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Abstract: Addition of B is beneficial for the hardenability of low-alloy steels and the effect is further
improved when combined with the addition of Mo. While experiments demonstrated that Mo
reduces the M23(C,B)6 precipitation and indicated an interaction between the alloying elements at the
grain boundary, the underlying mechanism remains unclear. In the present study, the segregation
behavior of B and its interaction with C and Mo at an austenite grain boundary were investigated
using first-principles calculations. It was demonstrated that B has a strong tendency to segregate
to the grain boundary and leads to a remarkable reduction in grain boundary energy, which is
considered to be responsible for the improvement in hardenability. A strong attractive interaction
between B and Mo was revealed, consistent with the experimentally observed co-segregation. The
partitioning energies of Mo and B from grain boundary into borocarbide were calculated, and it
was found that Mo can suppress the precipitation by increasing the partitioning energy of B and
destabilizing the M23(C,B)6 phase.

Keywords: metals and alloys; atomic scale structure; grain boundaries; segregation; first-principles cal-
culations

1. Introduction

Hardenability is the ability of a steel to transform from austenite into hard phases
during cooling by suppressing the formation of soft phase, i.e., ferrite. A sufficient hard-
enability allows for formation of a bainitic or martensitic microstructure under industrial
cooling conditions. To improve the hardenability, a sufficient amount of alloying elements
was often added to the steels. For example, for the bainitic rail steels, usually more than
2 mass% Mn was added to ensure a bainitic matrix [1]. For the purpose of conservation of
alloying element resources and cost reduction, attention has been paid to boron, which is
known to improve the hardenability of low-alloy steels even in a very small amount [2,3].
The beneficial effect of B on the hardenability is believed to be due to the decrease in grain
boundary (GB) energy by B segregation, which retarded the nucleation of ferrite [4,5]. On
the other hand, the precipitation of M23(C,B)6 results in a deterioration in hardenability as
the precipitates act as nucleation sites for ferrite. Therefore, the effect of B on the harden-
ability is also influenced by the presence of other alloying elements [6–9]. The combined
addition of Mo and B is known to have a synergistic effect on the hardenability, which was
attributed to the suppression effect of Mo on the precipitation of M23(C,B)6 [6,8,9].

As an important alloying element widely used in steels, the segregation behavior
of B and its interaction with other alloying elements have been extensively studied by
first-principles calculations [10–15]. However, many of these studies focused on the be-
havior of B at the bcc-Fe GB in ferritic steels or at the GB and metal/oxide interface in
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austenitic stainless steels. Although within the framework of DFT, the interfacial properties
were estimated at 0 K, the results seemed able to explain phenomena observed at finite
temperatures. Wang et al. predicted the spherical morphology of the Cu precipitate based
on the DFT-calculated Fe-matrix/Cu-precipitate interfacial energies with different interface
orientations, consistent with experimental observation [16]. The alloying element segre-
gation at the Fe-matrix/Cu-precipitate interface and its effect on the kinetic of precipitate
coarsening was also well captured by DFT calculation [17]. So far, there is no systematic
study on the influence of B on the GB energy and its interaction with Mo at the fcc-Fe GB,
which is relevant to the hardenability of steels.

The aim of this work was to understand the effect of B on the hardenability of steels
from ab initio calculations. In this regard, the segregation behavior of B, C, and Mo and
their interaction at the fcc-Fe GB as well as the effect of alloying elements on the stability of
M23(C,B)6 were studied.

2. Methodology

First-principles calculations were performed based on density functional theory (DFT)
as implemented in the Vienna Ab initio Simulation Package (VASP) code [18,19] with the
projector augmented wave (PAW) method [20,21] and the Perdew–Bruke–Ernzerhof (PBE)
generalized approximation (GGA) [22]. A cutoff-energy of 450 eV was applied. The 3p3d4s
states for Fe, 4p4d5s states for Mo and 2s2p states for B and C were treated as valence
states. Full relaxation of the shape, volume of the supercells, and the ionic positions were
allowed until the forces on each atom were less than 0.02 eV/Å. For the GB, the supercell
volume was first optimized by stretching and compressing the supercell in GB normal
direction under the condition of constant shape and volume [12] before full relaxation
was performed, in order to ensure the finding of the most stable configuration. Periodic
boundary conditions were applied and Monkhorst–Pack k-point mesh was used as listed
in Table 1.

Table 1. k-point mesh sampling of different supercells.

Supercell Number of Atoms k-Point Mesh

1 × 1 × 3 GB 120 4 × 2 × 4
1 × 1 × 2 GB 80 4 × 2 × 6
M23(C,B)6 116 4 × 4 × 4

An accurate treatment of paramagnetic state of fcc-Fe is rather challenging for DFT cal-
culations and the most straightforward approach is to use ordered magnetic arrangements
to approximate the paramagnetism [23,24]. In this study, non-magnetic (NM) calculations
and double-layer antiferromagnetic (AFMD) calculations were performed to calculate the
segregation energies, which were most commonly used in DFT calculations for fcc-Fe grain
boundaries [14,15,24,25]. The latter was considered as a reasonable approximation to the
true paramagnetic state [23,26,27] and the former was computationally more feasible. As
will be discussed later, the segregation energies seemed to be affected only slightly by the
magnetic approximation. Therefore, NM calculations were used throughout the study
unless otherwise specified. The equilibrium lattice constant a obtained by NM calcula-
tion is 3.44 Å, in good agreement with previous first-principles calculations [14,15,23,28].
Spin-polarized calculations were performed for the ferromagnetic [29] 116-atom M23(C,B)6
supercell (Figure 1c). The four Wyckoff sites 4a, 8c, 32f, and 48h are distinguished by
different colors.



Metals 2022, 12, 2006 3 of 8Metals 2022, 12, x FOR PEER REVIEW 3 of 8 
 

 

 
Figure 1. Atomic structure of Σ5(210) fcc-Fe GB supercell (a), perspective view of the structural units 
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will be denoted as X (X = B, C) and Y (Y = B, Mo), respectively. According to Ref. [24], the 
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‘core’ plane, or in its neighboring atomic plane, denoted as S0 and S1 site in Figure 1a, 
respectively. Both sites were examined for substitutional B and Mo, and it was found that 
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Figure 1. Atomic structure of Σ5(210) fcc-Fe GB supercell (a), perspective view of the structural
units (b) and M23(C,B)6 supercell (c).

The 1 × 1 × 3 Σ5(210) fcc-Fe GB supercell (Figure 1a) was applied for the NM cal-
culation, which contains 120 Fe atoms and 6 interstitial sites at the center of the capped
trigonal prism (CTP) structural unit, as shown in Figure 1b. Mo and C were treated as
substitutional and interstitial atom (Mo(s) and C(i)), respectively, while B can occupy both
the interstitial and substitutional sites in Fe [12]. Therefore, both possibilities (B(i) and B(s))
were examined in this study. In the following, interstitial and substitutional solute atoms
will be denoted as X (X = B, C) and Y (Y = B, Mo), respectively. According to Ref. [24],
the most stable segregation site for substitutional alloying elements resides either in the
GB ‘core’ plane, or in its neighboring atomic plane, denoted as S0 and S1 site in Figure 1a,
respectively. Both sites were examined for substitutional B and Mo, and it was found that B
and Mo prefer to occupy S1 and S0 site, respectively.

The average solution energy of interstitial atom X at the GB in Fe-X binary system was
defined as

EGB
sol (X) =

EFe−X
tot − Eclean

tot − mµX

m
(1)

and the solution energy of substitutional atom Y in Fe-Y binary system was defined as

EGB
sol (Y) =

EFe−Y
tot − Eclean

tot − nµY + nµFe

n
(2)

where m and n represent the number of interstitial and substitutional atoms, respectively.
EFe−X

tot and EFe−Y
tot are the total energies of the GB supercell containing alloying element

atoms, and Eclean
tot is the total energy of the pure Fe GB supercell. The 1/6 monolayer

(1/6 ML = 1 solute atom/interface) and 1 monolayer (6 solute atoms/interface) were con-
sidered to represent dilute limit and high concentration, respectively. Therefore, m and n
are either 2 or 12 in Equations (1) and (2) for the NM calculations. For AFMD calculations,
the 1 × 1 × 2 GB supercell was applied, so that there were four atomic layers along the
[001] direction (z direction in Figure 1a), with two layers spin up and the next two layers
spin down. With such a magnetic configuration, all four available interstitial/substitutional
sites in the 1 × 1 × 2 supercell are symmetrically equivalent. µ indicates the atomic energy
of elements in their crystal form (fcc-Fe, bcc-Mo, graphite, and α-B), which will be cancelled
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out during the calculation of segregation energy. The segregation energy was defined as the
energy gain by moving the alloying element atom from grain interior (GI) to the GB [17],

Eseg = EGB
sol − EGI

sol (3)

where GI was modeled with the GB supercell where a solute atom was placed at the
octahedral site on the atomic layer farthest from the GB plane. A negative segregation
energy indicates that the solute atom is prone to segregation.

The interaction energy (per interface) associated with combining two systems A and B
with the chemical composition [(120-n1)Fe, m1X1, n1Mo] and [(120-n2)Fe, m2X2, n2Mo] was
defined as [12]

EA,B
interact =

EC
tot + Eclean

tot − EA
tot − EB

tot
2

(4)

where the chemical composition of the combined system C is [(120-n1-n2)Fe, m1X1 + m2X2,
(n1 + n2)Mo]. A and B are binary systems with either m = 0 or n = 0. The factor 2 in
Equation (4) accounts for two grain boundaries in the supercell. The interaction energy
represents the energy change by bringing all the solute atoms from two separate GBs into
one GB and leaving the other one clean. A positive interaction energy indicates a repulsive
interaction and vice versa.

The GB (formation) energy of a binary system Fe-X (Fe-Y) at dilute limit was defined
as the energy required to glue two crystals and form interfaces following Ref. [17]:

γGB =
EGB

tot (120Fe, 2X(Y))− 2EGB/2
tot (60Fe, 1X(Y))

2A
(5)

where A is the area of the interface.
According to Ref. [30], the partitioning energy, i.e., the energy required for an alloying

element atom M to partition from the matrix to the precipitate, is a good indicator for the
stabilizing/destabilizing effect of M on the precipitate. The partitioning energy of both B
and Mo were considered in the present study. The energy required for a B atom to partition
from a clean and Mo-segregated GB into the Fe23C6 phase was defined as

EB(i)
p = (

EGB
tot [120Fe, 2C]

2
+ Eppt

tot [92Fe, 1B, 23C])− (
EGB

tot [120Fe, 2B]
2

+ Eppt
tot [92Fe, 24C]) (6)

and

EB(i)
p = (

EGB
tot [108Fe, 12Mo, 2C]

2
+ Eppt

tot [92Fe, 1B, 23C])− (
EGB

tot [108Fe, 12Mo, 2B]
2

+ Eppt
tot [92Fe, 24C]) (7)

The energy required for a Mo atom to partition from a clean GB into the Fe23C6 and
Fe23(C,B)6 precipitate was defined as

EMo
p = (

EGB
tot [120Fe]

2
+ Eppt

tot [91Fe, 1Mo, 24C])− (
EGB

tot [118Fe, 2Mo]
2

+ Eppt
tot [92Fe, 24C]) (8)

and

EMo
p = (

EGB
tot [120Fe]

2
+ Eppt

tot [91Fe, 1Mo, 1B, 23C])− (
EGB

tot [118Fe, 2Mo]
2

+ Eppt
tot [92Fe, 1B, 23C]) (9)

A negative partitioning energy EMo
p indicates that Mo is prone to partition from the Fe

matrix into the precipitate and vice versa.

3. Results and Discussion

The calculated solution energies are listed in Table 2. Solution energies were usually
calculated using cubic bulk supercells in literature while in our study, a bulk-like model,
i.e., the GB slab with a solute atom placed in the atomic layer far from the GB plane (grain
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interior) was applied. Theoretically, the two models should give the same result, as long as
the supercell is sufficiently large. This was confirmed by the good agreement between the
present study and Ref. [13] in the solution energy of both interstitial B and substitutional B,
where NM calculations were applied. According to our calculation, the interstitial site is
energetically more favorable than the substitutional site for B. Ponomareva et al. combined
the magnetic sampling method and magnetic special quasi-random structure technique
to simulate the paramagnetic state of fcc-Fe [31]. Jiang and Carter modeled fcc-Fe as a
ferromagnetic high-spin phase [23]. These two studies yielded C solution energies with
opposite signs, indicating that the calculated solution energy depends on the treatment of
paramagnetism in fcc-Fe.

Table 2. Solution and segregation energies of alloying elements in fcc-Fe (eV).

Alloying Element Solution Energy Segregation Energy

B(i) 0.26, 0.25 [13] −1.93, −1.56 [13]
B(s) 0.45, 0.47 [13] −1.44, −1.56 [13]
C 0.04, 0.20 [31], −0.17 [23] −0.47, −0.24 [13]

Mo 0.28 −0.35, −0.44 [24]

The calculated segregation energy and GB energy are plotted in Figure 2. Although
the solution energy is affected by the magnetic treatment, the effect seems to be cancelled
out during the calculation of segregation energy as it represents the change in energy
by moving the solute atom from the bulk region to the GB. This was confirmed by the
comparison between the NM- and AFMD-calculated segregation energy at dilute limit.
Although the AFMD-calculated segregation energy was systematically lower, the difference
in segregation energies between different alloying elements agree fairly well between the
AFMD and NM results (Figure 2a). The more negative segregation energy of B(i) suggests
that B prefers interstitial site to substitutional site while in both sites the segregation energy
of B is significantly lower than that of C and Mo. The trend of segregation energy still holds
at higher concentration (1 monolayer). The calculated segregation energy was compared
with literature using the same definition, as listed in Table 2. While giving the similar solu-
tion energy, the present study and Ref. [13] show different results in segregation energies
of interstitial and substitutional B. The AFMD-calculated Mo segregation energy in our
study is −0.63 eV, while that reported in Ref. [24] is −0.44 eV. The reason for the discrepan-
cies may be the different relaxation methods applied in these studies. Nevertheless, the
general trend that B shows a stronger segregation tendency than other alloying elements
seems unaffected.
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The GB formation energy without alloying elements was calculated to be 1.55 J/m2,
in reasonable agreement with DFT results reported in other works (1.60 J/m2 [13] and
1.75 J/ m2 [14]). Our calculations suggest that the GB energy is reduced significantly by B
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segregation (1.17 J/m2 for B(i) and 1.22 J/m2 for B(s)) and only decreased modestly by C and
Mo (1.45 J/m2). It is believed that the reduced GB energy by B delays nucleation of ferrite
at austenite GB [4,5] and thus increases the hardenability. The DFT results demonstrate a
strong segregation tendency of B and its effectiveness in reducing the GB energy, which
explains the improvement in hardenability by addition of a very small amount of B.

Figure 3 compiles the X1–X2 and Mo–X interaction energy at dilute limit. The interac-
tion energy between interstitials is rather weak, oscillating within ±0.04 eV. The calculated
results indicate an attractive interaction between Mo and B/C atoms beyond an interatomic
distance of 2.5 Å. It can be seen that B and C behave similarly in terms of interaction
with Mo and with themselves at the GB. When the concentration of Mo and interstitial B
was increased to 1 monolayer, the interaction energy between them was calculated to be
−1.82 eV. The strong attractive interaction indicates the co-segregation of Mo and B at the
austenite GB, consistent with experimental observation by atom probe tomography [32].
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The partitioning energies for B and Mo are plotted in Figure 4. The energy required for
an interstitial B atom to partition from clean GB to Fe23C6 precipitate is 0.18 eV. The positive
sign indicates that interstitial B is reluctant to form borocarbide. When a monolayer of Mo
is present at the GB, the partitioning energy is further increased to 0.21 eV (Figure 4a). By
definition, an increase in partitioning energy indicates that the partitioning from the GB
into the precipitate becomes more difficult. As interstitial B atoms are strongly attracted
by Mo atoms, they prefer to co-segregating with Mo at the GB, rather than entering the
precipitate until all the interstitial sites have been occupied.
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Figure 4b presents the energy required for Mo to partition from the GB into the M23C6
and M23(C,B)6 precipitates with Mo occupying different Wyckoff sites. For each Wyckoff
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site, there may be several symmetrically inequivalent relative positions for Mo and B (blue
bars). It can be seen that the partitioning energy of Mo is positive except at 8c-sites, which
indicates that Mo destabilizes M23(C,B)6 phase and suppresses the precipitation. Due to the
attractive interaction between B and Mo at the GB, the addition of Mo can further improve
the hardenability via inhibiting the formation of borocarbides.

4. Conclusions

First-principles calculations indicate that both interstitial and substitutional B exhibit a
strong segregation tendency and decrease the GB energy significantly. The reduction in GB
energy is believed to suppress the nucleation of soft phase, i.e., ferrite, and thus improve
the hardenability. The present study reveals a strong attractive interaction between Mo and
B, which is responsible for their co-segregation observed by experiments. The calculated
partitioning energies suggest that Mo destabilizes the M23(C,B)6 precipitates. Therefore, in
the presence of Mo at the GB, the driving force for B to segregate is even larger and B feels
reluctant to enter the precipitate. The interaction between B and Mo thus further increases
the hardenability, which provides insight into the synergistic effect of Mo and B on the
hardenability as reported in experimental studies.
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