluminum alloy conversion coatings, and the galvanized
steel conversion coating was mainly composed of Ti, Zr, Fe, O and F elements. The binding
energies of 458.3 and 464.5 eV in deconvolution of Ti 2p for both coatings represent the Ti
2p3/2 and Ti 2p1/2 of TiO2, respectively. O1s spectrum can be fitted to two single peaks of
O1s A (530.1 eV) and O1s B (531.9 eV), which belong to TiO2 1s and Al2O3 1s, respectively.
The Zr 3d is fitted with two peaks at 182.8 and 185.0 eV, which correspond to ZrO2 and
ZrF4 on 6061 aluminum alloy/7075 aluminum alloy coatings [40,41]. However, this signal
could be assigned weakly to the galvanized steel species. F1s are fitted with two peaks at
684.5 and 685.1 eV, which correspond to ZrF4 and AlF6

3− [42]. Al2p is fitted with two peaks
at 74.5 and 74.76 eV, which correspond to Al2O3 [43]. Furthermore, Fe 2p is fitted with two
peaks at 710.04 and 723.5 eV, which correspond to Fe2O3 and FeOOH [44]. The original
peak of the Ca 2p spectrum contains a set of double peaks, and two satellite peaks belong
to CaCO3 from steel mixed on the surface. In general, the structure of the synchronous
conversion coating of 6061 aluminum alloy and 7075 aluminum alloy mainly consist of
Al2O3/TiO2/ZrO2/ZrF4. The structure of the titanium–zirconium conversion coating of
galvanized steel contains TiO2/Fe2O3/ZrO2.
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3.6. Discussion of the Formation of Synchronous Chemical Conversion Coatings

Through the above characterization and analysis of surface morphology, electron probe
and microstructure, it can be seen that when a variety of aluminum alloys and galvanized
steel are immersed in the conversion solution simultaneously, due to the electric potential
difference between various metal elements and microzones characteristics, microcell reac-
tion is easy to form on the surface of the substrate. The characteristics of micro cathode
region, such as intermetallics, enrichment phases and inclusions, can especially drive the
deposition of conversion coatings on and around its surface. According to the above results,
we supposed that the framework of multi-metal synchronous conversion coatings could be
roughly divided into three steps by the following reaction and schematic (Figure 11):

A. The dissolution of Al or Zn/Fe on the substrate surface in a conversion bath [45].

Al→Al3+ + 3e−

Zn→Zn2+ + 2e−

Fe→Fe2+ + 2e−→Fe3+ + e−
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B. The surface nucleates and grows at the characteristics of the microzones, forming
conversion coatings and continuously depositing. Both cathodic reactions create local
alkalinity adjacent to the microzones characteristics favoring the precipitation of TiO2,
ZrO2, Al2O3 and Fe2O3 [46,47].

2H2O + O2(aq) + 4e− → 4OH−(aq)

2H+ + 2e− → H2↑

2Al3+ + 6OH− → Al2O3↓ + 3H2O

2Fe3+ + 6OH− →Fe2O3↓ + 3H2O

TiF6
2− + 4OH−→TiO2↓ + 2H2O + 6F−

ZrF6
2−+ 4OH−→ZrO2↓ + 2H2O + 6F−

C. The dissolution of the micro anode and the formation of conversion coatings in the
micro cathode region reach a dynamic equilibrium.

Al3+ + ZrF6
2− → AlF6

3− + Zr4+ (1)

Zr4+ + 4F−→ZrF4 (2)

At the last stage, the film-forming system is relatively complete, and the conversion
coating is mainly composed of various metal oxides or fluorides [48]. The presence of
microzones characteristics (intermetallics, enrichment phases and inclusions) than there are
in the multi-metal will increase the rate of conversion coating growth, leading to a shorter
optimal time of conversion. At the same time, the less stable natural metal oxide film
will be easier to remove by the action of free fluoride ions, giving a faster rate of surface
activation. If we continue to extend the conversion time, the film-forming of synchronous
conversion coatings may produce cracks due to accumulation, which is not conducive to
improving the corrosion resistance and adhesion of the substrate.

4. Conclusions

Ti/Zr-based synchronous conversion coatings were prepared on 6061 aluminum
alloy/7075 aluminum alloy/galvanized steel with different treatment times. We supposed
that the formation of synchronous conversion coatings of multi-metal could be roughly
divided into three steps by means of OCP measurements.
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The corrosion resistance of multi-metal was enhanced markedly after synchronous
chemical conversion at 120 s by means of electrochemical PDP and EIS techniques. The
surface morphology of the synchronous conversion coatings exhibited uniform and rela-
tively smoothness.

The existence of titanium or zirconium oxides around intermetallic compounds, enrich-
ment and inclusions is also confirmed for providing effective active sites for the nucleation
of chemical conversion. Additionally, the Ti/Zr conversion layers on the surface of cathodic
α-Al (Fe, Mn)Si particles/Cu enrichment/carbon oxides inclusions and the surrounding
areas are formed for the first time according to the EPMA measurement. As a result, the
coating of 6061 and 7075 aluminum alloy is consisted of metallic oxides (Al2O3/TiO2/ZrO2)
and metal fluorides (ZrF4), while the coating of galvanized steel mainly consists of metallic
oxides (TiO2/Fe2O3/ZrO2). This study provides a significant strategy to improve the
corrosion resistance of multi-metal for further application.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/met12122011/s1, Figure S1: Bode and Bode Phase graphs; Table S1: The
parameters of Rs, Rf, Q1, Q2 and Rct.
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