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Abstract: High-precision measurements of the temperature dependences of the high-frequency shear
modulus G performed on as-cast, preannealed and predeformed Zr46Cu45Al7Ti2 bulk metallic glass
allowed us to determine, for the first time, the harmonic, anharmonic, electronic and relaxation com-
ponents of G. The dependence of anharmonic, electronic and relaxation components on temperature
and preliminary inhomogeneous (localized) plastic deformation was investigated. It is found that
plastic deformation results in a significant change in these components. We showed that the increase
in the integral relaxation contribution to the shear modulus with an increase in plastic deformation
can be quantitatively described within the framework of the interstitialcy theory. It is also found
that plastic deformation simultaneously leads to an increase in the anharmonic and decrease in
the electronic components of the shear modulus.

Keywords: metallic glasses; shear modulus; plastic deformation; structural relaxation; defects

1. Introduction

Metallic glasses (MGs) attract significant interest due a number of unique properties.
In particular, MGs display excellent mechanical properties such as high strength upon
compression and tension (up to 6 GPa) [1,2], high hardness (up to to 1650 HV0.2) [2], high
limit of elasticity (about 2% and even more) [3], large flow stress (up to 6 GPa) [4] and
even superplasticity near the glass transition temperature Tg without any signs of strain
localization [5,6]. Plastic flow at relatively low temperatures is highly localized in shear
bands having a characteristic width of about 10 nm [7].

The issue on the origin of the underlying mechanisms of MGs’ inhomogeneous (local-
ized) plastic deformation is currently far from a satisfactory understanding, and its solution
is very important from different viewpoints [8]. It is often considered that inhomegeneous
plastic deformation is related to the regions of the free volume with a size of a few atomic
diameters [8–10]. Another approach is based on dislocation notions [8,11], which have
a number of experimental confirmations [11–13].

It is known that plastic deformation provides a notable effect on the structure and
properties of MGs [14] while the type of flow (homogeneous/inhomogenous) is conditioned
by the kinetics of structural relaxation [15]. Meanwhile, it is commonly accepted that
structural relaxation results in changes of many MGs’ physical properties. In particular,
the kinetics of structural relaxation is related to the unrelaxed (high-frequency) shear
modulus (simply shear modulus hereafter) [16], which appears to be a major physical
parameter controlling different properties of MGs (e.g., Refs. [17–19]). The fundamental
reason for this lies in the fact that the shear modulus controls the activation barrier of
atomic rearrangements and, therefore, determines the kinetics of structural relaxation and
related relaxation phenomena [16].

Meanwhile, the unrelaxed shear modulus is a key parameter of the interstitialcy the-
ory [20–22], which constitutes a consistent and promising approach allowing quantitative
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interpretation of a number of relaxation phenomena related to structural relaxation and
crystallization of MGs [17–19,22]. It is, therefore, interesting to study the effect of plastic
deformation on the shear modulus; however, we are unaware of any studies in this direc-
tion except the recent investigation [23]. It was found in this work that inhomogeneous
deformation leads to a decrease in the shear modulus and a change of its relaxation kinetics
upon subsequent heat treatment; however, this conclusion was reached assuming that
the shear modulus in the supercooled liquid state (i.e., above Tg) is independent of thermal
and/or deformation prehistory and determined solely by temperature. Although this
assumption appears to be quite reliable, one should nevertheless try to avoid it. This is
performed in the present work in which we decompose the shear modulus into components
and study their temperature dependences after inhomogeneous plastic deformation of
a metallic glass in the initial and relaxed states. It should be emphasized that any studies of
the components of the shear modulus of MGs as well as their dependence on experimental
conditions are unknown to us except for the recent work [24]. Meanwhile, such studies are
very important for better understanding of fundamental basics of MGs’ shear elasticity, its
dependence on heat treatment and/or plastic deformation.

2. Experimental

The experiments were performed on bulk metallic glass Zr46Cu45Al7Ti2 (at.%), which
was prepared by melt suction into a copper mold. The non-crystallinity of castings was
confirmed by X-ray diffraction. Measurements of the shear modulus were performed
on 2× 5× 5 mm3 samples cut from the castings by a low-speed diamond saw. Plastic
deformation of samples was carried out at room temperature by uniaxial compression
using an electromechanical IR 5092-100 testing machine at a frame rate of 0.01 mm/min.
The compression stress was applied to the large side of the samples. The plastic strain was
calculated as εpl =

(h0−h)
h × 100%, where ho and h are the sample’s thickness in the initial

state and after deformation in the unloaded state, respectively. It was found that plas-
tic deformation is localized in numerous shear bands quite similar to those described
in the previous investigation [23].

The glass transition and crystallization onset temperatures were determined using
a differential scanning calorimeter Hitachi DSC 7020 operating in high purity (99.999%)
nitrogen atmosphere at a heating rate of 3 K/min. The electromagnetic acoustic trans-
formation (EMAT) method [25] was used to measure the transverse resonant frequencies
f (500–700 kHz) of samples at temperatures 300 K ≤ T ≤ 750 K in a vacuum of ≈0.01 Pa.
For this purpose, frequency scanning was automatically performed every 10–15 s upon
heating and the resonant frequency was determined as a maximal signal response re-
ceived by a pick-up coil upon scanning. The shear modulus was then calculated as
G(T) = Grt f 2(T)/ f 2

rt, where frt and Grt are the vibration frequency and shear modu-
lus at room temperature, respectively. The errors for the absolute Grt-values were accepted
to be 1–2%. Then, the errors in the absolute G(T)-data are about the same while the error
in the measurements of G(T)-changes was estimated to be 5 ppm near room temperature
and about 100 ppm near Tg.

3. Results and Discussion
3.1. Shear Modulus Components of Predeformed Samples in the Initial and Relaxed States

The shear modulus G(T) in crystalline/noncrystalline metals and alloys generally
includes the following components: (i) harmonic (temperature independent), (ii) anhar-
monic (linearly dependent on temperature), (iii) electronic (quadratically dependent on
temperature) and (iv) relaxation components [24,26,27]. The latter component for MGs is
dependent on temperature and thermal prehistory in a complicated way. Thus, the shear
modulus can be accepted as [24]

G(T) = G0

[
1− αanhT − αelT2 + αrel(T)

]
, (1)



Metals 2022, 12, 1964 3 of 10

where the harmonic component G0 = const, the summand −G0αanhT constitutes the an-
harmonic contribution, the term −G0αelT2 gives the contribution due to the free electrons
and ∆Grel(T) = G0αrel(T) represents the relaxation component. A fit of Equation (1) to
the initial temperature dependences of the shear modulus gives G0 = 35.6 GPa while
the room-temperature shear modulus was found to be GRT = 33.6 GPa [28].

Let us define the normalized shear modulus as

g(T) =
G(T)
GRT

=
f 2(T)

f 2
RT

, (2)

where f is the current sample’s vibration frequency and fRT is the vibration frequency at
room temperature. Then, using Equations (1) and (2) one arrives at

g(T) = g0

[
1− αanhT − αelT2 + αrel(T)

]
, (3)

where g0 = G0
GRT

is a constant. Thus, for temperature dependence of the normalized shear
modulus of MGs one can write down

g(T) = gnorel(T) + ∆grel(T), (4)

where gnorel(T) = g0
[
1− αanhT − αelT2] is the normalized shear modulus without any

relaxation-induced contribution and ∆grel(T) = g0αrel(T) is the relaxation contribution to
the normalized shear modulus.

Figure 1 shows the temperature dependences of the normalized shear modulus g(T)
of the same sample plastically predeformed by εpl = 20% in the initial (run 1) and relaxed
(run 2) states. The relaxation procedure consisted in heating up to 715 K (deep in the su-
percooled liquid state) at 3 K/min and cooling back to room temperature at the same
rate. Figure 1 shows that predeformed sample in the initial state (run 1) displays only
monotonous decrease of g at temperatures up to T ≈ 450 K due to the anharmonic and
electronic components of the shear modulus. Upon subsequent heating up to the calorimet-
ric Tg (determined as the onset of endothermal heat flow in DSC diagrams and indicated
by the arrow) one observes an increase of g(T) over the sum of purely harmonic, anhar-
monic and electronic components (i.e., over the gnorel term in Equation (4)), which is shown
by the solid line. This g-increase is clearly determined by sub-Tg exothermal structural
relaxation. Further heating above Tg results in a rapid g-decrease due to the transition
into the supercooled liquid state. Cooling of the sample back to room temperature results
in approximately 6% increase in the shear modulus with respect to the initial (predeformed)
state. Subsequent heating of the same sample (run 2) up to T ≈ 550 K leads only to
a decrease of g due to the anharmonicity and free electrons. Approaching Tg upon further
heating results in a significant shear softening and g(T) temperature dependence in the su-
percooled liquid state (i.e., above Tg) is quite close to that during run 1. This means that
heating into the supercooled liquid state completely removes the memory of the thermal
and deformation prehistory.

3.2. Separation of Non-Relaxation Components of the Shear Modulus

In order to separate the non-relaxation components of the shear modulus, we per-
formed an analysis of g(T) temperature dependences presented in Figure 1. For this, one
can calculate the derivative of g over temperature that using Equation (3) gives

dg(T)
dT

= g0

[
−αanh − 2αelT +

dαrel(T)
dT

]
. (5)

This equation shows that in the absence of structural relaxation and, consequently,
provided that dαrel

dT = 0, temperature dependence of dg(T)/dT should be a straight line.
Temperature dependence of the derivative of experimental g(T)-curve shown in Figure 1 is
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presented in Figure 2. The inset in this Figure gives the second derivative of the shear modu-
lus g. It is seen, first, that the derivative dg/dT in the initial state (run 1) decreases indeed lin-
early up to 450 K. This means that structural relaxation below this temperature is absent and
Tsr = 450 K can be accepted as the temperature of structural relaxation onset (as indicated
by the arrow in Figure 2). Upon continued heating, the derivative dg/dT becomes strongly
nonlinear evidencing the occurrence of a relaxation component. In the range Tsr < T < Tg,
this derivative first increases (shear hardening) and next decreases upon approaching Tg
(shear softening). Near Tg, one observes a rapid g-fall indicating the transition into the su-
percooled liquid state. In the relaxed state (run 2), dg/dT temperature dependence is fairly
different from the initial state (run 1). In particular, this derivative is linear below T ≈ 550 K.
Therefore, temperature dependence g(T) up to this temperature can be approximated by
a second degree polynomial, i.e., g(T) = g0

[
1− αanhT − αelT2]. Upon further heating,

the derivative dg/dT shows a rapid decrease indicating again the presence of relaxation.
The inset in Figure 3 demonstrates that the second derivative d2g/dT2 for the relaxed state
is a constant up to ≈550 K and rapidly decreases after that. This confirms the conclusion
that structural relaxation in the relaxed state is absent below T ≈ 550 K.
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Figure 1. Temperature dependences of the normalized shear modulus g in the initial (run 1) and
relaxed (run 2) states of a sample plastically predeformed by εpl = 20%. The solid and dashed
lines give temperature dependences of the sum of harmonic, anharmonic and electronic components
denoted as gnorel for the initial state (run 1) and after relaxation (run 2). The calorimetric glass
transition temperature Tg is indicated by the arrow. The error is less than symbols’ size.

The approximation of g(T)-data in the relaxed state by a second degree polynomial
in the temperature range 350 K ≤ T ≤ 550 K using the above equation allowed to ex-
tract the non-relaxation contribution gnorel(T), which characterizes temperature changes
of the shear modulus in the absence of structural relaxation. The non-relaxation com-
ponent gnorel(T) for the initial and relaxed states is given by the solid and dashed lines
in Figure 1, respectively. Temperature derivative of the non-relaxation component dgnorel/dT
for the relaxed state is given by the solid line in Figure 2. This Figure shows that dgnorel/dT
in the range 350 K ≤ T ≤ 550 K completely coincides with the derivative dg(T)/dT for
the relaxed state. This fact indicates the correctness of the above procedure for the separation
of the non-relaxation component.

The gnorel(T)-dependences for all other studied samples were determined in the same
way as described above. It is to be noted also that the derivative dg(T)/dT for the initial
state intersects the derivative dgnorel/dT just near the glass transition temperature Tg
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(indicated by the arrow in Figure 2). This fact can be used for an independent determination
of the glass transition temperature from shear modulus data.
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Figure 2. Temperature dependences of the first derivative of the normalized shear modulus over
temperature dg/dT in the initial (run 1) and relaxed (run 2) states of a sample predeformed by
εpl = 20%. The derivative of the non-relaxation component is given by the straight line. The inset
gives temperature dependence of the second derivative d2g/dT2 in the relaxed (run 2) state. The glass
transition temperature Tg and the temperature of structural relaxation onset Tsr are indicated by
the arrows.
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Figure 3. Temperature dependences of the relaxation component of the normalized shear modulus of
bulk glassy Zr46Cu45Al7Ti2 in the undeformed state (εpl = 0) and after deformation by different εpl
as indicated. The error is about the symbols’ size.

3.3. Separation of the Relaxation Component and Its Dependence on Plastic Deformation

Temperature dependence of the relaxation contribution ∆grel into the normalized shear
modulus was obtained by subtraction of the non-relaxation component from the complete
normalized shear modulus, i.e.,

∆grel = g(T)− gnorel(T). (6)
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This procedure was carried out for both initial (non-deformed) and plastically de-
formed samples. Figure 3 shows the temperature dependences of the relaxation component
∆grel for undeformed state (εpl = 0) and after deformation by εpl = 10%, 20%, 30%
and 40% in the initial state (run 1). It is seen that the relaxation component in the unde-
formed and slightly predeformed states (εpl = 0 and 10%) first becomes slightly negative,
which is evidently due to some endothermal structural relaxation occurring upon heating.
Above ≈520 K, the component ∆grel becomes positive and rapidly increases with temper-
ature reaching a peak near Tg. At T > Tg, the relaxation component rapidly decreases
reflecting the shear softening in the supercooled liquid state. For larger plastic deforma-
tions, εpl > 20%, low-temperature endothermal structural relaxation is not manifested and
∆grel always increases with temperature up to Tg, reaches a peak near Tg and decreases
after that.

It is also seen that the magnitude of ∆grel-peak increases with plastic deformation εpl
in all cases. It is to be noted once again that temperature dependences ∆grel(T) in the re-
laxed state (run 2) performed by preheating deep into the supercooled liquid state are
completely identical independent of plastic deformation evidencing the complete removal
of the memory of preceding plastic deformation.

3.4. Dependence of the Shear Modulus Components on the Defect Concentration and
Plastic Deformation

The relaxation contribution ∆grel to the shear modulus (see Equation (4)) can be under-
stood using the interstitialcy theory (IT) [20–22]. The IT argues that melting of crystalline
metals is associated with rapid multiplication of interstitial defects in the dumbbell form,
which remain identifiable structural units in the liquid state and become frozen in the solid
glass produced by melt quenching. In the glassy state, these defects can be no longer deter-
mined in the way used for crystals (two atoms trying to occupy the same potential well) but
can be identified according to their properties, which remain the same as those for dumb-
bell interstitials in crystals, i.e., (i) strong susceptibility to the applied shear stress leading
to the softening of the shear modulus, (ii) specific low-frequency modes in the vibrational
spectra of the atoms belonging to the defect and (iii) specific strain fields. Structural relaxation
of MGs is related to the changes of interstitial-type defect concentration allowing to describe
the relaxation of physical properties (see e.g., Refs. [18,22] and papers cited therein).

From the viewpoint of the IT, an increase in the relaxation contribution ∆grel with
temperature below Tg is determined by a decrease in the concentration of interstitial-type
defects while above Tg this concentration increases up to quasi-equilibrium values [29]
leading to shear softening. The present investigation shows that inhomogeneous plastic
deformation leads to quite notable changes of ∆grel-kinetics as exemplified in Figure 3.
The observed increase in relaxation component ∆grel with plastic deformation can be
interpreted by the IT as follows.

The main equation of the IT describes the diaelastic effect (shear softening) induced
by interstitial-type defects. This equation determines a decrease in the shear modulus G
with increasing concentration c of these defects as [20–22]

G = µ exp(−αGβc), (7)

where the dimensionless αG ≈ 1 is related to the defect strain field [30], dimensionless shear
susceptibility β (of about 20 for different MGs) characterizes the sensitivity of the shear
modulus to the defect concentration and related to the anharmonicity of interatomic
potential [31] and µ is the shear modulus of the maternal crystal (i.e., the one occurring
just after the complete crystallization). Using Equation (7), one can calculate the change of
the defect concentration ∆c upon structural relaxation as a result of heating up to 715 K
and subsequent cooling to room temperature. For this purpose, one can use the measured
change of the shear modulus due to the above heat treatment [32]. Indeed, writing down
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Equation (7) two times, for the initial state (run 1) and relaxed state (run 2), and calculating
the difference, one arrives at

∆cT=350 K =
1

αGβ
ln
(

Grel
G

)
T=350 K

=
1

αGβ
ln

(
f 2
rel
f 2

)
T=350 K

, (8)

where Grel and frel are the shear modulus and resonant frequency of resonant vibrations of
the sample in the relaxed state (run 2) at T = 350 K while G and f are the shear modulus and
resonant frequency of the same sample in the initial state (run 1) at the same temperature.
The temperature T = 350 K was accepted in this calculation in order to exclude the effect
of non-stationary temperature gradient along the sample on the resonant frequency, which
corrupts the true temperature dependence of the shear modulus upon heating onset. As a
matter of fact, Equation (8) gives the defect concentration change upon heating up to 715 K
and subsequent cooling to 350 K.

On the other hand, one can calculate the integral magnitude of the relaxation contribu-
tion to the normalized shear modulus for the same thermal cycle 350 K→ 715 K→ 350 K.
This integral magnitude can be accepted as

Srel =

715 K∫
350 K

∆grel(T) dT +

350 K∫
715 K

∆gcool
rel (T) dT, (9)

where ∆grel(T) represents the temperature dependence of relaxation contribution of the nor-
malized shear modulus upon 350 K→ 715 K heating (which is exemplified in Figure 1
(run 1) for εpl = 20%) and ∆gcool

rel (T) is the same quantity for 715 K→ 350 K cooling.
It should be emphasized here that ∆gcool

rel (T) exactly coincides with ∆grel(T) upon second
heating (see run 2 in Figure 1).

Within the IT framework, one should expect that Srel given by Equation (9) should be
proportional to the change of the defect concentration ∆c = ∆cT=350 K given by Equation (8)
upon the above 350 K→ 715 K→ 350 K thermal cycle. This hypothesis is tested in Figure 4,
which gives the quantities Srel and ∆c as a function of samples’ plastic deformation εpl .
The calculation of ∆c was performed assuming αG = 1 and the shear susceptibility β = 19.2,
which was determined earlier for the glass under investigation [33]. It is seen that, first,
plastic deformation leads to an increase in both quantities, Srel and ∆c. It should be noticed
that this effect is pretty large: while the defect concentration increases by≈25%, the integral
magnitude of the relaxation contribution to the shear modulus rises by ≈60% upon plastic
deformation by 40%. Second, it is seen that Srel is proportional to ∆c, as expected. In other
words, the increase in the defect concentration due to structural relaxation and plastic
deformation calculated within the IT theoretical framework (see Equation (8)) determines
the integral change of the relaxation contribution to the normalized shear modulus, which
is determined solely by the experimental data (see Equation (9)).

There arises a question on what is responsible for an increase in the defect concentration
upon plastic deformation. In a qualitative sense, this issue can be understood as follows. As
mentioned above, melting is related to a rapid increase in the concentration of interstitial
defects [22]. These defects retain their individuality in the melt as groups of atoms engaged
into string-like motion [34,35]. Further melt quenching freezes the defects in the solid non-
crystalline state. At that, there exists a thermodynamic stimulus for the association of isolated
interstitials-type defects into clusters containing N = 2 to N = 7 defects [36]. In the latter
case (N = 7), interstitial clusters constitute perfect icosahedrons, which define experimentally
observed icosahedral ordering in many MGs upon heat treatment [36]. One can suppose that
inhomogeneous plastic deformation results in the destruction of some part of large clusters
leading to an increase in the relative fraction of individual defects and their small clusters.
Upon appropriate thermal activation, these newly formed defects provide an additional
increase in the relaxation contribution to the shear modulus, which is shown in Figure 3.
It is to be emphasized, however, that inhomogeneous plastic deformation also leads to
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the accumulation of additional internal energy, which does not lead to any shear modulus
relaxation and is presumably related to the formation of long-range internal stresses [23].
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Figure 4. The integral magnitude of the relaxation contribution to the shear modulus Srel calculated
with Equation (9) and the change of the defect concentration ∆c determined according to Equation (8)
as a function of plastic deformation εpl . The lines give square least-fit approximations. It is seen that
∆Srel is proportional to ∆c.

The effect of plastic deformation on the anharmonic and electronic components of shear
modulus is illustrated by Figure 5. It is seen that the anharmonic coefficient αanh increases by
36% while the electronic coefficient αel decreases by ≈59% upon deformation by εpl = 40%
with respect to the undeformed state. At same same time, the relaxation component of
the shear modulus increases by ≈36% (see Figure 3). Thus, plastic deformation provides
a significant impact on these components of the shear modulus.
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Figure 5. Dependence of the anharmonic coefficient αanh and electronic coefficient αel defined
by Equation (1) on plastic deformation εpl . The solid lines give least-square-fits of the data points.
The errors are about the symbols’ size.

The reason for deformation-induced increase in the anharmonic component charac-
terized by the coefficient αanh is qualitatively clear. An increase of εpl is accompanied by
the increase in the defect concentration that should rise the amount of regions with corrupted
dominating (e.g., icosahedral) short range order and corresponding increase in the role of
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the anharmonicity in the properties of deformed glass. On the other hand, an increase in
the defect concentration should also naturally rise the relaxation component of shear modulus,
as indeed observed (Figure 3). At that, a decrease in the electronic coefficient αel with εpl is
evidently related to a change of the electronic structure upon plastic deformation; however,
the details of this phenomenon are unclear and need further investigation.

Finally, it is to be noted that shear modulus measurements by the EMAT technique
applied in the present work cannot be used to study the effect of plastic deformation
on the harmonic component G0 of the shear modulus (see Equation (1)). This is because
it is impossible to determine the changes of the geometrical dimensions and density of
samples due to plastic deformation with enough accuracy and, therefore, the alteration
of samples’ starting resonant frequency frt due to plastic deformation cannot be correctly
calculated. Thus, the effect of plastic deformation on the harmonic component G0 as well as
on the complete shear modulus G should be determined using other experimental methods.
Such studies are currently on the agenda.

4. Conclusions

We performed measurements of the high-frequency shear modulus of bulk glassy
Zr47Cu45Al7Ti2 in the initial state, after relaxation by heating into the supercooled liquid
state and after inhomogeneous plastic deformation performed by compression at room
temperature. The harmonic, anharmonic, electronic and relaxation components of the shear
modulus are determined. It is found that plastic deformation exerts a significant impact
on the anharmonic, relaxation and electronic components increasing the two former and
decreasing the latter.

It is shown that the integral magnitude of the relaxation component of the shear mod-
ulus increases with plastic deformation. We found that this integral relaxation contribution
is proportional to the change of the concentration of interstitial-type defects calculated
within the framework of the interstitialcy theory using the data on shear modulus changes.
It is argued that this effect can be due to the disruption of large defect clusters in the struc-
ture due to plastic deformation and corresponding increase in the total defect concentration.

The obtained results clearly show that the structure of deformed glass accumulates
additional defects, which remain stable not only after the deformation is completed but
also upon subsequent heating up to Tg; however, heating deep into the supecooled liquid
region provides a major relaxation of structure so that the memory of the deformed state
becomes completely lost. That is why temperature dependences of the shear modulus
in the relaxed state performed by heating into the supercooled liquid state do not depend
on preliminary plastic deformation.
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