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Abstract: Various techniques can be applied to center pillars to enhance collision characteristics
during side crashes. For instance, patchwork (PW) can be welded to the center pillar to increase its
stiffness, and partial softening (PS) can be applied to provide ductility. Side crash tests are conducted
by the Insurance Institute for Highway Safety (IIHS) to evaluate collision resistance. However, it is
difficult to evaluate collision toughness and energy distribution flow for each automobile component.
In this study, a side crash simulation was performed with IIHS instruction. We investigated the
effect of hot press forming (HPF) a center pillar with a combination of PW and PS techniques on
collision toughness and energy distribution flow. As a result, the role of PW and PS techniques were
verified during side crashes. PW improved the strain energy and intrusion displacement by 10% and
7.5%, respectively, and PS improved the plastic deformation energy and intrusion displacement by
10%. When PW and PS were applied to the HPF center pillar simultaneously, a synergistic effect
was achieved.

Keywords: center pillar; side crash simulation; patchwork; partial softening; energy distribution

1. Introduction

In light of global environmental concerns, the automobile industry has become in-
creasingly interested in fuel efficiency and weight reduction. With increasing demand for
technological development to achieve high performance and high fuel efficiency, research
on the application of advanced high-strength steel (AHSS) for automobile components has
progressed [1–4].

The HPF process was introduced to enhance the stiffness and strength of automobile
components. In the HPF process, a blank is heated to a high temperature to create an
austenitic phase and then cooled rapidly in forming dies to form a martensite phase [5,6].

However, the use of hot stamped parts is restricted in automobile components and
requiring collision absorption, owing to their low elongation. For example, in the case
of a side crash, the B-pillar, also known as the center pillar, is among the most important
automobile components with respect to passenger safety. During side crash impact, the
center pillar must be ductile to absorb the collision energy and stiff to improve intrusion
resistance. Much research has been conducted on center pillars made with alternative
materials [7–9] or post tempering processes to obtain tailored properties [10,11].

Owing to productivity demands and manufacturing costs, the PW and PS techniques
are well-known and widely used in the automobile industry to improve the collision
characteristics of center pillars.
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To improve intrusion resistance and increase the stiffness of automobile components, a
PW is attached to the center pillar to achieve reinforced structural stiffness. The formability
of laser-welded PW blanks was investigated by Mori et al. and Shi et al. [12,13]. The spot
weld conditions to attach PW to HPF parts was optimized by Ahmad et al. [14]. Chengxi
et al. studied methods to improve the mechanical properties of B-pillars with PW and
predict the temperature distribution using FE simulation [15].

PS can be applied to improve energy absorption and increase the ductility of auto-
mobile components. Gao et al. investigated the characteristics of temperature-dependent
IHTC of 22MnB5 during the spray-quenching process [16]. Ota et al. [17] evaluated the
damage value and tailored temperature using a forming limit diagram. Bok et al. per-
formed a simulation to predict the microstructure and mechanical properties of a B-pillar
in comparison with experimental results [18]. Kim et al. manufactured a B-pillar using the
partial strengthening method with minimal shape change [19]. However, the above studies
investigated only the manufacturing process and were limited in that they did not evaluate
the impact toughness and energy distribution flow, which affect performance when applied
to an actual vehicle. A few studies have been conducted involving impact tests to evaluate
the effects of PW and PS on impact toughness and energy distribution. Recently, M. S. Lee
et al. manufactured an HPF center pillar with PW and PS by controlling the cooling rate
and conducted experimental and numerical drop weight tests [20]. Owing to the limitations
of the experimental equipment, the results were limited in terms of evaluating the energy
absorption characteristics of PW and PS, and test collisions could not be conducted at high
speed or using real vehicles owing to high costs.

In this study, given the importance of the evaluation of safety in high-speed collisions,
a vehicle and an impactor were modeled according to the IIHS guidelines to evaluate the
collision absorption capacity at high speed based on a previously verified low-speed drop
weight test, as well as energy distribution in a high-speed collision. To improve stiffness
and ductility, PW and PS techniques were applied to the HPF center pillar, and experiments
were performed for comparison with the simulations to verify the results.

2. Experiment and Simulation
2.1. Materials

Figure 1a shows that the function of the center pillar during a side crash. Generally, the
HPF center pillar has a low elongation of less than 5%, so collision toughness is not satisfied.
In addition, the stiffness of the center pillar in the top region is not sufficient against
intrusion resistance. The PS technique provides ductility to the HPF center pillar and, PW
strengthens the stiffness of the HPF center pillar to improve collision characteristics, such
as energy absorption and intrusion resistance.
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Figure 1. (a) Function of the center pillar during a side crash. (b) Four kinds center pillars [20].
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In this study, a 22MnB5 boron steel sheet was used for the HPF center pillar and PW.
The PS region was controlled by a cartridge heater during manufacturing of the HPF center
pillar [20]. Table 1 shows the material properties of 22MnB5 (HPF) and 22MnB5 (PS). The
thicknesses of the HPF center pillar and PW were both 1.2 mm. To evaluate the effect of
PW and PS on energy distribution and intrusion resistance, a side crash simulation was
performed with four kinds of the center pillar, as shown in Figure 1b.

Table 1. Material properties of 22MnB5 (HPF) and 22MnB5 (PS) [20].

Material Tensile Strength
(MPa)

Elongation
(%)

Elastic Modulus
(GPa)

Vickers Hardness
(HV)

22MnB5 (HPF) 1500 5 210 440
22MnB5 (PS) 715 11~13 210 225

2.2. Drop Weight Test and Simulation
2.2.1. Geometry Modeling, Mesh, and Weld Constraints for FE Simulation

An FE simulation for the drop weight test was performed using ABAQUS/explicit
software. Figure 2 shows the geometry modeling and welding constraints between the
HPF center pillar and PW. The fine mesh was defined in the impact region, and the rough
mesh was defined in other regions to reduce computation time. The element types of the
center pillar and weld nodes were S4 and CNN3D2, respectively. The PW was welded to
the HPF center pillar with 1200 × 440 × 51.5 mm3 dimension. As shown in Figure 2b, the
master weld node was defined on the element of center pillar, and the slave weld node
was defined on the element of the PW. The master and slave weld nodes were bonded, and
the attachment method used for the welding connector was point to point. The damage
criterion and damage evolution of weld constraints were not applied because a fracture did
not occur at the weld point. The detailed weld conditions for the FE simulation are listed
in Table 2.

Metals 2022, 12, 1941 3 of 17 
 

 

Figure 1. (a) Function of the center pillar during a side crash. (b) Four kinds center pillars [20]. 

In this study, a 22MnB5 boron steel sheet was used for the HPF center pillar and PW. 
The PS region was controlled by a cartridge heater during manufacturing of the HPF cen-
ter pillar [20]. Table 1 shows the material properties of 22MnB5 (HPF) and 22MnB5 (PS). 
The thicknesses of the HPF center pillar and PW were both 1.2 mm. To evaluate the effect 
of PW and PS on energy distribution and intrusion resistance, a side crash simulation was 
performed with four kinds of the center pillar, as shown in Figure 1b. 

Table 1. Material properties of 22MnB5 (HPF) and 22MnB5 (PS) [20]. 

Material 
Tensile Strength 

(MPa) 
Elongation 

(%) 
Elastic Modulus 

(GPa) 
Vickers Hardness 

(HV) 
22MnB5 (HPF) 1500 5 210 440 
22MnB5 (PS) 715 11~13 210 225 

2.2. Drop Weight Test and Simulation 
2.2.1. Geometry Modeling, Mesh, and Weld Constraints for FE Simulation 

An FE simulation for the drop weight test was performed using ABAQUS/explicit 
software. Figure 2 shows the geometry modeling and welding constraints between the 
HPF center pillar and PW. The fine mesh was defined in the impact region, and the rough 
mesh was defined in other regions to reduce computation time. The element types of the 
center pillar and weld nodes were S4 and CNN3D2, respectively. The PW was welded to 
the HPF center pillar with 1200 × 440 × 51.5 mm3 dimension. As shown in Figure 2b, the 
master weld node was defined on the element of center pillar, and the slave weld node 
was defined on the element of the PW. The master and slave weld nodes were bonded, 
and the attachment method used for the welding connector was point to point. The dam-
age criterion and damage evolution of weld constraints were not applied because a frac-
ture did not occur at the weld point. The detailed weld conditions for the FE simulation 
are listed in Table 2. 

 

 
(a) (b) 

Figure 2. Center pillar and PW: (a) geometry and mesh; (b) weld constraints. 

Table 2. Spot weld conditions for FE simulation. 

Attachment Method Additional Mass (kg) Spot Radius (mm) Degrees of Freedom 
Point-to-point 0 3 0 

2.2.2. Boundary Conditions for Drop Weight Test 
Figure 3 shows the simulation and experimental apparatus for the drop weight test. 

The center pillar was fixed by clamp, as shown in Figure 3a. The drop height from the 

Figure 2. Center pillar and PW: (a) geometry and mesh; (b) weld constraints.

Table 2. Spot weld conditions for FE simulation.

Attachment Method Additional Mass (kg) Spot Radius (mm) Degrees of Freedom

Point-to-point 0 3 0

2.2.2. Boundary Conditions for Drop Weight Test

Figure 3 shows the simulation and experimental apparatus for the drop weight test.
The center pillar was fixed by clamp, as shown in Figure 3a. The drop height from the center
pillar was 610 mm, and the load cell was attached to an impactor with a weight of 160 kg.
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A drop weight simulation was also performed for comparison with the experimental data.
The impactor velocity was 3.450 m/s before collision. The 6 degrees of freedom of the
center pillar were fixed in the zig region by a clamp. The friction coefficient between the
center pillar and impactor was 0.1. The collision time was 0.18 s. The detailed boundary
conditions for the drop weight test are listed in Table 3.
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Table 3. Boundary conditions of the simulation for the drop weight test.

Impactor
Mass (kg)

Collision
Time (s)

Impactor Velocity
(m/s)

Drop Height
(mm)

Initial Potential
Energy (J)

Friction Coefficient
between Front Bumper

Beam and Impactor

160 0.18 3.45 610 956 0.1

2.3. Side Crash Simulation
2.3.1. Geometry and Properties of a Moving Deformable Barrier in a Sedan

A moving deformable barrier (MDB) was modeled for side crash simulation according
to IIHS guidelines. Figure 4 shows the geometric modeling of an MDB with dimensions of
450 × 1000 × 650 mm3. The MDB consists of two parts: a main honeycomb block and an
aluminum sheet used as the cover layer. The two parts were adhesively bonded together.
The main honeycomb block was hexagonal in shape with a cell size of 22 mm made Al5052
foil. The foil thickness was 0.05 mm, with a crush strength of 31 MPa [21]. The weight of the
MDB was 1360 kg ± 5 kg with a deformable element, and the center of mass was 1000 mm
from the front of the deformable element, as shown in Figure 4. The MDB roll (Ix), pitch (Iy),
and yaw (Iz) moments of inertia were 542 kg·m2, 2471 kg·m2, and 2757 kg·m2, respectively.
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Figure 5 shows the geometric modeling and material section of the automobile and
pillars. The automobile geometry for used for simulation had the same dimensions as
an automobile: 4580 × 1820 × 1250 mm3. As an actual automobile, the shell model was
used, and the element type was set to S4 to reduce the hourglass effect and enable detailed
measurement of absorbed energy. Owing to the complexity of the shape of the automobile,
with curves and had many holes, the automobile part was meshed using a bottom-up
mesh technique. The collision region was finely meshed, whereas regions away from
the collision area were roughly meshed. The thicknesses of the center pillar, outer and
inner reinforcement, and doors and other frames were 1.2 mm, 1.2 mm, and 2.0 mm,
respectively. Multiple materials were used to design the sedan. The center pillar, PW, and
frame and other parts were made with HPF with PS, HPF, and DP590 and CR420 (mild
steel), respectively.
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2.3.2. Boundary Conditions for Side Crash Test

Figure 6 shows a schematic diagram of the side crash test. A side crash test involves a
stationary vehicle, evaluating the impact characteristics when an impactor equipped with
an MDB collides with the side region of a stopped vehicle according to IIHS regulation. An
impactor with an MDB has a collision velocity of 50 km/h (13.8 m/s) and hits the stopped
vehicle at a 90 degree angle, as shown in Figure 6. The mass of the sedan and the impactor
with an MDB were 1420 and 1360 kg, respectively. The 6 degrees of freedom of the stopped
vehicle were fixed on the ground. The friction coefficient between the ground and the
impactor’s wheel was 0.1. The collision time was 0.1 s. Because the opposite side of the
collision zone would not be deformed, a half body of a stopped vehicle (sedan) was used
as a rigid body in order to reduce the analysis time. The detailed side crash conditions
are listed in Table 4. Mass scaling was not used, and the stable time increment size was
1.67821 × 10−8 s.

Table 4. Collision conditions for side crash simulation.

Sedan
Mass (kg)

MDB
Mass (kg)

Collision Time
(s)

Impactor Velocity
(m/s)

Initial Kinetic
Energy (kJ)

Friction Coefficient
between Ground and Vehicle

1420 1500 0.1 13.8 142 0.1
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2.3.3. Energy Absorption Method

In the side crash simulation, the various energies, such as elastic, plastic, kinetic,
friction, and viscoelastic energy, were transformed by deformation during the collision. The
energy absorbed by deformation was experimentally calculated using load-displacement
data according to Equation (1) [22].

Eab =
∫ s

0
F(x)dx (1)

where Eab, s, and F are absorbed energy, crash displacement, and impulsive force, respectively.
The specific energy absorption (SEA) was obtained by Equation (2):

SEA =
Ea

M
(2)

where M and Ea are total mass and absorbed energy, respectively.
When the SEA value is high, the energy absorption capability is high. However, this

is approximate (rather than exact) estimation method and cannot determine elastic and
plastic deformation energy.

In this study, the integrated stress–strain curve data per unit element volume were used
to calculate the accurate absorbed energy, such as elastic and plastic dissipated energies,
and for analysis of the distribution of energy flow in the time domain.

Figure 7a shows the meshed shell with the S4 element type used to accurately calculate
the energy variable data and avoid the hourglass effect. As shown in Figure 7a, the shell
element has 4 points, which are inside the mid-surface, in contrast with a solid element
type. Because the mid-surface was used for analysis, the change in shell thickness was
not visually expressed, and the strain in the thickness direction of the shell element was
calculated as Equation (3):

ε33 =
ν

1 − ν
(ε11 + ε22) (3)

Treating these as logarithmic strains,

ln
t
to

= − ν

1 − ν
ln
(

l0
l

)
= − ν

1 − ν
ln
(

A
Ao

)
(4)

where l, t, ν, and A are the element length, thickness, Poisson’s ratio, and area of the shell’s
reference surface, respectively.
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The change in shell thickness is expressed by Equation (5).

t
to

=

(
A
Ao

)(− ν
1−ν )

(5)

According to the above equations, the element volume of each mesh can be measured
by Equation (6) after deformation.

Velement = Ato

(
A
Ao

)(− ν
1−ν )

(6)

The stress–strain curve describing the calculation of absorbed energy per element
volume during deformation is shown in Figure 7b.
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As shown in Figure 7b, the specific elastic and plastic deformation energies are mea-
sured by Equations (7) and (8), respectively:

∆Ees =
1
2

σNew∆εes∆V (7)

∆Ep =
1
2
(σOld + σNew)∆εp∆V (8)

where σNew, σOld, σu, and ∆V are the new stress, previous stress, user-defined equation
stress, and specific element volume, respectively.

The internal energy can be expressed by integrating Equation (9):

EI =
∫ t

o

(∫
V

σu :
.
ε dV

)
dt (9)
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Then,
.
ε =

.
ε

es
+

.
ε

p
+

.
ε

c and EI can be separated as in Equation (10):

EI =
∫ t

o

(∫
V

σu :
.
εdV

)
dt =

∫ t

o

(∫
V

σu :
.
ε

esdV
)

dt +
∫ t

o

(∫
V

σu :
.
ε

pdV
)

dt +
∫ t

o

(∫
V

σu :
.
ε

cdV
)

d = Ees + Ep + Ec (10)

where
.
ε

es,
.
ε

p, and
.
ε

c are the elastic strain rate, plastic strain rate, and creep strain rate,
respectively; and Ees, Ep, and Ec are the elastic energy, plastic energy, and creep strain
energy, respectively.

The elastic strain energy (Ees) results from linear deformation, whereas energy is dissi-
pated by plasticity (Ep) when permanent deformation of the meshed element begins. The
elastic and plastic strain regions are linear and non-linear, respectively. The aforementioned
energies are defined by Equations (11) and (12), respectively:

Ees =
∫ t

o

(∫
V

σu :
.
ε

esdV
)

dt = ∑
t

n

∑
i=1

1
2

σiεi∆Vi (11)

Ep =
∫ t

o

(∫
V

σu :
.
ε

pdV
)

dt (12)

In this study, the element set of PW, PS, and MDB was selected, as shown in Figure 8.
The Ees and Ep of the four kinds of center pillars were compared during a side crash because
the elastic strain and plastic deformation energies account for most of the internal energy,
which is known as the absorbed energy during a collision. Ees and Ep of PS and PW were
calculated using the above equation during the deformation of the element according to
the four types of center pillars, as shown in Figure 1b.
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Figure 8. Energy distribution of the center pillar and MDB.

2.3.4. Damage Initiation Criteria and Damage Evolution

Local necking in the shell element could not be realized because the sheet metal in
the simulation was very thin. To predict the onset of necking instability, the forming limit
diagram (FLD) curve was used in this study. Simulations were performed by applying the
previously obtained FLD for 22MnB5 (HPF and PS) to Abaqus/explicit [23,24].

3. Results and Discussion
3.1. Comparison of Impulse between Experiment and Simulation

Figure 9 compares the experimental and simulation results after the collision test for
the HPF center pillar with PW and PS. Figure 9a,b show the top and side views of the center
pillar, respectively, between the experiment and the simulation. The figure shows that the
deformation behaviors of the experiment and the simulation were similar [20].
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Figure 10 shows the comparison result of impactor load between experiment and 
simulation according to time. The maximum impact load of the experiment and simula-
tion were 9.5 kN and 12.7 kN, respectively. The value of impulse and collision time be-
tween the experiment and simulation were 799 N·s, 0.165 s and 787 N·s, 0.117 s, respec-
tively. Based on above results, the simulation and experiment were validated, and these 
material sections of mechanical properties were used for side crash simulation.  

 

Figure 9. Comparison of the HPF center pillar with PW and PS after the drop weight test: (a) top and
side view after the experiment; (b) top and side view after the simulation [20].

Figure 10 shows the comparison result of impactor load between experiment and
simulation according to time. The maximum impact load of the experiment and simulation
were 9.5 kN and 12.7 kN, respectively. The value of impulse and collision time between
the experiment and simulation were 799 N·s, 0.165 s and 787 N·s, 0.117 s, respectively.
Based on above results, the simulation and experiment were validated, and these material
sections of mechanical properties were used for side crash simulation.
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Figure 10. Comparison of the impactor load of the HPF center pillar with PW between the experiment
and the simulation [20].

3.2. Side Crash Simulation
3.2.1. Energy Distribution during Side Crash Simulation

The first law of thermodynamics is the law of conservation of energy. In an isolated
system, the total energy remains constant, even when the energy changes from one form to
another. The energy can be converted into various types in an automobile side impact, such
as kinetic energy, potential energy, internal energy, or friction dissipation energy. In general,
most kinetic energy in an automobile crash causes a considerable change in internal energy
as a result of elastic and plastic deformation. Total energy can be measured as the sum of
several energies according to Equation (13):

Etotal = Ei + Ek + Ev + E f + Ee (13)
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where Ei, Ek, Ev, Ef, and Ee are internal energy, kinetic energy, viscous dissipation energy,
friction dissipation energy, and external work, respectively.

Figure 11 shows the distribution of the total energy during the side crash. The total
energy is 142 kJ. First, the velocity of MDB decreased gradually as a result of friction
between the ground and MDB before the collision. The Ek decreased sharply during the
collision because the velocity of the MDB decreased, whereas the Ei was increased by plastic
and elastic deformation, and Ev increased to 5.8 kJ as a result of material damping. During
the collision, other energies increased, but total energies were maintained. For example,
when the collision time was 0.0385 s, the Ei.MDB, Ei.Sedan, Ek, Ev, and Ef were 45.1 kJ, 45.7 kJ,
45.4 kJ, 2.9 kJ, and 5.9 kJ, respectively, as shown in Figure 11a,b. The value of Ee was 0 kJ
because the external work had not yet occurred.
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Figure 11. Energy conversion during side crash: (a) flow of energy distribution at t = 0.0385 s;
(b) distribution of energies according to collision time; (c) distribution of energy conversion at
t = 0.071 s.

Figure 11c shows the percentage of energy at t = 0.071 s, when MDB velocity was
about 0 m/s. The Ei.MDB was 82.5 kJ, accounting 58.1% of the total energy, indicating that
the 58.1% of total energy (142 kJ) was absorbed by the MDB during the side crash. On the
other hand, the sum of Ei.Sedan absorbed by the doors, automobile body, and other frames
was 44.6 kJ, with 5.4 kJ of energy absorbed by the center pillar and PW. According to the
above data, the center pillar and PW took 12% of the sedan internal energy. The inner part
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of the center pillar was not included in this study. If the inner part of the center pillar been
included, the center pillar, including the outer and inner portions, as well as the PW, would
be expected to absorb 15~18% of the internal energy. The effect of PW and PS on energy
distribution and intrusion resistance was investigated following, as reported below.

3.2.2. Effect of PW and PS on Elastic Strain Energy

Figure 12 shows the elastic strain energy (Ees) of the four kinds of center pillar (HPF,
HPF + PW, HPF + PS, and HPF + PW + PS) during a side crash. For the HPF center pillar,
the maximum Ees was 0.851 kJ at collision time (t) = 0.064 s and decreased to 0.30 kJ after
the collision as a result of elastic recovery. When the PW was applied to the HPF center
pillar, the maximum Ees increased to 0.928 kJ at t = 0.056 s. Because the rigidity of the HPF
center pillar with PW increased, the absorption of elastic energy improved significantly.
However, for the HPF center pillar with PS, the maximum Ees decreased to 0.655 kJ at
t = 0.061 s. When the PS was applied to the bottom region of the HPF center pillar, because
the stiffness of the HPF center pillar with PS decreased, the absorbed energy decreased in
terms of elastic deformation.
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mation. The Ep was maintained after the collision, in contrast to the Ees, as a result of per-
manent deformation. For the HPF center pillar with PS, the Ep increased to 4.998 kJ at 0.1 
s. The Ep of the HPF center pillar with PS was higher than that of the HPF center pillar. 
When PS was applied to the HPF center pillar, a large deformation occurred in the soft 
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energy improved by 9.3%. However, there was no difference in absorbed energy between 
the HPF center pillar and the HPF center pillar with PW in terms of plastic deformation. 

Figure 12. Elastic strain energy (Ees) of the four kinds of the center pillar during a side crash.

Figure 13 shows the maximum Ees of the four types of center pillar for detailed
evaluation of energy absorption of PW and PS. The Ees of the HPF center pillar with PW
was 0.1 kJ, accounting for 10% of the total energy absorbed by the HPF center pillar with
PW. The Ees of the HPF center pillar with PS decreased to 0.655~0.660, regardless of the
inclusion of PW.
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3.2.3. Effect of PW and PS on Plastic Dissipated Energy

Figure 14 shows the plastic deformation energy (Ep) of the four kinds of the center
pillar during a side crash. For the HPF center pillar, Ep increased to 4.538 kJ during
deformation. The Ep was maintained after the collision, in contrast to the Ees, as a result
of permanent deformation. For the HPF center pillar with PS, the Ep increased to 4.998 kJ
at 0.1 s. The Ep of the HPF center pillar with PS was higher than that of the HPF center
pillar. When PS was applied to the HPF center pillar, a large deformation occurred in the
soft bottom region of the center pillar as a result of the ductility. As a result, the absorbed
energy improved by 9.3%. However, there was no difference in absorbed energy between
the HPF center pillar and the HPF center pillar with PW in terms of plastic deformation.

Metals 2022, 12, 1941 13 of 17 
 

 

 
Figure 14. Plastic deformation energy (Ep) of the four kinds of the center pillar during side crash. 

Figure 15 shows the maximum Ep of the four types of center pillar. For the HPF center 
pillar with PS and the HPF center pillar with PW and PS, 2.52~2.54 kJ of Ep was absorbed 
in the PS region, i.e., the bottom region of the center pillar. In terms of plastic deformation, 
the effect of PW was minimal, unlike elastic strain energy, whereas the Ep of the PS region 
accounted for 49.8~50.9% of the total plastic deformation energy between the HPF center 
pillar with PS and the HPF center pillar with PW and PS. 

 
Figure 15. Maximum plastic deformation energy (Ep) of the four types of center pillar. 

3.2.4. Effect of PW and PS on Internal Energy 
Figure 16 shows the internal energy (Ei) of the four kinds of center pillar during a 

side crash. The total internal energy resulting from a collision consists of several energies 
and can be expressed by Equation (14): 𝐸௜ = 𝐸௘௦ + 𝐸௣ + 𝐸௔ + 𝐸௢௧௛௘௥௦ (14) 

where Ei is the internal energy; Ees is the elastic strain energy; Ep is the plastic deformation 
energy; Ea is the artificial strain energy; and Eothers is the energy dissipated by creep, visco-
elasticity, and swelling. 

Figure 14. Plastic deformation energy (Ep) of the four kinds of the center pillar during side crash.

Figure 15 shows the maximum Ep of the four types of center pillar. For the HPF center
pillar with PS and the HPF center pillar with PW and PS, 2.52~2.54 kJ of Ep was absorbed
in the PS region, i.e., the bottom region of the center pillar. In terms of plastic deformation,
the effect of PW was minimal, unlike elastic strain energy, whereas the Ep of the PS region
accounted for 49.8~50.9% of the total plastic deformation energy between the HPF center
pillar with PS and the HPF center pillar with PW and PS.
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3.2.4. Effect of PW and PS on Internal Energy

Figure 16 shows the internal energy (Ei) of the four kinds of center pillar during a side
crash. The total internal energy resulting from a collision consists of several energies and
can be expressed by Equation (14):

Ei = Ees + Ep + Ea + Eothers (14)

where Ei is the internal energy; Ees is the elastic strain energy; Ep is the plastic deformation
energy; Ea is the artificial strain energy; and Eothers is the energy dissipated by creep,
viscoelasticity, and swelling.
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Figure 16. Internal energy (Ei) of the four kinds of center pillar during a side crash.

Generally, Ees and Ep are the dominant factors affecting Ei during a collision, and the
contributions of other energies are relatively small. Therefore, in this study, the internal
energy was expressed as the sum of Ees and Ep, excluding other types of energy, such as
viscoelasticity, friction, and creep energy. In terms of internal energy, when the PS technique
was applied to the HPF center pillar, there was a slight difference in the absorbed energy.
However, a synergistic effect occurred when PW and PS were applied to the HPF center
pillar, and a large amount of energy was absorbed, as shown in Figure 16.

Figure 17a shows the maximum Ei for the four types of center pillar. As shown in
Figure 17a, there is almost no difference in the plastic deformation energy between the
HPF center pillars with and without PW. The PW was welded on the upper part of the
HPF center pillar to increase the stiffness, but the impact region was applied from the
middle to the bottom, as shown in Figure 17b. Therefore, small deformation occurred
in the PW. Likewise, a comparison between the HPF center pillar with PS and the HPF
center pillar with PW and PS revealed similar phenomenon with respect to the absorbed
plastic deformation energy. Based on the above results, it is necessary to review whether
PS technology should applied in light of the relationship between technical performance
and manufacturing cost.
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3.2.5. Effect of PW and PS on the Intrusion Resistance

During a side crash, a large amount energy is absorbed. However, if the material is soft
and a large amount of deformation occurs, the intrusion displacement increases, putting
the passenger in danger. Therefore, it is important to evaluate intrusion displacement for
passenger safety, as well as collision energy absorption.

As shown in Figure 18a, because both the center pillar and the MDB were deformed
during the collision, the maximum intrusion displacement was calculated according to
Equation (15).

dmax.i = dmax.DMB(t)− Lb (15)

where dmax.DMB is the maximum displacement of DBM, and Lb is the barrier length.
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The evaluation method for the anti-intrusion resistance was introduced according to
IIHS guidance. The primary performance of the center pillar is related to anti-intrusion
resistance against side impact. According to the IIHS rating protocol, the center line of
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the vehicle’s seat was generally in compliance with standard of the measured intrusion
displacement, as shown in Figure 18b, with categories of good, acceptable, marginal, and
poor [25]. In this study, multistructures, such as automobile seats, dummies, and windows
were, not considered, so the maximum intrusion of the HPF center pillar with PW was
used as the acceptable distance, achieving an acceptable level. As shown in Figure 18b, the
maximum intrusion displacement of the HPF center pillar and the HPF center pillar with
PW were −134.0 mm and −123.9 mm, respectively. When the stiffness of the upper part
was strengthened with PW, the safety of the intrusion displacement was also improved
by 7.5%. Likewise, in the case of the HPF center pillar with PS, the maximum intrusion
displacement was −123.1 mm. A similar result was achieved with the HPF center pillar
with PW. On the other hand, the maximum intrusion displacement of the HPF center pillar
with PW and PS was −116.1 mm, representing an improvement of 13.4%. When the PW
and PS were combined, a synergistic effect occurred.

4. Conclusions

In the side crash simulation performed in the present study, the effects of the HPF
center pillar with PW and PS on energy distribution and anti-intrusion resistance were
investigated, and the following conclusions were obtained:

1. During a side crash collision, the effect of PW in the HPF center pillar on plastic
deformation energy was minimal but important with respect to elastic strain energy
and intrusion resistance. When PW was applied to the HPF center pillar to strengthen
the stiffness, the elastic strain energy and intrusion displacement were 10.0 and
7.5% respectively.

2. Because the PS technique provided ductility to the lower region of the HPF center
pillar, large deformation occurred, and the plastic deformation energy was improved
significantly by 10%. The plastic deformation energy of the PS region accounted for
49.8~50.9% of the plastic deformation energy of the HPF center pillar with PS.

3. In terms of total internal energy, the PS technique achieved better results than the PW
technique. The maximum intrusion displacement of the HPF center pillar with PS
was similar to that of the HPF center pillar with PW. In the case of the HPF center
pillar with PW and PS, the maximum intrusion displacement was improved by 13.4%,
and a synergistic effect of PW and PS occurred.
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