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Abstract: In this study, the effect of phase, microstructure, and porosity in Selective Laser Melting
(SLM) on hardness, tensile, and fracture behavior of 17-4 PH was investigated. The increasing interest
in SLM in producing complex parts has encouraged the industry to produce performance parts,
such as martensitic 17-4 PH stainless steel. However, the microstructure and mechanical behavior
of SLM 17-4PH is not fully understood by researchers. Understanding the microstructure profile is
complex because it is driven by thermal history and porosity. Both elements vary, based on the build
directions, further hindering researchers from fully understanding the mechanical properties. To
fabricate specimens in three different building orientations (0◦, 45◦, and 90◦), 17-4 powder was used.
Two phases, namely, austenite and martensite, with 90◦ build direction, retained more austenite, due
to the reheating process on a smaller base area. The optical microstructure revealed several elements
that were distinct for SLM processing, including circular, columnar lath, wave melt pool, and porosity.
Columnar lath was found to grow continuously across different melt pools. Hardness was found to
be higher for 0◦ than for 90◦, due to higher martensite content. Tensile strength was highest for 0◦, at
958 MPa, higher than at 45◦ and 90◦ at 743 and 614 MPa, respectively. Porosity analysis validated
that 90◦ had all three types of porosities and, specifically, the crescent type, which held un-melted
powders. All types of porosities were found in fractography analysis.

Keywords: SLM; stainless steel 17-4; austenite; martensite; porosity

1. Introduction

Modern manufacturing has evolved numerous times, each evolution improving on
previous limitations, but also introducing its own significant limitations. Fabrication tech-
nology initially began with a subtractive strategy that required eliminating material from
bulk metal until the desired final product was achieved. The requirement of special cutting
tools increased duration and cost due to the waste metal produced [1,2]. The subsequent
duration of fabrication dramatically decreased with the introduction of formative strate-
gies, such as metal direction injection molding, which allowed commercial products to be
produced at a higher rate and reduced the cost of waste material. However, this method
hindered the ability to produce unique parts because making new molds was often expen-
sive. Thus, additive manufacturing (AM), offering flexibility in changing design, and the
ability to produce complex shapes, was introduced as the latest fabrication strategy [3].
Many researchers attempted to optimize the additive manufacturing process, especially
regarding the strength of produced components, and reduced build time.
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AM is a manufacturing method wherein layers of materials are built to create a solid
object. Currently, it has seven types, and the two most common methods of metal AM are
direct energy deposition and powder bed fusion [4,5]. The direct energy deposition process
is where solid metal objects are built into a 3D shape through a succession of welded metal
tapes. However, to create a complex object, the powder bed fusion method is more suitable
because a smaller volume of powder metals can be melted on a powder bed and result in
better mechanical properties [6]. The two standard powder bed technologies are Selective
Laser Melting (SLM) and Selective Laser Sintering (SLS).

Grade 17-4 PH stainless steel is a type of precipitation-hardening stainless steel widely
used for applications that require high strength, toughness, and ductility at high tempera-
tures, specifically in nuclear reactors, aerospace structural components, and gas turbines [7].
Combining anti-corrosion properties and a ductile martensitic matrix with a strengthening
effect through nano-particles has made 17-4 PH stainless steel one of the most attractive
materials for modern engineering structures [8]. In the case of producing mono-material
17-4 PH, the SLM method is most suitable. The SLM method selectively melts successive
layers of powder by interacting with a high-energy-density laser beam [9]. Grade 17-4 PH
was one of the materials that underwent extensive studies to obtain the optimum SLM
processing parameters without sacrificing its mechanical properties. Despite the attractive
capabilities of SLM, such as the ability to produce highly complex shaped components and
customized parts without the need for part-specific tooling [10], its mechanical property
behavior is yet to be specifically determined using the unique microstructure produced.

On the basis of the 17-4 PH composition, a preliminary calculation can be performed
to estimate the phases that exist in the 17-4 PH. The equivalent nickel of 7.64 and equivalent
chromium of 16.22 are determined using the general chemical composition of 17-4 PH in
the formula in Figure 1. The location of the predicted phases is shown by a red dot in the
figure, which is a mixture of three phases, namely, austenite (A), martensite (M), and ferrite
(F). Even though the phases within 17-4 PH can be deducted from the Schaeffler diagram,
they are no longer accurate for SLM parts, due to different welding conditions, and the
diagram does not consider copper elements. Generally, research findings have observed
mainly two types of phases in 17-4 PH, namely, austenite and martensite with different
volume ratios. During cooling, some microstructures that transform from austenite into
martensite depend on the elements and martensite transformation temperature [11–14].
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The phase that exists in the microstructure is mainly contributed to by the chemical
composition, and processes during heat treatment may remain regardless of the orientation
built. However, the growth of each phase may be different due to the introduction of a
unique heat flow for each orientation. The SLM process, which involves layer-by-layer
construction, results in a microstructure with distinct differences compared with the con-
ventional method. Lack of comprehension of the SLM microstructure is largely due to
the complexity of physical transformation that drives rapid melting, solidification, and
re-melting of processed material [17,18], which is projected differently by various build
directions [9]. This scenario hinders the researcher from fully understanding the mechanical
properties of SLM 17-4 PH.

The SLM method experiences localized melting and solidifying of metal powders that
generate a unique microstructure because the conventional method involves bulk solidifica-
tion. The mechanical property yield from SLM parts is offset from that of conventional 17-4
PH due to the difference in the microstructure. The strength of SLM-produced components
is affected by the volume of porosities generated within the microstructure. Eliminating
porosity is difficult even if the processing parameters are controlled precisely [19–21]. The
energy density during melt-pool generation and heat flow during melt-pool solidification
guide the location and types of porosities [22,23].

The thermal history of heat flow is varied for different build orientations based on the
number of layers and the base area of laser heating [24]. This condition induces anisotropy
behavior in SLM parts [25]. Several researchers have investigated the effects of building
orientation on the tensile strength of components using commercial metals, including
AlSi10Mg [26], Ti6Al4V [9], stainless steel 316 [27,28], and 17-4 PH [17]. Most findings
consistently indicate that 0◦ build orientation has higher tensile strength than 90◦ build
orientation. However, the underlying cause is unclear, considering the distribution of
porosities, the direction of melt pool layers, and the cooling rate of each orientation. This
study intended to investigate the microstructure profile of SLM 17-4 in three different build
directions and to verify its hardness and tensile properties toward the phase fraction and
porosity distribution, respectively.

2. Methodology

This study utilized 17-4 PH stainless steel, which is suitable for high-temperature
applications. The 17-4 PH powders were supplied directly from EOSINT as the provider of
the SLM machine which was used to produce the additive manufactured samples in three
different build orientations in this research. The EOSINT 17-4 PH powder was produced
according to ISO 9001:2015. The morphology and the chemical composition of the powder
particles were observed and analyzed using a Hitachi VP-SEM SU1510 scanning electron
microscope (Hitachi High Technologies America, Inc., Schaumburg, IL, USA) with an
energy-dispersive X-Ray analysis (EDX).

The SLM process was carried out in a nitrogen atmosphere. The SLM machine was
EOSINT M 280 (EOS GmbH. Electro Optical Systems, München, Germany) set to suitable
process parameters. The laser scanning temperature during the process could reach up to
1125 ◦C. Even though the melting temperature for bulk 17-4 PH is approximately 1450 ◦C,
for the SLM process, the 17-4 PH exists as micro-scale powder leading to a reduction in
melting temperature to 1125 ◦C. The machine was set to high productivity with a scanner
speed of 800 mm/s and layer thickness of 30 µm in 200 W laser power. The hatching
distance was set to 100 ± 10 µm. The details of the process parameters are shown in Table 1.
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Table 1. SLM process parameters.

Process Parameters Parameters Value

Laser power 200 W
Laser scanning speed 800 mm/s

Layer thickness 30 µm
Hatching distance 100 ± 10 µm
Temperature range 1075–1125 ◦C

Heat Treatment Air-cooled
Average powder size 43 µm

Currently, processing parameters are manipulated to optimize the shape of the final
microstructure [23] and porosity generated in solidified components is also directly related
to energy density received by powders. An optimized energy density helps the manufac-
turer achieve a printed component porosity of less than 1% [29]. The energy density can be
calculated by considering major contributing parameters, based on Equation (1) [30]. The
energy density optimum value is often translated into a desirable characteristic of the melt
pool profile. This finding is necessarily true because the energy density is directly related
to the temperature flow in the component during the laser scanning process. Adeyemi
et al. found that lower laser power, with higher scanning speed, caused incomplete powder
melting and higher porosity [31]. Based on Table 1, the calculated energy density for this
research was 75.76 J/mm3.

E =
P

Vτh
(1)

where E, energy input per volume, energy density (J/mm2), P, laser power (W), V, scanning
speed (mm/s), τ, layer thickness (mm), h, hatch spacing (mm).

Based on the processing parameter input and the coordinate supplied by slicing
software, the SLM process was initiated using the EOSINT machine shown in Figure 2a.
Laser scanning was performed in layers in a continuous linear path beside the previous
path. Once a layer was completed, the bed was lowered; then, a new layer of powders was
spread evenly on the bed. The laser beam was repeatedly applied to powders, as shown in
Figure 2b,c. The different build orientations were set to 0◦, 45◦, and 90◦, with respect to the
x-axis, as shown in Figure 2d.

X-ray diffraction (XRD) analysis was performed using a Bruker D8 Diffractometer
(Bruker AXS, Inc., Billerica, MA, USA) to determine whether or not phases were present, by
examining the respective diffraction patterns. The phase was identified according to ASTM
E975 [32], where the manufactured 17-4 PH sample was placed in an XRD machine for
phase identification of face-centered cubic (FCC) Fe–Ni alloy and body-centered cubic (BCC)
Fe–Cr. Continuous scan mode, with a step size of 0.025 degree/0.1 s was used to scan the
peaks. The peaks obtained were identified using JCPDS-ICDD-Card No. 33-397 for gamma
and 34-396 for alpha [33]. The peaks of the graphs showed that the volume fraction was
generated by the software according to Equation (2), obtained from the SAE manual [34].

VM =

1
ηM

∑η
0

(
Ihkl
M

Rhkl
M

)
1
ηA

∑η
0

(
Ihkl
A

Rhkl
A

)
+ 1

ηM
∑η

0

(
Ihkl
M

Rhkl
M

)
+ VC

(2)

Microstructure and porosity were observed by optical microscopy LEICA DMI 5000 M
(Leica Microsystems, Wetzlar, Germany) and scanning electron microscopy. Cube samples
were mounted in Bakelite before grinding with different grits of abrasive papers, including
400, 600, 800, and 1200 grit, followed by polishing using a 1-micron diamond polishing
suspension. The surface microstructure of the 17-4 PH was revealed using Adler’s etchant,
consisting of ferric chloride, copper ammonium chloride, hydrochloric acid, and distilled
water, for five seconds [35,36].



Metals 2022, 12, 1968 5 of 22Metals 2022, 12, 1968 5 of 24 
 

 

 

 

 

 

Figure 2. (a) EOSINT machine, (b) schematic diagram of processing parameters, (c) schematic dia-

gram of layers and laser paths, and (d) build orientation of the specimen. 

X-ray diffraction (XRD) analysis was performed using a Bruker D8 Diffractometer 

(Bruker AXS, Inc., Billerica, MA, USA) to determine whether or not phases were present, 

by examining the respective diffraction patterns. The phase was identified according to 

ASTM E975 [32], where the manufactured 17-4 PH sample was placed in an XRD machine 

for phase identification of face-centered cubic (FCC) Fe–Ni alloy and body-centered cubic 

(BCC) Fe–Cr. Continuous scan mode, with a step size of 0.025 degree/0.1 s was used to 

scan the peaks. The peaks obtained were identified using JCPDS-ICDD-Card No. 33-397 

for gamma and 34-396 for alpha [33]. The peaks of the graphs showed that the volume 

fraction was generated by the software according to Equation (2), obtained from the SAE 

manual [34].  

𝑉𝑀 =

1
ɳ𝑀

∑ (
𝐼𝑀

ℎ𝑘𝑙

𝑅𝑀
ℎ𝑘𝑙)

ɳ
0

1
ɳ𝐴

∑ (
𝐼𝐴

ℎ𝑘𝑙

𝑅𝐴
ℎ𝑘𝑙) +

1
ɳ𝑀

∑ (
𝐼𝑀

ℎ𝑘𝑙

𝑅𝑀
ℎ𝑘𝑙) + 𝑉𝐶

ɳ
0

ɳ
0

 (2) 

Microstructure and porosity were observed by optical microscopy LEICA DMI 5000 

M (Leica Microsystems, Wetzlar, Germany) and scanning electron microscopy. Cube sam-

ples were mounted in Bakelite before grinding with different grits of abrasive papers, in-

cluding 400, 600, 800, and 1200 grit, followed by polishing using a 1-micron diamond pol-

ishing suspension. The surface microstructure of the 17-4 PH was revealed using Adler’s 

etchant, consisting of ferric chloride, copper ammonium chloride, hydrochloric acid, and 

distilled water, for five seconds [35,36]. 

Figure 2. (a) EOSINT machine, (b) schematic diagram of processing parameters, (c) schematic
diagram of layers and laser paths, and (d) build orientation of the specimen.

The Micro Vickers Hardness test was conducted using a ZHVµ model (Zwick GmbH
& Co. KG, Ulm, Germany), according to ISO 6507/ASTM E384. The samples were polished,
and three-by-three point- loads were measured on the surface, yielding nine hardness
points. The load was 0.5 kg with a dwell time of 15 s. After the surface was indented, the
hardness value was measured using the Vickers Equation (3):

HV =

(
d1 + d2

2

)2
(3)

Tensile tests were performed to investigate the mechanical properties. The 17-4 PH
was printed in a dog bone shape, as per ASTM E8. The specimen was tested using the
Zwick-Roell Universal testing machine, Z100, with a maximum capacity of 100 kN. The
thickness and width were 3.5 and 4 mm, respectively. A preload was applied at 10 N, with a
crosshead speed input of 1.5 mm/min, based on the length of gauge and strain rate, as per
standard. The stress–strain curve was generated for further analysis. The experiment for
all samples was repeated three times and the average value was presented. Fractography
analysis was performed using SEM for the fractured surface.

3. Results and Discussion
3.1. Powder and Phase Profiling

The chemical composition of SS 17-4 extracted from EDX is listed in Table 2. The
analyzed composition fell in the range specified by the ASTM A240M [37]. Figure 3 shows
the powder morphology with spherical shapes in various sizes. Size distribution was
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concluded from particle analysis with a strong agreement with research by Irrinki et al., as
shown in Figure 4, where the mean size of particle D50 = 43 µm [38].

Table 2. Chemical composition of the 17-4 PH powder.

Element Fe Cr Ni Cu C Si Mn

wt. % Bal. 15.76 4.02 4.08 0.07 1.23 0.59
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and D90 = 52 µm.

The solidification of 17-4 PH eventually generated mainly two types of phases, the FCC
phase, known as austenite, and the BCC phase, which could be either ferrite or martensite,
given the thermal history of the material. Conventionally, solid-state transformation for 17-
4 PH begins with ferrite, followed by austenite, and, finally, martensite formation. During
the SLM process, the non-equilibrium microstructure is generated due to large cooling rates
of up to 105–106 K/s in a single melt pool, resulting in the formation of a non-equilibrium
and metastable phase. A portion of austenite is transformed to martensite, due to rapid
cooling [39]. Even though the cooling rate of SLM is sufficiently high to form complete
martensite, the reheating generated from the neighboring region slows down cooling
and retains more austenite content. The volume of austenite transformed to martensite,
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compared with that of retained austenite, varies, based on the thermal profile of each
process [40]. The evolution of the phases in the material can be tentatively yielded from
JMatPro with the input of chemical composition. Therefore, ferrite indicated in JMatPro
cannot specifically identify the difference between ferrite and martensite because they
have the same structural center cubic body. Subsequent analysis from optical microscopy
confirmed that the martensite phase existed. Figure 5 shows the fraction of liquid phase
for 17-4 PH. The graph indicates that, during solidification, the liquidus line ended at
T = 1200 ◦C. Prior to this condition, a small percentage of solidus existed at 1450 ◦C,
resulting from alpha phase nucleation, suspected to be ferrite. The ferrite began nucleation,
followed by austenite, at a temperature of 1400 ◦C. With rapid cooling effects, austenite
transformed into martensite. From this point onwards, both phases emerged in fully
solidified condition at 1200 ◦C. The final volume fraction showed that 17-4 PH had 22%
austenite gamma, and 78% alpha, phases.
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Figure 5. The fraction of liquid and solid phase vs. temperature for 17-4 PH.

The contents of both phases were analyzed using XRD analysis for two build directions
of 0◦ and 90◦. The peaks were analyzed using the Rietveld method to calculate each phase’s
volume fraction. The volume for both directions was different with 22.0% austenite,
compared with 78.0% alpha phase, for 0◦ build, and 29.1% austenite, compared with 70.9%
alpha phase, for 90◦, as shown in Figure 6. The result for 0◦ aligned with thermophysical
properties generated by JMatPro at 90◦ was slightly offset with more retained austenite
content. The higher percentage of austenite at 90◦ could be attributed to the sample
base area. The martensite start temperature (Ms) and martensite stop temperature (Mf)
for stainless steel shifted to much lower values than for standard metal. For 17-4 steel,
martensite formation started from Ms = 132 ◦C and completed at Mf = 32 ◦C [13,40]. Based
on the chemical composition, the martensite start temperature Ms could be calculated using
the classic Equation (4) by Andrew [41], as follows:

Ms

(
◦
C
)
= 539 − 423(%C)− 30.4(%Mn)− 17.7 (%Ni)− 12.1(%Cr)− 7.5 (%Mo)− 11.0(%Si) (4)
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During the process of melting and cooling of the first layer, the amount of marten-
site and retained austenite is the same because the rate of conversion from austenite to
martensite depends only on the chemical composition of the powder. However, during
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the melting and cooling of the second layer, the amount of retained austenite begins to
deviate for both orientations, given that some retained austenite content is converted to
martensite upon reheating of new layers above and subsequent cooling. The higher cooling
rate further reduces the retained austenite and produces martensite. In this case, 90◦ had
more retained austenite, indicating a lower cooling rate. The surface area of layers for 90◦

was smaller than for 0◦, leading to a similar point on the x–y plane exposed to a laser beam
of the upper layers. The frequency of the upper layer melting retarded the cooling rate
of the 90◦ specimen and retained the austenitic phase. At 0◦ there was more martensite,
indicating a higher cooling rate than at 90◦.

The parts were fabricated by layers with a maximum of 30 µm for each layer, with
atmospheric temperature maintained at 40 ◦C, which was slightly higher than Mf, to reduce
the thermal stress effect. Hence, the delay in cooling to room temperature resulted in
retained formation of austenite at room temperature, as identified by the XRD test.

3.2. Microstructure Profiling and Hardness Test

In this section, the microstructures were observed to differentiate between the effect
of build directions 0◦, 45◦, and 90◦. The profiles were viewed from three directions of
the sample. The view from the y-direction is known as the build direction, and from the
transverse direction the view is either from the x or z-direction. At 0◦, by observing view 1,
the build direction in Figure 7 had a distinct circular pattern. This finding was due to the
hemispherical shape of the melt pool; when viewed from the top, only the round shape was
revealed. Observation by higher magnification for view 1 revealed that the circular pattern
consisted of a few shades of dark to bright. Within the circular pattern, the regions of the
same grain orientation had the same shade of darkness, and a solid back region defined the
porosity on the surface, as shown in the top right corner.
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Figure 7. Microstructure profile for 0◦ build direction.

For the transverse direction (view 2 and view 3), the two consistent observations
included columnar lath and waves of melt pools. The columnar lath resulted from the
continuous growth of grain with similar orientation; this concept is further discussed in
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the next section. The wave curve was a result of the side view of the hemispherical shape
for the melt pool. No evident grain boundary was observed, given that components were
not solidified from a bulk liquid metal, which opposed the typical nucleation and growth
process. However, the etching material attacked the melt pool boundary more, as shown in
the microstructure. Each melt pool possessed a unique microstructure but exhibited the
same characteristic, wherein the grain grew vertically, from downward and upward toward
the center of the melt pool. This observation was also recorded by Murr et al. [42] and
Donik et al. [43], who specifically remarked on the melt pool visualization for low energy
density. A unique combination of brighter and darker grains, which were austenite and
martensite, lay within each melt pool. Martensite could be observed as a spiking darker
region without defined boundaries, as recorded by Ponnusamy et al. [44].

Microstructure profiling of the 90◦ build orientation, seen in Figure 8, shows simi-
larity to that at 0◦, where the circular view dominated build direction (view 3) and wave
melt pool structure the transverse direction (view 1 and view 2). Phases were randomly
distributed and could still be distinguished by the brightness through high magnification
observation on the circular area. The average melt pool was 100–200 µm sideways with an
average thickness of 40 µm. Brighter regions represented austenite, and the darker regions
represented martensite. The black regions indicated porosity, which was very prominent in
the 90◦ side view.
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Figure 8. Microstructure profile for 90◦ build direction.

The build direction, 45◦, in Figure 9, reveals a different microstructure from the
two other build orientations. The build direction offered no view because the angle was
distorted, but the transverse direction (view 2) revealed consistent elements, including the
wave-like structure and columnar lath. A circular structure was unidentified because the
view direction did not correspond to the print direction.
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Figure 9. Microstructure profile for 45◦ build direction.

The observation from the transverse direction of all build directions indicatef the
existence of bright columnar lath growing from the bottom upward. Similar growth was
recorded by Pilehrood et al. [45], where solidification nucleated in a one-way direction
from the bottom of the melt pool. This grain indicated continuous grain growth in inter
melt pool layers, as shown in Figure 10. Columnar laths 1 and 2 showed continuous
growth extending over their respective meltpool layer. Although each layer solidified
consecutively, they appeared during the solidification of a single melt pool. The lowest
temperature occurred at the bottom, where nucleation of the liquefied layer adopted the
orientation of the adjacent grain of the previously solidified layer. This nucleation drove
further similar grain orientation solidification in an upward manner to generate a pillar-
like structure. The growth direction driven by heat flow was mentioned by previous
reseachers [12,24]. Although the columnar lath did not resemble austenite, which has a
bright and shiny region, many researchers consider this columnar lath to be an austenitic
phase [46,47], and some deemed it ferrite [48].

Apart from geometrical analysis, identifying the phases indicated in XRD analysis from
optical microscopy was important. Based on XRD results, the microstructure on 17-4 PH was
dominantly martensite, with 29.1% of the austenite phase. Some austenite content was still
retained because most of the austenite transformed into martensite, owing to decreased Ms
and Mf temperatures when alloying elements were added. Similarly, the columnar austenite
was mentioned by Lass et. al. [47]. Figure 11a,b show the appearance of austenite as a shiny
bright region from build and transverse directions. On the contrary, martensite was indicated
by a dark region, as shown in Figure 11c,d. From the transverse direction, martensite had a
columnar form, indicating grain growth from the bottom toward the top.
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The hardness test was conducted from two different sides of each sample, including
the build direction and the transverse direction, to validate the homogeneity of hardness.
Leo et al. measured SLM 17-4 PH components at 307 HV to 315 HV without substantial
variation in average values at different portions of components [49]. However, this study
specified the variations based on build directions. The value range for 0◦ was from 253 HV
to 320 HV, and from 242 HV to 266 HV for 90◦. The average HV value is shown in Figure 12,
indicating that 90◦ had lower hardness than 0◦. Hardness decreased owing to the increased
amount of retained austenite at 90◦, due to lower cooling rate. The increment of austenite
contributed to higher elongation, as observed by Yadollahi et al. [50]. The hardness of
transverse (TD) and build directions (BD) was almost similar, with build direction hardness
recording a slightly higher reading than the transverse reading. According to Hu et al. [51],
these variations could be rationalized by microstructural heterogeneities generated by the
AM process. Deviation values of BD and TD, as reported by Yusuf et al. [25], could be the
effect of such heterogeneities (dendritic segregation, grain morphology, and differences in
cell grain size).
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Figure 12. Hardness value for 0◦ and 90◦ build direction.

3.3. Porosity Distribution and Tensile Test

Under optical microscope observation, the microstructure of SLM 17-4 revealed nu-
merous types of porosities. Porosity in SLM could be divided into process-induced and
gas-induced porosity. The observation of porosity was more common to a side view than
a top view. This finding was heavily due to most porosity being generated at the melt
pool area.

The total power transferred to powders during printing may vary, due to inevitable
errors. The power transferred by the laser beam was assumed to be insufficient. In this case,
the two consequences were as follows: heat did not penetrate until the bottom layer, the un-
melted powder, remained, and the powders were fully melted. Nevertheless, they did not
fuse with adjacent melt pools, resulting in voids occurring in the interlayer. The common
geometry of these porosities included slit-shapes and crescent-shapes. The porosities
exhibited the most extensive geometry, with a length of up to 200 µm from end to end and
a thickness of 40 µm appearing dominantly at 90◦ and 45◦ side views, as shown in Figures
13a and 14a. If the energy received was very low, then the powder would not even melt, as
shown in Figures 13b and 14b, recorded by Kamariah et al. [52]. These porosities that might
affect the mechanical properties were mainly observed at 90◦ and 45◦, in Figures 13 and 14,
respectively. However, they were not observed at 0◦, as seen in Figure 15, consistent with
previous findings [17,31].
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shape, (b) unmelted powder, (c) keyhole and (d) spherical porosity.
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Contrary to insufficient energy, the powder was vulnerable to excessive laser beam
energy, resulting in the spatter ejection process, known as keyhole formation. Previous
researchers observed that this porosity left a trail of voids [29]. The spattering effect
displaced a portion of melted volume to a nearby region, followed by solidification of the
top surface of the melt pool. The displaced volume consequently generated porosity, due
to the incomplete flow of molten metal into the desired region. The geometry of porosity
was not as significant as the unmelt porosity. It could be any irregular shape, commonly
triangular, as shown in Figure 13c, Figure 14c, and Figure 15a. Therefore, this type of
porosity is more commonly found in all build directions equivalently.

The third type of porosity is gas-induced porosity. Gas bubbles may form in the
melt pool due to the vaporization of low melting point constituents within the metal [53].
Entrapped gas appears because the melting process occurs rapidly. The spherical pores
are the by-products of gas-induced porosity, due to entrapped gas, as shown in previous
findings [40,44]. For this study, these findings are shown in Figure 13d, Figure 14d, and
Figure 15b. The size was commonly found to be less than 20 µm, with one substantial gas
porosity found at 0◦ with a diameter of 30 µm.

Based on the microstructure of the SLM parts, the combinations of common observa-
tions could be integrated into a single schematic, as shown in Figure 16. Several melt pools
were recorded with multiple columnar laths that could be observed as brightly colored
grain. The columnar grain was observed to be vertical from the base and perpendicular
from the bottom of the melt pools. Two main process-based porosities were observed,
indicating excessive and insufficient energy density. All the porosities could be found in
previous studies [27,54,55], but this study identified the location of all porosity types ob-
served. Insufficient energy porosity appeared similar to a crescent moon and to un-melted
powder attached at the bottom of melt pools. By contrast, porosity was observed to be
a triangular shape within the melt pool boundary for excessive energy. The second type
of porosity is the gas-driven porosity, which appears as spherical-shaped porosity. The
distribution and size varied, based on the direction of the SLM specimen. Since the crescent
porosity is commonly found at the bottom of the melt pool layer, addition of layers would
increase the probability of crescent porosity. For each build direction, 0◦ build direction
had the least build layers, as opposed to the 90◦ build direction that had the most build
layers. The lowest porosity was observed at 0◦, where the observed porosity was limited to
a spherical shape.
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Four main mechanical properties were extracted based on the tensile test result shown
in Table 3. The curve behavior for each build direction is shown in Figure 17. Tensile
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strength was highest for 0◦ at 958 MPa, followed by 45◦ and 90◦ at 743 and 614 MPa,
respectively. The difference in tensile strength was attributed to the direction of the melt
pool layers to load direction and porosity profiling. The melt pool boundary separated the
solidified bottom layer beneath the upper liquidus layer. This difference in energy acted as
a weak interfacial layer. Early yielding and lower strength and elongation causing failure
of vertical samples could be caused by the orientation of layer boundaries in relation to
the loading [28]. The 90◦ orientation had bottom melt pool layers perpendicular to load
direction, consequently enabling easier porosity growth and coalescence, resulting in the
lowest strength, as shown in Figure 18.

Table 3. Mechanical properties for three different build orientations.

Build
Orientation

Tensile
Strength (MPa) Elongation (%) Yield Strength

(MPa)
Strain Energy

(J)

0◦ 958 ± 1 26 ± 0.6 472 ± 9 68 ± 1.5
45◦ 744 ± 9 25 ± 0.6 481 ± 5 54 ± 0.8
90◦ 615 ± 7 38 ± 1.5 442 ± 5 77 ± 4.9
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Figure 17. Stress strain curve for all build direction.

The second factor was the porosity distribution. Among the three types of porosities,
the un-melted powder and crescent shape porosity always occurred along the melt pool
boundary, as highlighted in the porosity analysis section. This porosity was observed most
frequently for 90◦, followed by 45◦. The edge of the crescent acted as stress concentration,
and the crack propagated easily across the specimen, given that it was perpendicular to
load direction, as shown in Figure 19. The crescent shape did not contribute the same effect
at 45◦, which did not have a direction proportional to the load direction.
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Figure 19. Crack coalescence and propagation for 90◦.

The qualitative aspect of the curve indicated that the 90◦ build direction had the most
prolonged strain hardening effect, up to 35% elongation, whereas the 0◦ build orientation
showed a yielding up to 7.5% before absorbing higher stress.

In this study, fractography analysis was further inspected under SEM observation
for the 0◦ build orientation, as shown in Figure 20. The results showed that the overall
photograph at 31X magnification, in Figure 20, consisted of two types of surfaces: flat
and cleavage surfaces. The porosity nucleation and propagation appeared first on the
flat surfaces, where slow fracture propagation occurred, and where the porosities grew
and became coalescent with each other. This result was depicted previously in Figure 19.
Rapid fracture existed as a cleavage surface occurred when the crack propagated to the
critical limit.
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Figure 20. Fracture surface overall under SEM observation including flat and cleavage surface.

Both surfaces were further zoomed in on under 500× and 5000× magnification, as
shown in Figure 21. Asperities on the surface resulted from internal pores generated
as a result of un-melted particles, and gas trapping was accountable for AM specimen
failure. Generally, all types of porosity, crescent, keyhole, and gas could be found at
500× magnification. The size of the crescent appeared to be the largest at 80 µm, consistent
with that in Figure 10. Keyhole porosity was found to be smaller at 40 µm and gas porosity
at 10 µm. These findings were consistent with the microstructure observation in Figure 16.

No precipitation strengthening phases were observed, because no heat treatment was
introduced. At 5000× magnification, the presence of fine dimples indicated sample failure
in the ductile approach, despite many voids [56]. The small dimple with a size less than
1 µm was observed to be larger on the flat surface, whereas cleavage surfaces possessed
a smooth fracture surface due to rapid fracture and separation of two adjacent grains.
The dimple size was larger in the previous research on austenitic steels treated using the
conventional process. The improved cellular structure generated nucleation and formation
of micro-voids [28].
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Figure 21. SEM of a fractured surface under 200× and 5000× magnification for (a) cleavage surface
and (b) flat surface.

4. Conclusions

This study was initiated as integral to achieving optimal components for selective laser
melted 17-4 PH. Therefore, the process began with understanding the phase, microstruc-
ture, and porosity profile in relation with the hardness and tensile strength. Initially, the
chemical elements and physical conditions of powders were analyzed to obtain the size and
volumetric distribution. The chemical element analysis was also extracted and served as
the basis for understanding the phases present after components were successfully printed.
Specimens were analyzed using material property modeling, JMatPro, and subsequently
verified using XRD analysis, where two phases were mainly observed, namely, austenite
and martensite, with compositions of 22% and 78%, respectively, for 0◦ build direction.
The 90◦ build direction showed that austenite slightly increased to 29.1% and martensite
reduced to 70.9%, due to smaller base area and lower cooling rate.

The optical microscope observed grain growth at the bottom of the melt pool in an
upward direction, and austenite and martensite were observed as bright white regions
and needle-like dark structures, respectively. The hardness value was higher for 0◦ build
direction than 90◦ due to the higher martensite content. Tensile strength was highest for 0◦
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at 958 MPa, compared with 45◦ and 90◦ at 743 and 614 MPa, respectively, due to the porosity
profile and direction of melt pool interfacial layer. Porosity analysis validated that only
the 90◦ build direction had all three types of porosity, and, specifically, the crescent type,
which held un-melted powders, apart from keyhole and spherical porosity. The schematic
for melt pool orientation and crack propagation was successfully generated. All types of
porosity were validated in fractography analysis under SEM machine. This concluded that
the 0◦ build direction demonstrated the best tensile strength, due to the highest martensite
content, the lowest porosity, and the direction of the melt pool interfacial layer. The findings
from this research could serve as a base reference for future microstructure manipulation
work, such as heat treatment.
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