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Abstract: The design of benign and safe hydrogen storage systems is the priority in the development
of new energy carriers. The storage of hydrogen in a liquid or compressed state, as well as in metal
hydrides and adsorbents, depends on pressure and temperature and under normal conditions does
not meet the criteria of the target hydrogen storage capacity, energy consumption for hydrogen
storage or safety. The storage of hydrogen in chemical compounds in which it is naturally included in
the composition is the only alternative. Aromatic hydrocarbons capable of reversible hydrogenation–
dehydrogenation reactions are of the greatest interest among regenerable hydrogen-containing
compounds and can be used for hydrogen storage. The role of the metal in the catalytic reactions of
the hydrogenation–dehydrogenation of cyclic hydrocarbons for hydrogen storage is discussed in the
present review in close relation to the structure and composition of the cyclic substrates.

Keywords: hydrogen storage; liquid organic hydrogen carriers; hydrogenation catalysts; dehydrogenation
catalysts

1. Introduction

The rapid growth of global economics led to a significant increase in energy de-
mand [1]. To date, energy is generated mostly from fossil fuels with a negative impact on
the environment and climate [2]. In order to mitigate this effect, various types of energy are
considered as alternative sources (solar, wind, hydropower, biofuels, etc.) [3]. Hydrogen
is of particular interest, because it has the highest energy density (120 MJ/kg), and the
processes of its conversion into energy are green and environmentally safe [4–6]. Hydrogen
fuel cells have found practical implementation in transport [7]. Thus, economical and
safe hydrogen storage systems with a gravimetric content of at least 6.5% by weight H2
(>2.0 kWh/kg) and a volume density of more than 0.04 kg/L (>1.3 kWh/L) are needed [8]
that should be characterized by a high refueling rate and low hydrogen release energy.
The storage of hydrogen in a liquid or compressed state, as well as in metal hydrides and
adsorbents, depends on pressure and temperature and under normal conditions does not
meet the criteria of the target hydrogen storage capacity, energy consumption for hydrogen
storage or safety [9–12].

Under these conditions, the storage of hydrogen in chemical compounds in which it is
naturally included in the composition and structure is of interest. In this review, a number
of hydrogen storage and release systems based on the processes of the heterogeneous
catalytic hydrogenation of cyclic and polycyclic aromatic hydrocarbons with a hydrogen
capacity above 6.5–7.0% by weight and conjugated dehydrogenation of the corresponding
naphthenic compounds are analyzed. The main attention is paid to the identification
of differences between the course of reversible processes depending on the structure of
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substrates. The purpose of this review is to compare the performance of different metals
toward both the hydrogenation and dehydrogenation of the substrates with close relation
to the nature of the catalytically active metal. Most of the data on the basis of which
conclusions are drawn were obtained on platinum and nickel catalysts. The structure of this
paper is based on the consideration of organic molecules used as liquid organic hydrogen
carriers (LOHCs) and progresses from simple organic molecules (benzene and toluene) to
tricyclic compounds.

2. Catalytic Hydrogenation and Dehydrogenation of Cyclic Hydrocarbons on
Supported Metals

Due to the incorporation of hydrogen into the composition of liquid organic hydro-
gen carriers (LOHCs), the content of the hydrogen stored in chemical compounds (over
0.07 kg/L) does not depend on the temperature and pressure, like in the case of cryogenic
systems and compressed hydrogen, and is determined solely by the nature of the substance
(Figure 1). It is noteworthy that LOHCs exhibit certain advantages over metal hydrides
and adsorption systems.
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This provides an advantage, since hydrogen in the composition of organic com-
pounds can be safely stored and transported over long distances under normal conditions, 
while other systems require special conditions (T, P) and equipment. Unfortunately, for a 
variety of chemical compounds with a high content of hydrogen (NH3, H2O, CH4, CH3OH, 
HCOOH, etc.), its release requires energy expenses or is irreversible. For the purposes of 
hydrogen storage and release, aromatic hydrocarbons capable of reversible hydrogena-
tion–dehydrogenation reactions are of the greatest interest among regenerable hydrogen-
containing compounds. In addition to the high gravimetric (above 7.2 wt. %) and volume 
content of hydrogen [13], the method is characterized by relatively simple mechanisms of 
saturation (hydrogenation) and release (dehydrogenation) of hydrogen. The necessary 
purity of hydrogen for fuel cells is provided by selective catalysts that allow reactions to 
be carried out without the formation of by-products and COx gases [14–18]. 

According to quantum chemical calculations, arene–naphthene pairs have the great-
est potential for the application in hydrogen storage among polycyclic hydrocarbons, in 
which π-conjugated aromatic compounds have a modulus of negative standard enthalpy 
change for hydrogenation ǀ∆Hоǀ less than 15 kcal/mol H2 (or 62.7 kJ/mol H2) [19]. Analysis 
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This provides an advantage, since hydrogen in the composition of organic com-
pounds can be safely stored and transported over long distances under normal conditions,
while other systems require special conditions (T, P) and equipment. Unfortunately, for
a variety of chemical compounds with a high content of hydrogen (NH3, H2O, CH4,
CH3OH, HCOOH, etc.), its release requires energy expenses or is irreversible. For the
purposes of hydrogen storage and release, aromatic hydrocarbons capable of reversible
hydrogenation–dehydrogenation reactions are of the greatest interest among regenerable
hydrogen-containing compounds. In addition to the high gravimetric (above 7.2 wt. %)
and volume content of hydrogen [13], the method is characterized by relatively simple
mechanisms of saturation (hydrogenation) and release (dehydrogenation) of hydrogen.
The necessary purity of hydrogen for fuel cells is provided by selective catalysts that allow
reactions to be carried out without the formation of by-products and COx gases [14–18].

According to quantum chemical calculations, arene–naphthene pairs have the greatest
potential for the application in hydrogen storage among polycyclic hydrocarbons, in which
π-conjugated aromatic compounds have a modulus of negative standard enthalpy change
for hydrogenation |∆Ho| less than 15 kcal/mol H2 (or 62.7 kJ/mol H2) [19]. Analysis of the
literature shows that the realization is far behind the theoretically possible values, especially
for polycyclic condensed compounds. Thus, in spite of the low value |∆Ho| = 13.8 kcal/mol
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H2, the real amount of hydrogen obtained by perhydrocoronene dehydrogenation to
coronene (C24H12) is only 1% by weight, whereas the theoretical estimate is 7.4% by weight.
Exhaustive hydrogenation of double bonds of fullerene C60 without destroying the carbon
framework should produce fully hydrogenated fullerene of the composition C60H60 with
the hydrogen capacity of 7.7% by weight. In reality, the formation of compounds C60H48
with a limit of the hydrogen content of 4.5–6.3% H2 by weight is observed, which is inferior
to conventional polycyclic structures [6,19].

The stability of aromatic compounds during catalytic hydrogenation is due to the
thermodynamic stability of the aromatic conjugate system and the high activation en-
ergy at the catalytic center. The kinetics of hydrogenation–dehydrogenation processes
are determined by the structure, configuration and degree of condensation of aromatic
substrates and the corresponding naphthenes. Thus, to ensure the maximum capacity in
cyclic hydrogenation–dehydrogenation processes, knowledge of only the enthalpies of
the hydrogenation or dehydrogenation of the substrates is not sufficient [20–22], since the
structural factor, as well as the correspondence of the morphology of the substrate and
the catalyst, make a very significant contribution [13]. This review analyzes the patterns
(ways) of the exhaustive catalytic hydrogenation and conjugate dehydrogenation of the
most well-known couples of cyclic hydrocarbons (arene–naphthene) with varying degrees
of condensation on supported metals, while clarifying the role of the latter (Figure 2):
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2.1. Benzene–Cyclohexane

According to the literature data, the hydrogenation of benzene and the dehydrogena-
tion of cyclohexane mainly proceed via a planar mechanism with the sequential addition
or removal of hydrogen atoms. In the hydrogenation of benzene, the rate-limiting stage is
the addition of the first hydrogen atom, and in the dehydrogenation of cyclohexane, the
abstraction from the molecule of the second hydrogen atom is the rate-limiting step [23,24].
The hydrogen abstraction energy corresponds to the activation energy of the entire dehy-
drogenation process.

The actual sizes of benzene and cyclohexane molecules are large enough and several
reacting atoms cannot fit on one metal atom upon contact with the catalyst surface. There-
fore, the interaction of the molecule with one metal atom on the surface of the catalyst leads
only to adsorption, since the molecule is not activated enough to participate in the reaction.
The complete correspondence of the parameters of metal lattices and cyclohexane/benzene
molecules is achieved for a limited number of metals crystallizing in systems with cubic
(face-centered cubes, A1 lattice) and hexagonal (A3) lattice types (Figure 3, Table 1).

It follows from the literature that the most active and selective in the dehydrogenation
reaction of cycloalkanes are Pt catalysts deposited on active carbons. This means that
more hydrogenation–dehydrogenation cycles can be carried out on Pt/C systems without
the formation of side reaction products such as cracking and hydrogenolysis, which is
important for hydrogen storage processes. Fortunately, the target reactions proceed at a
higher rate than side reactions at a high dispersion of the metal, which is precisely provided
by active carbon carriers with a large surface area. However, the absence of the acid centers
that are available in oxide carriers does not result in the breaking of C-C bonds on carbon
carriers [13]. According to the XPS data, an ensemble of at least five Pt atoms is needed for
the chemisorption of cyclohexane on the surface of platinum Pt(111), and at least eight Pt
atoms are additionally needed for the dehydrogenation of adsorbed cyclohexane [25–28].
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Table 1. Lattice parameters of metals most active in the hydrogenation of benzene and dehydrogena-
tion of cyclohexane (Data from [13]).

Metal Pt Pd Ir Rh Cu Co Ni

Parameter of the lattice, nm 2.78 2.75 2.71 2.69 2.56 2.51 2.49

Table 2 shows data on the rate of hydrogen release on different heterogeneous cata-
lysts [5]. One of the best examples of the high rate of hydrogen release during the dehydro-
genation of cyclohexane given in the literature was obtained for the catalyst 3.8%Pt/C on
activated carbon (1800 mmol(H2)/gmet/min) [29,30]. An increase in the platinum content
to 10% by weight in the Pt/C catalyst resulted in a decrease in the rate of hydrogen release
to 510 mmol(H2)/gmet/min. The combination of platinum with other noble metals did
not have a significant effect. When replacing the noble metal with nickel with different
parameters of the lattice (Table 1), the rate of hydrogen release decreased even more sig-
nificantly and at nickel concentrations in Ni/C of 10, 20 and 40% by weight the rates are
as low as 7.1, 8.1 and 6.8 mmol(H2)/gmet/min, respectively [5]. The data of Table 2 also
indicate a decrease in TOF values with an increase in the size and condensation extent of
the molecule to be dehydrogenated.

Table 2. Hydrogen release rates during dehydrogenation of some cycloalkanes.

Substrate Catalyst TOF (mmol(H2)/gPt ×min)

Cyclohexane 3.82 wt. % Pt/AC 1800

Methylcyclohexane 3.82 wt. % Pt/AC 1700

Decalin 3.82 wt. % Pt/C 610

Cyclohexane 10 wt. % Ni/AC 7.1

Cyclohexane 20 wt. % Ni/AC 8.5

Cyclohexane 40 wt. % Pt/AC 6.8

Cyclohexane 12 wt. % Pt-Rh/AC 520

Cyclohexane 11 wt. % Pt-Re/AC 550

It was shown [31] that in order to increase the reaction rate and its selectivity, for
both the hydrogenation of benzene and dehydrogenation of cyclohexane, certain additives,
such as oxygen, can be used, and bimetallic catalysts with a small platinum content
also demonstrate good performance. In particular, the addition of 0.5 wt. % Pt in a
catalyst 20%Ni/C [5] resulted in an increase in the cyclohexane conversion by almost 50%.
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Notably, the yield of the cracking reaction products was significantly diminished. The
improvement of reaction kinetics via the modification of the Pt/C catalyst with a second
metal presumably occurs due to the promotion of the C-H bond break and/or desorption
of aromatic products [13]. A similar effect was observed when platinum was doped with
metals such as Mo, W, Re, Rh, Ir, Sn or Pd [5]. The catalytic activity also increased by
physically mixing Pd/PCC and Pt/PCC catalysts (PCC stands for petroleum coke carbon),
presumably as a result of the synergy of the spillover, migration and recombination of
hydrogen over Pt and Pd [28,29].

2.2. Toluene–Methylcyclohexane

Due to the low freezing temperatures (T = −95 and −126 ◦C, respectively), a pair
of toluene–methylcyclohexane substrates is the most suitable for storing and releasing
hydrogen in winter conditions. Despite the relatively low hydrogen capacity (6.1 wt. %),
this circumstance causes a significant number of publications devoted to this system and,
especially, the dehydrogenation reaction of methylcyclohexane, as the stage responsible for
supplying hydrogen to a fuel cell. The dehydrogenation of methylcyclohexane has been
studied by Sinfelt, Klvana, Taube, Usman and many other researchers [32–34]. Despite
a significant number of studies, a complete consensus on the mechanisms of toluene
hydrogenation and methylcyclohexane dehydrogenation has not yet been achieved. In
benzene homologues (such as toluene), the presence of donor substituents with a positive
induction effect (+I), such as methyl groups (CH3-), leads to the deformation of the σ-bonds
of the cycle and an increase in the extent of the delocalization of the positive charge of the
σ-complex compared to the unsubstituted π-complex of benzene [13] (Figure 4):
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stituents. Electron-donating (D) or electron-acceptor (A) groups are shown (the wavy lines mark the
shortened lengths of C—C bonds, and the arrows indicate the increased valence angles of C atoms in
the benzene cycle).

On the one hand, this results in an increase in the stabilization energy of the toluene
molecule (Est~163 kJ/mol) compared to benzene. On the other hand, the hydrogen substitu-
tion reaction in the meta- and para-positions is accelerated. In most studies, the limiting stage
of toluene hydrogenation, as for benzene, is the addition of the first hydrogen atom; after
that, toluene loses its aromatic nature. In the dehydrogenation of methylcyclohexane, the
limiting stage is considered to be the formation and adsorption of methylcyclohexene [35].
During the reaction, the formation of an intermediate π-allyl compound (C6H8-CH3) was
recorded, which is first dehydrogenated to benzyl (C6H5-CH2) with hydrogen cleavage
from the methyl group and only then to toluene (C6H5-CH3) [36]. Presumably, the π-allyl
cycle is formed due to adsorption of a methylcyclohexane molecule on the catalyst via three
carbon atoms. According to NEXAFS, the molecules of methylcyclohexane and toluene
have a flat orientation on the surface of Pt(111), while benzyl is oriented almost perpendic-
ular to the surface [37]. The non-competitive Horiuti–Polyani mechanism is well suited
for the general description of experimental data, but taking into account the empirical
coefficients of pressure and/or temperature affecting the equilibrium constant [35].

It should be noted that the dehydrogenation of methylcyclohexane also achieved a
high rate of hydrogen release (from 500 to 1500 mmol(H2)/gmet/min) [28,29]. However,
in most studies, high rates were observed only within a few minutes after the start of the
reaction, usually for 5–20 min. Longer periods of maintaining a high rate of hydrogen
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evolution, for example, several hours, with a conversion and selectivity of 100%, are not
described in the literature. Binival et al. [38] confirmed the stability of the catalyst for 200 h,
but the conversion of toluene hydrogenation and methylcyclohexane dehydrogenation did
not exceed 60% in one cycle of reversible reactions, which is not enough for real hydrogen
storage systems. The work of Okada et al., who reported maintaining the conversion of
methylcyclohexane dehydrogenation at the level of 95% and toluene selectivity of 99%
during 6000 h of the reaction, should be mentioned [39]. At the same time, the rate of
hydrogen release exceeded 1000 m3/h, which is significantly higher than the requirements
for the supply of hydrogen to a fuel cell and even leaves a reserve for experimenting with
the weight and size characteristics of a hydrogen-containing installation. It should be noted
that, at present, the use of methylcyclohexane as a liquid organic carrier of hydrogen for
the purposes of hydrogen storage and separation has been practically implemented by
Chiyoda Corporation (Japan) [40].

The data obtained clearly demonstrate the potential suitability of monocyclic com-
pounds as the basis of high-capacity hydrogen storage systems, but subject to the devel-
opment of more efficient and stable catalysts. At the same time, in a pair of substrates,
benzene–cyclohexane (7.14 wt. % H2), high saturated vapor pressure (Psat = 12.7/13.0 kPa)
contributes to the entrainment of substrates together with hydrogen, which, in addition to
the loss of capacity for H2, negates the advantage in the safety of this system. The introduc-
tion of substituents into the structure helps to solve the problem of volatility, but leads to a
drop in the hydrogen capacity, which in the simplest pair of toluene–methylcyclohexane
(Psat = 3.8/6.2 kPa) is almost 1% by weight, which as a result leaves practically no reserve
with a future increase in the requirements for the capacity of hydrogen storage systems.

2.3. Polycyclic Hydrocarbons

There are fewer studies on polycyclic hydrocarbons compared to monocyclic com-
pounds, especially in the aspect of hydrogen storage systems. Despite the same hydrogen
capacity (6.2 wt. %) as for the toluene–melylcyclohexane system, interest in systems based
on benzyltoluene and dibenzyltoluene is associated with lower values of hydrogenation
enthalpies relative to hydrogen (∆Ho = 63.5 and 65.4 kJ/mol, respectively) than toluene
(∆Ho = 67.4 kJ/mol) and, especially, benzene (∆Ho = 68.6 kJ/mol) [17,18]. This means
that during the dehydrogenation of perhydrobenzyltoluene and perhydrodibenzyltoluene,
hydrogen release should take place at lower temperatures than from these monocyclic
compounds. However, under reaction conditions already at the hydrogenation stage, the
kinetic parameters are inferior to systems based on benzene and toluene. The hydrogena-
tion of benzyl- and dibenzyltoluene (Figure 5) is most effective on Ru catalysts at 180 ◦C
and 20–50 atm, but, in the case of dibenzyltoluene, the reaction proceeds at a relatively
low rate. In particular, due to the large number of partially hydrogenated intermediate
products, as well as steric conformers of perhydrodibenzyltoluene, the formation of which
takes place along different routes and at different speeds. The reverse dehydrogenation
reaction also takes place more efficiently on Ru catalysts at temperatures of 280–350 ◦C,
but the different reactivity of steric isomers has a negative effect on the volume and rate of
hydrogen released.

In a pair of diphenylmethane (C6H5-CH2-C6H5)—dicyclohexylmethane (C6H11-CH2-
C6H11), neighboring hydrocarbon cycles are connected via a methylene group, due to which
their hydrogen capacity (6.66 wt. %) is higher than that in the toluene–methylcyclohexane
system. At the same time, the complete hydrogenation of diphenylmethane on a 5%Ru/C
catalyst takes place at a lower temperature (T = 120 ◦C) than the hydrogenation of benzene.
Like methylcyclohexane, the dehydrogenation of dicyclohexylmethane on a Pt(111) catalyst
also occurs through the formation of an intermediate π-allyl compound, but with two
cycles. The latter are dehydrogenated first with the transformation of one of the π-allyl
groups into a phenyl group, and then with the formation of diphenylmethane [41]. In this
case, the adsorption of the dicyclohexylmethane molecule on the catalyst occurs by six
hydrogen atoms—three on each of the two hydrocarbon cycles. During dehydrogenation,
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part of the substrate is desorbed, which slows down the overall kinetics of the reaction.
The disadvantages of this system should also include the cleavage of the C-H bond in
the methylene group at dehydrogenation temperatures, which leads to the degradation
of substrates as hydrogen carriers. When platinum Pt(111) is replaced with palladium
Pd(111), the dehydrogenation of dicyclohexylmethane takes place without the formation of
an intermediate with one phenyl group. However, the cleavage of the C-H bond begins at
lower temperatures, which results in faster degradation of the initial dicyclohexylmethane.
The sequence of dicyclohexylmethane (DCHM) conversion on the surface of the Pt(111)
catalyst can be represented as follows:

C6H11-CH2-C6H11 → [C6H8-CH2-C6H8]→ [C6H5-CH2-C6H8]→ C6H5-CH2-C6H5
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According to quantum chemical calculations [19], the replacement of a carbon atom
in carbocyclic aromatic hydrocarbons with nitrogen, sulfur or oxygen-containing groups
contributes to a decrease in the standard enthalpy of hydrogenation ∆Ho

H2 of the cor-
responding heterocyclic compound. The enthalpies of dehydrogenation increase in the
series [N] << [S]~[O] and for compounds such as tetrahydropyrrol, tetrahydrothiophene
and tetrahydrofuran are equal to 40, 50 and 51 kcal/mol H2, respectively [42]. This in-
dicates a significant advantage of systems based on nitrogen-containing compounds for
the purposes of storing and releasing hydrogen. At the same time, for condensed com-
pounds in which benzene rings and a π-conjugated five-membered nitrogen-containing
ring alternate, the standard enthalpy of hydrogenation is lower than that of molecules with
other combinations of rings. Based on these calculations, Air Products and Chemicals, Inc.
(USA) has patented the N-ethylcarbazole/perhydro-N-ethylcarbazole (NEC/H12-NEC)
system as a potential hydrogen storage and separation system. However, despite the high
theoretical hydrogen capacity of carbazole (7.19% by weight), in real conditions it turned
out that reversible hydrogenation–dehydrogenation reactions of systems based on this
molecule proceed slowly [43,44]. At the same time, in a carbazole molecule at temper-
atures below 150 ◦C, a five-membered ring containing a heteroatom is easily subjected
to a hydrogenolysis reaction followed by the breaking of the carbon–heteroatom bond
and the removal of the latter [19]. Increasing the resistance to this reaction due to the
blocking of the heteroatom with alkyl substituents contributes to a decrease in the capacity
of stored hydrogen by 0.4 wt. % H2 per one methylene chain link, since the substituent is
not involved in the absorption and release of hydrogen. With such a significant loss of the
capacity, it is impractical to increase the length of the alkyl chain to more than two carbon
atoms, despite the fact that even in the N-ethylcarbazole/perhydro-N-ethylcarbazole sys-
tem (6.79% H2 by weight) the dehydrogenation reaction is extremely slow due to steric
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difficulties in the resulting intermediates [43,44]. For example, at 443 K and 101 kPa, a 100%
conversion of perhydro-N-ethylcarbazole on a 5%Pd/SiO2 catalyst (average Pd particle
size of 24 nm) was reached in 17 h of the reaction. In the dehydrogenation reaction of
perhydrocarbazole without shielding, the conversion under the same conditions was only
53%. DFT calculations showed that the adsorption energy of perhydrocarbazole on Pd(111)
is Eads = 109.4 kJ/mol, and in substituted perhydro-N-ethylcarbazole, Eads decreases to
95 kJ/mol. When tetrahydrocarbazole is dehydrogenated at 413 K on a 5%Pd/Al2O3
catalyst, an 81% conversion is achieved after 27 h of the reaction [45–47]. Interestingly,
after heat treatment of the 4%Pd/SiO2 catalyst (the average particle size of Pd is 6 nm) in a
helium flow, a 100% conversion of perhydro-N-ethylcarbazole at 443 K and 101 kPa was
achieved after 1 h 40 min of the reaction.

One of the reasons for the slow kinetics of the reaction is the dealkylation of N-
ethylcarbazole via the C-N bond with the formation of carbazole and hydrocarbon frag-
ments that are adsorbed on the catalyst (Figure 6):
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Since the carbazole molecule is less reactive compared to alkyl-substituted ana-
logues, its formation during the reaction worsens the kinetic characteristics of the N-
ethylcarbazole/dodecahydro-N-ethylcarbazole pair as a hydrogen storage system. When
Pt(111) is replaced by Pd(111), the activation energy of the dealkylation reaction decreases,
and the reaction itself begins on the Pd catalyst at T = 360 K, which is 30 K lower than
that on the Pt catalyst. This leads to a stronger self-poisoning of Pd catalysts during the
dehydrogenation of perhydro-N-alkylcarbazoles. An equally important role is played by
the presence in the equilibrium state of perhydro-N-alkylcarbazole of at least five steric
isomers, whose structural features and different physico-chemical characteristics increase
the variability of the dehydrogenation reaction pathways, thereby also affecting the kinetics
of the reaction and, accordingly, the volumes and velocity of hydrogen released. As a
result, the potential of substituted carbazole homologues as the basis of hydrogen storage
and separation systems turns out to be lower than that of the corresponding carbocyclic
hydrocarbons [48–50].

Among carbocyclic compounds, most of the studies devoted to the liquid-phase hy-
drogenation of polyaromatic hydrocarbons are related to the hydrogenation of naphthalene
and, to a much lesser extent, anthracene. In the case of the latter, the interest is more based
on the need to solve the problem of recycling “heavy” aromatics from petroleum fuels and
oils, typical representatives of which are both of these compounds.

It should be noted that the hydrogenation mechanisms on Ni- and Pt-catalysts closely
correspond to each other. When naphthalene is hydrogenated onto Ni/γ-Al2O3, both of
its unsaturated hydrocarbon cycles are adsorbed as a transition π/
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It is believed that the adsorption of naphthalene occurs at one active metal center, and
the hydrogenation of naphthalene is a structure-insensitive reaction. The reaction begins
with the cis addition of two dissociatively adsorbed hydrogen atoms to form tetralin and
then hydrogenation to 9,10-octalin occurs, but the rate constant (k2) of the second stage
is almost twice lower. The adsorption of tetralin requires an ensemble of several atoms
of the active metal, and its hydrogenation is a structure-sensitive reaction, but a complete
consensus on this issue has not been reached. The resulting 9,10-octalin isomerizes to
octahydronaphthalene (1,9-octalin), which is hydrogenated to cis- and trans-decalin at a
high rate. The ratio between isomers depends on how the hydrogen atom is oriented
at the position 10 (“face” orientation or away from the surface) in the intermediate oc-
tahydronaphthalene [53–55]. Under certain conditions, 9,10-octalin can be immediately
hydrogenated to cis-decalin, but the reaction rate is very low.

Particular interest in the reverse reaction of the dehydrogenation of decalin is due to the
fact that, as a component of the diesel fraction, this substrate is an ideal model for studying
the possibility of obtaining hydrogen directly on board of a vehicle by dehydrogenating
existing hydrocarbon fuel (aviation kerosene, diesel fuel, etc.) [56]. The presence of steric
isomers contributes to the separation of the process of the dehydrogenation of decalin into
several independent reactions, such as the dehydrogenation of the cis- and trans-isomers of
decalin and mutual cis-trans isomerization, the competitive nature of which has a noticeable
effect on the overall kinetics of the reaction [57,58]. At the same time, the nature of the
dehydrogenation of decalin has no fundamental differences with the dehydrogenation of
cyclohexane and methylcyclohexane. However, bicyclic decalin is inferior to monocyclic
cyclohexane and methylcyclohexane in terms of the rate of hydrogen release under the
same reaction conditions [39,40]. Comparison of the results of the dehydrogenation of
decalin on three Pt catalysts deposited on γ-Al2O3, SiO2 and activated carbon showed that
the reaction rate equation in the temperature range 275–345 ◦C corresponds to the kinetic
Hougen–Watson model, which explicitly takes into account the adsorption of various
components of the reaction mixture [13].

Conducting a study of the dehydrogenation of decalin as a hydrogen storage system,
Kariya and Ichikawa et al. [28,29] and Hodoshima et al. [59,60] found that the reaction
rate increases due to the continuous removal of adsorbed hydrogen from the surface of
catalysts. The state of the substrate, which is formed due to a sharp temperature gradient
at the catalyst/reagent interface due to the different rates of evaporation and condensation
of the liquid substrate droplets on the surface of the catalyst, has been called a “liquid film”.
In a state intermediate between gas and liquid, it was possible to achieve a 90% conversion
of decalin at a temperature of 265 ◦C, despite the fact that the high reaction rate was already
observed at a temperature of 240 ◦C [61]. Distillation of aromatic products helps to slow
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down the adsorption and coking of the catalyst, which is often observed in a liquid-phase
reaction at high temperatures. At the same time, the authors conducted extensive studies of
the effect of additives of the second metal on the activity of Pt-containing catalysts [59,60],
as well as tested a wide range of carriers for the catalysts [28,29]. For this purpose, 5%Pt/C,
5%(Pt-Ir)/C catalysts with total metal contents of 5 wt. % were used with a molar ratio
of Pt/Ir = 4, as well as 5%(Pt-W)/C (Pt/W = 1) and 5% (Pt-Re)/C (Pt/Re = 2). PCC, CC,
Al2O3, FSM-16, HZSM-5 zeolites were used as carriers. The authors also investigated the
dependence of the reaction rate on the decalin/catalyst ratio and the type of the reactor. It
has been shown that the overall reaction rate depends not only on the reaction conditions
(temperature, nature of reagents, type and porosity of the carrier, etc.), but also on the size
and shape of the catalytic reactor.

Decalin was dehydrogenated at a temperature of 240 ◦C in a “liquid film” state on
Pt/C catalysts deposited on carbon nanotubes [62]. The highest rate of hydrogen release
(732 mol H2/mol Pt) was achieved on a catalyst 5%Pt/C (DPt = 57%, dPt = 1.8 nm), despite
the fact that the conversion of decalin was only 46%. This rate was maintained for 2 h
of the reaction. When the Pt content decreased to 1 wt. % (DPt = 85% and dPt = 1.2 nm,
respectively), the conversion decreased to 7%, and the rate of hydrogen release decreased
to 335 mol H2/mol Pt. The authors attributed the decrease in velocity with a general
increase in the dispersion of Pt particles to the inefficient operation of a part of platinum
due to its blocking in the micropores of the carrier. Platinum blocking is also facilitated by
the adsorption of naphthalene formed in the pores [63]. At the same time, an increase in
temperature accelerates the removal of hydrogen, which helps to unblock the active centers
of the catalyst. The efficiency of the reaction depends on the design of the catalytic reactor
used for the reaction.

It should be noted that the naphthalene–decalin pair is a typical example of substrates
in which the modulus of the negative standard enthalpy change in the hydrogenation reac-
tion |∆Ho| is different for cis-decalin (−15.1 kcal/mol H2) and trans-decalin (−15.8 kcal/mol
H2) [19]. The difference correlates with the different kinetics of the dehydrogenation of the
two decalin conformers. Thus, when dehydrogenation is carried out on a 3%Pt/C catalyst,
the conversion of cis-decalin to naphthalene at a temperature of 320 ◦C is 97%, whereas the
conversion of trans-decalin is only 66%. This example clearly demonstrates the expediency
of using cis isomers that are predominantly more active in dehydrogenation, which can be
obtained by selective hydrogenation of the initial arenes.

Regarding the hydrogenation of anthracene (|∆Ho| = −15.8 kcal/mol H2), it should
be noted that, in the literature, most authors declare that polyaromatic hydrocarbons are
hydrogenated faster than monoaromatic, and tricyclic aromatics are hydrogenated faster
than bicyclic. This is due to a decrease in the stabilization energies of the anthracene
molecule relative to naphthalene as a result of the redistribution of the electron density
due to the influence of two unsaturated hydrocarbon cycles on the central cycle. Indeed, it
was shown [64] that a high conversion of anthracene to 9,10-dihydroanthracene on a Cu
catalyst is achieved at 120–150 ◦C, which is significantly lower than when naphthalene
is hydrogenated on a Pt catalyst. In the case of a modified Cu-Cr2O3 catalyst, a high
yield of 9,10-dihydroanthracene was achieved under even milder conditions (T = 100 ◦C,
P = 95 atm). However, in order to reach complete hydrogenation, which is important for
hydrogen storage systems, higher temperatures and pressures are needed for the sequential
formation of other reaction products. In particular, for further hydrogenation into 1,2,3,4-
tetrahydroanthracene, a temperature of 240–260 ◦C is already required. All intermediate
compounds, as well as the final perhydroanthracene, were obtained via hydrogenation on a
Ni/kieselguhr catalyst at 180–220 ◦C and 98 atm [8], but, during a long experiment, the cat-
alyst lost activity and was replaced with a fresh one. The formation of perhydroanthracene
with a selectivity above 25% was observed during the hydrogenation of anthracene on
a Pd/C catalyst at a temperature of 300 ◦C and a pressure of 30 atm [65]. The formation
of perhydroanthracene with a selectivity above 99% was achieved by hydrogenation of
anthracene on a 3%Pt/C catalyst at a temperature of 280 ◦C and a pressure of 90 atm [66,67].
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However, it took about 40 h for the complete transformation of anthracene into perhy-
droanthracene. The substitution of Pt and Pd for Rh, Ru and Ir [68–73], as well as the
improvement of the methods of preparation of catalysts and the use of supercritical media,
affects the rate of transformation of anthracene intermediates, but not the production of
the final perhydroanthracene. Achieving a 100% selectivity of perhydroanthracene is still a
difficult task. Moreover, the final perhydroanthracene is a mixture of at least five structural
conformers, the quantitative ratio between which depends on the path along which the
anthracene hydrogenation reaction takes place, and which, in turn, depends on the reaction
conditions used [67,68] (Figure 8):
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The main product preceding the formation of perhydroanthracene is the octahy-
droanthracene isomer with a central unsaturated ring [67,68]. Moreover, the forma-
tion of the latter is due to structural differences between 9,10-dihydroanthracene and
1,2,3,4-tetrahydroanthracene. In turn, when 9,10-dihydroanthracene is dehydrogenated on
3%Pt/C, the main products at temperatures of 300–360 ◦C are anthracene and two steric iso-
mers of octahydroanthracene (1,2,3,4,4aa,9,10,10 a- and 1,2,3,4,4aa,9,9aa,10-). Interestingly,
the OGA sim isomer was not found among them, which indicates a formal discrepancy
between the routes of direct and reverse reactions. In general, the dehydrogenation of the
perhydroanthracene conformers is characterized by a relatively rapid conversion of less
stable isomers into the target reaction products, as well as into the most stable trans-syn-
trans isomer. Dehydrogenation of the latter occurs at high temperatures (>400 ◦C), which
leads to the formation of cracking and hydrogenolysis products and is unacceptable for
hydrogen storage systems.

Unlike condensed hydrocarbons, in linearly linked compounds, neighboring hydro-
carbon cycles are connected via a C-C bond, so that each of them has relative autonomy.
However, in the case of aromatic hydrocarbons, the tendency to occupy an energetically
more advantageous position leads to the fact that, in the most stable conformation, neigh-
boring hydrocarbon cycles turn out to be rotated relative to each other. This leads to steric
hindrances with planar adsorption on the metal sites of the catalyst during hydrogenation,
not only in comparison with benzene, but also in comparison with the condensed ana-
logue. The simplest analogues of naphthalene- and anthracene-based systems are biphenyl–
bicyclohexyl pairs (7.23 wt. % H2) and terphenyl–perhydroterphenyl (7.26 wt. % H2).

The hydrogenation of biphenyl is quite simply carried out on Pt-, Pd- or mixed (Pt-Pd)
catalysts. As in the case of naphthalene, the reaction proceeds with the formation of one
intermediate product—cyclohexylbenzene (Figure 9):
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It was found [74] that biphenyl is adsorbed on the surface of the catalyst five times
stronger than cyclohexylbenzene. Since the effect of biphenyl adsorption is incomparable
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with the rate of dissociative hydrogen adsorption, the authors used a pseudo-first-order
kinetic equation to describe the hydrogenation reaction of biphenyl. In our work [75], we
used the first-order equation to compare substrates with different condensation extent to
describe the hydrogenation reaction of biphenyl on a 3%Pt/C catalyst (oxidized Sibunite).
The calculation showed that the initial hydrogenation rate of biphenyl is lower than that
of naphthalene; however, the hydrogenation of intermediate cyclohexylbenzene into bicy-
clohexyl occurs faster than hydrogenation of tetralin into decalin [58,75]. The difference is
apparently due to the low accessibility of nodal carbon atoms of tetralin, which generally
reduces the overall hydrogenation rate of naphthalene, compared with the hydrogenation
of biphenyl.

Dehydrogenation of bicyclohexyl also takes place most effectively on Pt- and Pd-
catalysts and takes place at temperatures above 250 ◦C [76–78]. In the case of a 3%Pt/C
catalyst, the conversion of bicyclohexyl to biphenyl with a selectivity of 97.6% at a tempera-
ture of 320 ◦C reaches 99.9%, which is higher than for decalin under the same conditions.
Interestingly, such parameters are achieved despite a less favorable ratio of reaction en-
thalpies. Thus, the modulus of the negative standard enthalpy change |∆Ho| for the
biphenyl hydrogenation reaction is −16 kcal/mol H2 versus −15.1 and 15.6 kcal/mol H2
when naphthalene is converted into cis- and trans-decalin, respectively [19]. The probable
cause is steric difficulties in the adsorption of decalin isomers on the same metal active
centers, compared with bicyclohexyl.

Unlike the bicyclic biphenyl–bicyclohexyl system, both substrates in the tricyclic
terphenyl–perhydroterphenyl system have three isomers (ortho-, meta- and para-), each
of which has a different reactivity in both hydrogenation and dehydrogenation reactions.
The hydrogenation of ortho-, meta- and para-isomers of terphenyl proceeds mainly along
terminal rings with the formation of partially hydrogenated compounds with one cyclo-
hexane ring (C18H20)—diphenyl–cyclohexane (E) and cyclohexyl–biphenyl (C) and with
two cyclohexane rings (C18H26)—bicyclohexyl–benzene (H) and dicyclohexane–phenylene
(D) (Figure 10):
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The initial hydrogenation rate of three terphenyl isomers by 3%Pt/C is inferior to
that of anthracene, which is partly due to steric difficulties with planar adsorption on the
metal sites of the catalyst. However, a more significant role is played by the deformation of
the π-system of the anthracene molecule due to the influence of two terminal unsaturated
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hydrocarbon cycles on the central one, which is not present in terphenyl with relatively
independent benzene rings [79,80]. It was shown [76,78] that, for benzene, naphthalene,
biphenyl and anthracene, there is a correlation between the standard enthalpies of formation
and the initial hydrogenation rates with the formation of intermediate reaction products
mainly with one saturated ring. For tricyclic isomers of terphenyl, such a correlation is
not observed, which is explained by the stronger influence of steric hindrances on the
hydrogenation process. At the same time, in the series of ortho-, meta- and para-isomers, the
influence of intramolecular interaction on the thermodynamic stability of these compounds
and, accordingly, on the initial hydrogenation rate, increases. In the process of saturation
with hydrogen, the hydrogenation rates of these aromatic hydrocarbons with the formation
of products with two and three saturated hydrocarbon cycles are significantly reduced.
However, the greater accessibility of nodal carbon atoms results in a higher overall rate
of hydrogenation of terphenyl isomers, compared with the hydrogenation of condensed
anthracene.

The reverse reaction of the dehydrogenation of the corresponding isomers of perhy-
droterphenyl is carried out in the range T = 250–350 ◦C. The dehydrogenation of ortho-, meta-
and para-isomers of perhydroterphenyls, as well as the hydrogenation of the corresponding
terphenyl isomers, mainly proceeds along terminal rings, which may be associated with
the formation of π-allyl cycles, as in the dehydrogenation of methylcyclohexane. More
routes of the dehydrogenation of perhydroterphenyl isomers lead to an increase in the
number of intermediates, which slows down the reaction compared to bicyclohexyl [75–80].
At the same time, during the reaction, all three isomers of perhydroterphenyl are capable
of mutual transformations of cis conformations into a trans form, and the ortho-isomers
of terphenyl and perhydroterphenyl also have a tendency to mutual isomerization into
derivatives of meta- and para-isomers. During the dehydrogenation of the latter, reactions
of intermolecular cyclization of perhydro-ortho-terphenyl into cyclic triphenylene were also
observed. However, in general, the behavior of the cis- and trans-forms of the ortho-, meta-
and para-isomers of perhydroterphenyl during dehydrogenation in the temperature range
260–340 ◦C has more similarities than their condensed analogues of perhydroanthracene
or decalin. As a result, isomerization reactions do not have such an effect on the rate of
hydrogen release as during the dehydrogenation of condensed compounds.

In the absence of objectively developed criteria for comparing substrates with different
condensation [78], a first-order equation was used to describe the dehydrogenation reaction
of perhydroterphenyl isomers on a 3%Pt/C catalyst. This is consistent with the literature
data: the first order for hydrocarbon substrates was found in the case of cyclohexane
and methylcyclohexane dehydrogenation [81–83]. The calculation showed that in the
cyclohexane–bicyclohexyl–perhydro-para-terphenyl series, there is a linear relationship
between the apparent activation energies (Ea) and the pre-exponential factors (A). The
parameters for cis-decalin, for which the dehydrogenation process proceeds no less effi-
ciently, are also close to the presented correlation dependence. This apparently indicates a
similar dehydrogenation mechanism for these compounds. The meta- and ortho-isomers
of perhydroterphenyl deviate from the linear dependence, presumably due to competing
processes that affect the process of dehydrogenation of these compounds.

3. Conclusions and Outlooks

In this review, based on the information available in the literature, a number of
hydrogen storage and release systems based on the processes of the heterogeneous cat-
alytic hydrogenation of cyclic and polycyclic aromatic hydrocarbons with a hydrogen
capacity above 6.5–7.0% by weight and conjugated dehydrogenation of the correspond-
ing naphthenic compounds are analyzed. The main attention is paid for the first time to
the identification of differences between the course of reversible processes depending on
the structure of substrates. Summarizing the above data from the point of view of the
saturation of aromatic hydrocarbons with hydrogen, several qualitative patterns can be
distinguished. For condensed systems, an increase in activity in hydrogenation reactions
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from benzene to anthracene is correlated with a decrease in stabilization energies. In this
connection, most authors believe that polyaromatic hydrocarbons are hydrogenated faster
than monoaromatic ones, and tricyclic aromatics are hydrogenated faster than bicyclic ones.
The benzene ring conversion into a fully saturated six-membered cycle is quite difficult;
naphthalene is hydrogenated more easily than benzene, but into tetralin only. Anthracene
is easily hydrogenated by bonds 9,10, but then the process is much more difficult. For
polycyclic hydrocarbons with 3–4 and a larger number of benzene rings, thermodynamic
and steric limitations must be taken into account during high-temperature hydrogenation.
At the same time, the key factor for the operation of storage systems based on polycyclic
compounds is the development of effective catalysts that facilitate the hydrogenation–
dehydrogenation processes without the formation of reaction by-products. The addition
of a second metal (W, Mo, Re, Rh, Ir, Pd and Sn) to the Pt catalyst in some cases leads to a
synergistic effect in the dehydrogenation of a number of cycloalkanes, such as cyclohexane,
methylcyclohexane, decalin and tetralin [84]. The increase in conversion and selectivity in
the case of two-component Pt–M catalysts (M is the second metal) is due to an increase in
the overall activity during the cleavage of the C-H bond, the hydrogen spillover occurring
on metal sites via hydrogen dissociation, as well as the hydrogen-recombination abilities of
Pt, which together facilitate the removal of hydrogen from the reaction medium and shift
the chemical equilibrium of the reaction in favor of the formation of target products.

For linearly linked polycyclic aromatic hydrocarbons, the dependence of activity and
stabilization energies is not as explicit as for condensed systems, and the occurrence of
reactions and the overall reaction pattern largely depend on steric factors. During the
dehydrogenation of polycyclic naphthenes, there is no correlation at all like the correla-
tion with the stabilization energy in the corresponding arenes, whereas the role of the
structural factor increases many times. The mechanism of the dehydrogenation of such
hydrocarbons is usually described through the adsorption of cycloalkane on metal sites
of a catalyst (in particular, Pt) with simultaneous or subsequent rapid dissociation of hy-
drogen atoms through the formation of a π bond [39], but in each case such a mechanism
requires experimental confirmation. Analysis of the literature data shows that this area of
research in the aspect of creating hydrogen storage and separation systems based on the
reversible hydrogenation–dehydrogenation reactions of organic compounds is practically
not considered, which opens up a wide field for research.

This promising area of research will further develop along the way of developing
methodological approaches to the creation of a “substrate-catalyst” system that can ensure
the implementation of a high-capacity H2 arene–naphthene pair in multiple saturation-
release cycles. The works aimed at understanding the effect of the substrate structure on the
effectiveness of the substrate-catalyst systems are necessary for further tailor-wise tuning of
these systems by changing the substrate structure. The development of an effective catalyst
for hydrogen saturation-release processes will develop along the alley of increasing the
activity and selectivity of heterogeneous catalysts, primarily by reducing the content of
noble metals by combination with less critical metals, including base metals. Progress in
this direction is impossible without determining the role of electronic and geometric factors
and their mutual ability to modify under the influence of the metal–carrier interaction,
which can largely determine the catalytic properties of the nanoparticles located on the
surface of the carrier, including the creation of hierarchical structures. The challenge in
the future research is related to the design of catalysts with extremely high selectivity in
both processes of hydrogenation and dehydrogenation with an ultra-low content of noble
metals. Obviously, at this stage, it is not possible to replace completely platinum and other
expensive metals for nickel and other cheap counterparts, but the inventive approaches to
the synthesis of bimetallic nanoparticles will make it possible to reduce the noble metal
content below 0.1 wt. %. Another intriguing question is whether or not we could increase
the limit of the hydrogen storage capacity exceeding 7.5 wt. %. Also important is the
question of the operation with the physical state of the LOHC substance, which ideally
should be liquid at temperatures as low as −40 ◦C for use in Arctic conditions and as
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high as +320–340 ◦C in order to avoid evaporation and losses during the dehydrogenation
process. Here, the use of eutectic compositions seems to be promising.
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