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Abstract: This study performed high-temperature compression tests at the temperature 900 to 1200 ◦C
and strain rate 0.01 to 10 s−1 to characterize the high-temperature deformation behavior of AISI 4340.
The constitutive equation of AISI 4340 was expressed using the Arrhenius model and the Zener–
Hollomon (Z) parameter. Dynamic Recrystallization (DRX) behavior was evaluated by observing the
compressed specimen with Electron Backscatter Diffraction (EBSD). The processing map is based on
the dissipation efficiency of the dynamic material model (DMM) and the plastic instability criterion
of Ziegler. At strain 0.4, the power dissipation efficiency value is 0.5 or more, and the instable zones
are immediately identified through the processing map. The strain, strain rate and temperature
data obtained from the FEM simulation of the hot forging process are displayed on the proposed
3D processing map to avoid the flow instability zones and ensure high power dissipation efficiency
zones, allowing the operator to control the process’s temperature and speed.

Keywords: AISI 4340; 3D processing map; forging process control; particle tracking technique; hot
deformation behavior; dynamic recrystallization

1. Introduction

In manufacturing parts of high-strength, high-temperature materials, process parame-
ters are generally selected based on test methods such as tensile, compression, and bending
tests [1,2]. This study used a hot compression test similar to the hot forging process be-
havior. The compression test affects deformation behavior due to deformation heat and
the friction force between the die and the material. In addition, the heat of deformation
affects the properties of the product by making the production process complex and non-
uniform [3]. Therefore, the flow stress obtained in the compression test must be corrected
for deformation temperature and friction.

Causes of defects in plastic deformation include friction between the die and the tem-
perature non-uniformity between the surface and center of the material [4]. In particular,
flow behavior of steels depends on the strain, temperature, strain rate, and deformation
mode of hot deformation [5–7]. These processes encounter optimization challenges as-
sociated with the deformation behavior. In addition, a production process that relies on
the operator’s experience requires a lot of trial and error and cost burden [8]. Therefore,
designing an efficient metal-forming process is necessary to lower the production cost.

The Arrhenius [9] and Johnson–Cook [10] phenomenological models have been widely
used for flow stress behavior at high temperatures. The Arrhenius model can be expressed
simply with a Zener–Hollomon (Z) parameter. In addition, since compensation for temper-
ature, strain rate, and strain is possible, the flow stress behavior at a high temperature can
be accurately described [11,12]. In the case of hot forging, the microstructure is evaluated
by softening mechanisms such as dynamic recovery (DRV) and dynamic recrystallization
(DRX) [13–15]. The ability of the grain boundary is related to the pinning effect and its
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mobility [16]. Recently, the machinability properties of metal materials in hot deformation
based on the dynamic material model (DMM) have been used in processing maps that can
evaluate the deformation mechanism of the determined region and explain the unstable
zones [17,18]. Frost and Ashby developed the first deformation process theory in 1982 to
determine whether defects occurred during the process due to process parameters such
as strain, strain rate, and temperature [19]. Since then, Prasad has developed a modified
process map configured following the principle of DMM [20].

In this study, a method of controlling the temperature and speed of the hot forging
process is present by visualizing the deformation history of the nodes inside the material
on the 3D processing map space. The compression test results corrected the strain-stress
curve for the flow stress by considering the temperature change and friction. A constitutive
equation was established through the corrected flow stress. The microstructures were
characterized through a SU5000 HITACHI scanning electron microscope with a VELOCITY
SUPER EDAX electron backscatter diffraction (EBSD) detector. In addition, a 3D flow
instability map was produced to determine the strain rate and temperature during the
process to avoid forging defects during high-temperature deformation. A processing map
was first proposed by Prasad and Seshacharyulu in 1998 [21]. Existing processing maps
plot the power dissipation efficiency and flow instability on a specific strain’s temperature
and strain rate planes. However, during plastic deformation, strain, strain rate, and
temperature change continuously according to the deformation of the material, so the
deformation history of the particles was plotted in a 3D processing map space through
finite element method (FEM) simulation. Finally, through the 3D processing map, the
process temperature and speed were determined according to the strain of the product
during the hot forging process.

2. Materials and Methods

Table 1 lists the composition of AISI 4340 steel used in this study. Figure 1a shows
the specimen of the hot compression test of AISI 4340 material with an original diameter
of 10 mm and a height of 15 mm using the Gleeble 3500 simulator (Dynamic System Inc.,
Austin, Tex, USA). Figure 1b shows the specimens were compressed to true strain 1.0 at
a temperature of 900, 1000, 1100, and 1200 ◦C, strain rate of 0.01, 0.1, 1, and 10 s−1. The
specimen was heated at the rate of 10 ◦C/s to the target temperature. Then, the specimen
was compressed by maintaining it at a specific temperature for 180 s so that the temperature
of the specimen distributes uniformly; finally, it was air-cooled. Figure 2 shows the grain
boundary (GB) map of the initial specimen, and the grain size is 24.58 µm.
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Figure 1. Compression test specimen: (a) before deformation, (b) after deformation, (c) the area for
microstructure observation.
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Table 1. Chemical compositions of the studied steel (mass fraction, %).

Elements C Si Mn P S Ni Cr Mo Cu Fe

Mass fraction (wt. %) 0.42 0.18 0.84 0.018 0.006 1.6 0.79 0.15 0.1 Bal.

3. Results and Discussion
3.1. Friction and Temperature Correction

In the hot compression test, tantalum plates were used to reduce the effect of friction.
However, the deformation-stress curve obtained through the compression test is different
from the actual curve due to the intervention of frictional force. Therefore, the flow stress
must be corrected, considering the effect of friction. The effect of friction becomes more
evident as strain increases. The effect of friction on the flow stress was corrected using
Equation (1) as follows [22,23].

σf =
σ

1 +
(

2/3
√

3
)

µ(R0/h0) exp(3ε/2)
(1)

where σf is the corrected flow stress, σ is the measured flow stress, ε is the measured strain, r
is the transient average radius of the specimen during compression, and µ is the coefficient
of friction. The friction coefficient is calculated using the energy method proposed by
Ebrahimi et al. [24], with the calculation formula as follows:

µ =
(RA/H)b

4/
√

3− 2b/3
√

3
(2)

where RA is the average radius after deformation, H is the height of the specimen after
deformation, and b is the structure coefficient known by the following formulae:

b = 4
∆R
RA

H
∆H

(3)

RA = R0

√
H0

H
(4)

The deformation history makes it difficult to directly measure the specimen’s top
radius (RT) and maximum radius (RM). The final RM is measured after the compression
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test and the approximation of the barreled profile specimens with the arc of a circle (RT)
can be determined by the functions as follows:

RT =

√
3

H0

H
R02 − 2RM2 (5)

∆R = RM − RT (6)

A thermocouple was attached to the center of the specimen to record temperature data
in real time during the compression test. Figure 3 shows the temperature change according
to the deformation. In the high-temperature compression test, the temperature change
due to the deformation heat differs from the stress at the desired temperature. Therefore,
the flow stress corrected by the effect of friction must correct to the desired temperature.
The temperature and stress relationship were corrected by linear interpolation to match
the set temperature of the isothermal compression test. Figure 4 shows the flow stress
corrected by friction and temperature change. The difference between the experimental
and corrected flow stress became larger at high strains since the effects of friction and
temperature changes became higher as the strain increases.
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(c) 1100 ◦C, (d) 1200 ◦C.
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Figure 4. True stress-strain curves of the experiment were corrected under different deformation
conditions: (a) 900 ◦C, (b) 1000 ◦C, (c) 1100 ◦C, (d) 1200 ◦C.

3.2. Derivation of Arrhenius Constitutive Equation

In general, in the hot deformation of the metal, the flow stress is mainly affected by
strain rate and temperature. As follows in Equation (7), the Arrhenius constitutive equation
proposed by Sellers and McTegart describes the stress range by temperature and strain rate
in hot deformation [10].

.
ε = AF(σ) exp

(
−Q
RT

)
, where F(σ) =


σn1 , ασ < 0.8
exp(βσ), ασ > 1.2
[sinh(ασ)]n, for all σ

(7)

Therein,
.
ε is the strain rate (s−1), R is the universal gas constant (8.31 J·mol−1·K−1), T

is the absolute temperature (K), Q is the activation energy of hot deformation (kJ·mol−1), σ
is the flow stress (MPa), A, n1, n, α, and β are the material constants, and α = β/n1.

Zener and Hollomon verified that the relationship between stress and strain in isother-
mal strain depends on the strain temperature and the strain rate [25]. In this study, the
hyperbolic sine law was used to investigate the deformation behavior at all stress levels,
and it was expressed as a Zener–Hollomon parameter as follows:

Z =
.
ε exp

(
Q
RT

)
= A[sinh(ασ)]n (8)

The following equations can be obtained by taking the logarithms of Equations (7)
and (8). A1, A2 are the material constants.

ln
.
ε + Q/RT = ln A1 + n1 ln σ (9)

ln
.
ε + Q/RT = ln A2 + βσ (10)
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ln
.
ε + Q/RT = ln A + n ln[sinh(ασ)] (11)

n ln[sinh(ασ)]− (ln
.
ε− ln A) =

Q
RT

(12)

ln Z = ln A + n ln[sinh(ασ)] (13)

After that, the material constants can be obtained as the average value of the slope
obtained by plotting each equation. Equations (14)–(17) are partial differential equations at
constant temperature and strain rate. The flow stress used a strain value of 0.15.

n1 =
∂
(
ln

.
ε
)

∂(ln σ)

∣∣∣∣∣
T

(14)

β =
∂
(
ln

.
ε
)

∂(σ)

∣∣∣∣∣
T

(15)

n =
∂
(
ln

.
ε
)

∂(ln[sinh(ασ)])

∣∣∣∣∣
T

(16)

Q =
∂(Rn ln[sinh(ασ)])

∂(1/T)
(17)

Figure 5 shows the slopes of σ, lnσ, ln
.
ε, 1000/T, and ln[sinh(ασ)] through linear

regression analysis, and each data has a linear relationship. lnA can be obtained from the
intercept of the plot of lnZ–ln[sinh(ασ)].
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Table 2 lists the material constants (A, α, n, Q) obtained at strain 0.15. In a previous
study, the average activation energy Q of AISI 4340 was reported as 385.584 kJ/mol [2].
Considering that the flow stress is affected by strain, the material constant values were
obtained from 0.05 to 1.0 at intervals of 0.05 for each strain.

Table 2. Values of material constants at ε = 0.15.

α (MPa−1) n Q (kJ/mol) lnA

0.013 4.89 346.79 29.29

The material constant value according to the strain was obtained using the 7th-order
polynomial and expressed as a function of the strain is shown in Figure 6. The coefficients
of the fitted polynomial functions are listed in Table 3.
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Table 3. 7th-order polynomial coefficients of material constants α, n, Q, lnA.

Coefficient α (MPa−1) n Q (kJ/mol) lnA

1 0.0168 4.12 252 22.5
2 −0.0372 35.1 3.12 × 103 250
3 0.143 −358 −2.93 × 104 −2.44 × 103

4 −0.274 1.47 × 103 1.20 × 105 1.01 × 104

5 0.323 −3.17 × 103 −2.59 × 105 −2.23 × 104

6 −0.242 3.75 × 103 3.11 × 105 2.70 × 104

7 0.0943 −2.32 × 103 −1.95 × 105 −1.70 × 104

8 −0.0118 583 4.96 × 104 4.36 × 103

As expressed in Equation (18), the constitutive equation can be expressed as a function
of the Zener–Hollomon parameter, and the flow stress was calculated at different strains
ranging from 0.05 to 1.0 with an interval of 0.05 with the equation.

σ =
1
α

ln


(

Z
A

) 1
n
+

[(
Z
A

) 2
n
+ 1

] 1
2

 (18)

Figure 7 shows flow stress calculated through the constitutive equation at temperatures
of 900 to 1200 ◦C and a strain rate of 0.01 to 10 s−1. The calculated flow stress showed a
large error under the deformation conditions of temperature 900 ◦C and strain rates of
0.01 s−1 and 10 s−1, but the error was small under the conditions of 1000 ◦C or higher.
Other alloys reported similar errors. Errors can occur when fitting the material constants.
Similar errors were reported equally for other alloys [11,26].
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The accuracy of the calculated flow stress is quantified through the correlation co-
efficient (R) and the mean absolute error (AARE) that are calculated by Equations (19)
and (20), respectively. Pi is a value calculated through a constitutive equation, and Ei is
an experimental value. P and E are the mean values of the predicted and experimental
values, respectively. It can be seen from Figure 8 that there is a good correlation between
the calculated and the experimental data. High accuracy was obtained with correlation
coefficient (R) = 0.9965 and mean absolute relative error (AARE) = 4.26%.

R =

N
∑

i=1
(Pi − P)(Ei − E)√

N
∑

i=1
(Pi − P)2

√
N
∑

i=1
(Ei − E)2

(19)

AARE(%) =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100% (20)
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3.3. Processing Map
3.3.1. Processing Map Theory

In order to construct a processing map based on the dynamic material model (DMM),
the total input energy P that dissipated at any instant comprises the G content that is
dissipated by plastic deformation, and J co-content, which is the power dissipated by
changes in microstructure [27–30]. The flow stress between the hot deformation of the
metal can be expressed as Equation (21), which is a function of the strain rate at a constant
temperature.

σ = K
.
ε

m (21)

where m is a strain rate sensitivity coefficient, K is the strength constant that depends on the
temperature. The total energy (P) received by a material is divided into two energies [31–34].
The total energy P may be expressed as the sum of the terms G and J as:

P = σ
.
ε =

∫ .
ε

0
σd

.
ε +

∫ σ

0

.
εdσ = G + J (22)

The strain rate sensitivity in Equation (21) can be expressed as Equation (23), and
G and J can be expressed with the strain rate sensitivity [20,35]. m is according to each
strain and temperature, and the condition for a stable flow is m > 0. Total energy (P) can be
expressed by combining Equations (21) and (23).

dJ
dG

=

.
εdσ

σd
.
ε
=

.
εσd ln σ

σ
.
εd ln

.
ε
≈ ∆ log σ

∆ log
.
ε
≡ m (23)
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G =
σ

.
ε

1 + m
, J =

mσ
.
ε

1 + m
(24)

The efficiency of power dissipation (η) represents the relative efficiency of a material
dissipating energy due to internal microstructure change, and it is defined as
Equation (25) [21]. It shows the efficiency of microstructure change through contour lines in
the processing map. For ideal plastic flow (m = 1), the value of J reaches its maximum value.

η =
J

Jmax
=

∫ .
ε

0 σd
.
ε

σ
.
ε/2

=
2m

m + 1
(25)

Based on DMM and the extremum principles of irreversible thermodynamics as
applied to large plastic flow [36], Kumar [37] and Prasad [38] developed an instability
criterion for predicting flow instability (x) as follows.

ξ(
.
ε)Kumar-Prasad =

∂ ln(m/m + 1)
∂ ln

.
ε

+ m < 0 (26)

The plastic instability factor is the criterion for determining the plastic instability con-
dition according to the temperature and strain rate given through the flow instability map.
Taking use of the principle of the maximum rate of entropy of production, a continuum
criterion for the occurrence of flow instabilities is defined in terms of another dimensionless
parameter (ξ). In the region corresponding with a negative plastic instability factor value
(ξ < 0), instable plastic behavior may occur during plastic deformation [39].

3.3.2. Analysis of Processing Map

The flow stress data were obtained to evaluate different strain rates and temperatures
at a particular strain. Further, to compute the strain rate sensitivity (m) values, the experi-
mental data were plotted as log(σ) vs. log(

.
ε) at each temperature, as shown in Figure 9a.

These plots at each temperature were fitted with cubic splines, as shown in Figure 9b, at
the true strain of 0.5. According to Equation (22), the first derivation of cubic spline was
taken to calculate m values at small intervals of strain rates and temperatures.
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Figure 9. Interpolated curves to describe the relationship at strain 0.5. (a) between log(σ) and log(
.
ε),

(b) between strain sensitivity (m) and log(
.
ε).

The processing map can be constructed by superpositioning the flow instability map
on the power dissipation efficiency map. Figures 10 and 11 show the treatment map at
0.1 intervals from 0.1 to 1.0 strain through the flow stress before and after correction for
friction and temperature change. It can be confirmed that the tendency of the processing
map through two flow stresses is similar before strain 0.4, but the tendency changes after
strain 0.4. The effect of friction and temperature of flow stress is evident from strain 0.4 or
higher. This stress change results in a strain rate sensitivity (m) change. In the processing
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map, colored regions indicate flow instability that needed to be avoided. A high value of
the contour region is consuming more energy for microstructural evolution. The region
excluding color is a stable region with good workability.
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Figure 11. Corrected flow stress processing map.

Figure 12 shows the power dissipation efficiency value of 0.4 or more at low strain
rates of 0.01 s−1 and high temperatures of 1150 ◦C. At strains 0.1–0.3 and 0.3–0.6, the
instability zone shifts to a lower temperature with increasing strain. At strains 0.1–0.2 and
0.9–1.0, the region of power dissipation efficiency value of 0.4 or over overlaps the region
of instability. The flow instability zone was not found at strains of 0.7–0.8, indicating that it
is stable. As shown in Figure 12a,b, processability may be determined by stacking the 3D
processing map at 0.01 intervals from strain 0.1 to 1.0 [40]. According to the color depth,
Figure 12a represents power dissipation efficiency, and Figure 12b flow instability.
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The existing 2D processing map has limitations in determining the flow instability and
power dissipation efficiency according to the temperature, strain rate, and strain change
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during plastic deformation. In addition, there is a limit to understanding the deformation
behavior of the product in the actual production process. The advantage of the developed
3D processing map is the immediate identification of instability zones and the power
dissipation efficiency distribution. FEM analysis can be used to display strain, strain rate,
and temperature data for each node of a deformable material in a 3D processing map.
Therefore, it is possible to avoid the flow instability zones and control the temperature and
speed of the forging process overlapping with high power dissipation efficiency zones.

3.4. Hot Forging Process Temperature and Speed Controls Based on a 3D Processing Map

Figure 13 illustrates the FEM simulation under similar conditions to the compression
test conducted to obtain the proposed 3D processing map. Since the forging process has neg-
ligible elastic deformation compared to the amount of plastic deformation, a rigid-plastic
finite element analysis was performed through the commercial finite element analysis
software Simufact Forming 2022 (2022, Hexagon, Stockholm, Sewden). The process speed
is shown in two cases in Figure 13c. Figure 14 compares the data pattern according to
temperature and process speed.
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cess speed.

In the FEM simulation, the top and bottom die is the rigid body, and a constant
coulomb friction coefficient model was used to represent the friction between the dies and
the workpiece, with a friction factor of 0.3. The number of mesh in the workpiece is 20,750.
The heat transfer coefficient to the environment (HTC) and the heat transfer coefficient to
the workpiece was set to 20 W/(m2·K). The 3D processing map is a space composed of
strain, strain rate, and temperature. A node at each location in the 3D flow instability map
space can be plotted according to deformation history using particle tracking techniques.
The operator can thus control the temperature and process speed of the material and die in
hot forging by viewing the deformation history plotted on the map.

As shown in Figure 13, the process speed was 1 mm/s, the initial temperature of the
specimen was 1000 ◦C, the top and bottom die temperatures were 950 ◦C, and the specimen
was compressed to a true strain of 1.0. As shown in Figure 13a, the strain, strain rate, and
temperature data through particle tracking techniques in the specimen pass through the
flow instability zones.

Figure 14a shows that in order to be able to control the particle data to avoid flow
instability zones through the 3D processing map, the process needs to be carried out
at a higher temperature and a higher speed. Therefore, as shown in Figure 13c, the
process speed is modified as gradually decreased from 10 mm/s to 3.13 mm/s. The
initial specimen top and bottom die temperatures were increased by 50 ◦C. Figure 14b,c
show that the particle data up to true strain 1.0 avoid the instability zone and overlap the
power dissipation efficiency zone of 0.32 or more. The high power dissipation efficiency
indicates that the material dissipates more energy for the microstructural changes. This
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determines the best process parameters recommended for designing and conducting hot
forging processes [41–43].
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3.5. Microstructure Analysis
Microstructure Analysis of Processing Map

The optimal hot workability determined by the Processing map is related to the
power dissipation efficiency and should avoid the flow instability. The forming defects of
microstructures that may occur in the unstable area include adiabatic shear bands, flow
localization, dynamic strain ageing (DSA), and kink bands [44].

Figure 15 shows the microstructure by photographing the cross-section of the com-
pressed specimen, as shown in Figure 1c, by each deformation condition with EBSD.
Thermal energy relaxes the internal strain energy during high-temperature strain. Because
this promotes the migration of grain boundaries, the grain size increases with increasing
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temperature. On the other hand, when the strain is increased, the dislocation density and
internal strain energy increase, which promotes DRX and shortens the grain growth time
to reduce the grain size. The red border indicates the microstructure corresponding to
the instability zones of the processing map. As a result of observing the microstructure
corresponding to the instability zone, at 900 ◦C DRX occurs less, and a shear band is ob-
served. Partial recrystallization occurred in some areas, as indicated by the dashed yellow
line at 1000 ◦C. It indicates that an inhomogeneous microstructure is obtained under the
corresponding deformation conditions. Flow localization is found in the 1100–1200 ◦C
region. Meanwhile, the stable zones with a temperature of 1100–1200 ◦C and a strain rate
of 0.01–1 s−1 have an elongated needle-like ferrite structure. Acicular ferrite structure
increases toughness [45–47]. Therefore, it can be seen that toughness is advantageous due
to the needle-shaped ferrite structure when deformed under the corresponding conditions.
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4. Conclusions

The conclusions obtained using the constitutive equation and 3D processing map are
as follows.

The constitutive equation of AISI 4340 steel was determined through the relationship
between the Arrhenius model and the Zener–Hollomon (Z) parameter and showed a high
prediction rate with correlation coefficient (R) = 0.9965 and mean absolute error (AARE) =
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4.26%. The small error indicates that the above model can well describe the hot deformation
behavior of AISI 4340 steel studied in this paper.

Through the 3D flow instability map stacked at 0.01 intervals from strain 0.1 to 1.0,
it is possible to check the process conditions that can avoid unstable regions visually.
The process conditions are temperature 900–1200 ◦C, strain rate 0.55–1.9 s−1 region, and
temperature 900 ◦C, strain rate over 0.55 s−1 stable in the region. Therefore, the 3D flow
instability map should induce process conditions (process temperature and speed) into the
unpainted area.

From strain 0.4 or more, the highest power dissipation efficiency value is 0.55 at
temperature 1200 and strain rate 0.01 s−1. The high power dissipation efficiency can
promote the occurrence of dynamic recrystallization.

In the hot forging deformation simulation, particle tracking technology can plot strain,
strain rate and temperature data on the 3D processing map to control process temperature
and rate, avoid unstable regions, and achieve process conditions, including regions with
high power dissipation efficiency.
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