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Abstract: In this study, the effects of Si on the microstructure and tensile properties of weathering
bridge steel were elucidated. The thermal mechanical control process (TMCP), containing two stages
of controlled rolling and accelerated cooling process, was simulated using a thermo-mechanical
simulator for four experimental steels with varying Si contents (0.15–0.77 wt.%). Micro-tensile tests
were performed, and the microstructures were observed via optical microscope (OM), scanning
electron microscope (SEM), transmission electron microscope (TEM), and electron back-scattered
diffraction (EBSD). Furthermore, the tensile properties and microstructures of these steels were
analyzed. The results show that a mixed microstructure comprising granular bainitic ferrite (GBF),
quasi-polygonal ferrite (QF), and martensite/austenite (M/A) constituent was formed in each sample.
With an increase in Si content, the GBF content decreased, QF content increased, mean equivalent
diameter (MED) of the QF+GBF matrix increased, and the fraction and average size of the M/A
constituent increased. With a rise in Si content from 0.15 to 0.77 wt.%, the contributions of dislocation
strengthening, grain boundary strengthening, and precipitation strengthening decreased from 149,
220, and 21 MPa to 126, 179, and 19 MPa, respectively. However, the combined contribution of
solution strengthening, lattice strengthening, and M/A strengthening increased from 41 to 175 MPa,
which augmented the final yield strength from 431 to 499 MPa. The decreasing yield ratio shows that
strain hardening capacity is enhanced due to an increase in the fraction of the M/A constituent as
well as in the MED of the QF+GBF matrix. Furthermore, the mechanisms by which Si content controls
the microstructure and mechanical properties of weathering bridge steel were also discussed.

Keywords: weathering bridge steel; Si content; microstructure; tensile properties; strengthening
contribution

1. Introduction

High-performance bridge steels have been widely used for their excellent properties,
such as high strength, ductility, toughness [1], weldability [2], and corrosion resistance [3].
Generally, 420 MPa grade weathering bridge steels produced via the thermal mechanical
control process (TMCP) exhibit multiple compositions and phases, which has given rise
to different strengthening methods based on solid solutions, fine grains, precipitation,
multiple phases, dislocation strengthening, etc. These strengthening methods are closely
dependent on the types and characteristics of steel microstructures [4]. The microstructure
of the 420 MPa grade weathering bridge steel is improved mainly by optimizing TMCP
parameters and alloying elements.

Numerous studies have elucidated the effects of TMCP parameters [5,6] and cooling
paths [7] on the microstructure and characteristics of bridge steels. Si can not only enhance
the atmospheric corrosion resistance of weathering steel [3] but also improve its tensile
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properties. A study [8] conducted in 1976 has shown that the yield strength of aluminum-
killed low-carbon steel increases with the addition of Si. Bhadeshia et al. [9] revealed that
Si improved the tensile strength of the low-carbon bainite steel through solid solution
strengthening. Meanwhile, Cao [10] showed that the tensile strength of steel increased
with a rise in Si content due to a change in the microstructure from ferrite to granular
bainite. Chen et al. [11] indicated that the tensile strength and elongation were improved
with an increase in the Si content, owing to the strain-induced transformation of retained
austenite. In addition, it has been reported that Si reduced the super-cooling degree of
bainite ferrite transformation, inhibited the transformation of lath bainite, and led to grain
coarsening [2]. However, Ming et al. [12] compared low carbon steels with two different Si
contents and found that increasing Si content can enhance the transformation temperature
of bainitic ferrite, facilitate the segregation of Mn at the austenite grain boundary, and thus
promote the transformation of bainite and grain refinement. Lin et al. [13] studied the
influence of Si on bainite transformation kinetics and found that Si can inhibit the formation
of bainite ferrite by hindering the formation of carbides and producing more dislocations.
Furthermore, Si has been reported to enhance the formation of martensite/austenite (M/A)
constituents in structural steels [14], which in turn increases the strength of steels via
dual-phase strengthening [15].

Therefore, it is of great significance to study the effect of Si content on the microstruc-
ture transformation of weathering bridge steel. In addition, solid solution strengthening,
grain boundary strengthening, dislocation strengthening, and precipitation strengthening
have been considered the primary mechanisms responsible for changing the tensile prop-
erties of Si-containing steel. However, these strengthening mechanisms, along with the
change of Si content, are not clear, which is worthy of further study in detail.

In this study, four samples of 420 MPa grade weathering bridge steels with low Si
content (0.15 wt.%), intermediate Si content (0.36–0.48 wt.%), and high Si content (0.77 wt.%)
were prepared. The relationships between the Si content and tensile properties of these
steels produced by TMCP were investigated using simulation, mechanical testing, and
microstructure characterization. Furthermore, the correlation between Si content, mi-
crostructure, and tensile properties was investigated. The results of this study will prove
helpful in optimizing the Si content in weathering steel, while facilitating the in-depth
analysis of the relationship between microstructure and properties.

2. Experimental Procedure

The chemical compositions of the four Si-Containing experimental steel plates were de-
termined by direct reading spectroscopy on ARL4460 direct reading spectrometer. Named
0.15Si, 0.36Si, 0.48Si, and 0.77Si and listed in Table 1. The experimental steels were in the
form of vacuum-melted ingots and hot-rolled to 18 mm thick plates. The samples were cut
from steel plates and machined to round bar samples with dimensions of Φ15 × 75 mm.
The Gleeble 3500 thermo-mechanical simulator was used to simulate TMCP (Table A1),
and the process route followed by TMCP is shown in Figure 1. The samples were heated to
1180 ◦C at a rate of 10 ◦C/s, and this temperature was maintained for 10 min to simulate
the heating and austenitizing process. All deformation parameters included a simulated
“roughing” step performed at a temperature of 1080 ◦C using a compression of 35% in
the γ recrystallization region an additional “finishing” step performed at a temperature
of 830 ◦C, which was situated in the non-recrystallization region, using a compression of
30%. Accelerated cooling commenced at 780 ◦C with an average cooling rate of 10 ◦C/s,
and interrupted at 550 ◦C. Then the temperature was increased to 580 ◦C to simulate the
temperature rise caused by the internal heat transfer from the steel plate to the surface,
which is termed the reddening process. Finally, the temperature was reduced to 200 ◦C at a
rate of 1 ◦C/s to simulate the air-cooling process.
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Table 1. Chemical compositions of four test steels (wt.%).

Steel C Si Mn P S Ni Cr Mo Cu Nb Ti

15Si 0.061 0.15 1.05 0.0080 0.0022 0.37 0.20 0.30 0.30 0.02 0.012
36Si 0.06 0.36 1.08 0.0084 0.0025 0.37 0.22 0.32 0.30 0.02 0.012
48Si 0.058 0.48 1.04 0.0094 0.0025 0.34 0.23 0.31 0.32 0.02 0.012
77Si 0.06 0.77 1.06 0.0077 0.0018 0.37 0.21 0.30 0.31 0.021 0.015
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Figure 1. Schematic depicting the simulation of TMCP.

Micro-tensile tests were performed at room temperature on a universal tensile testing
machine with a load of 3 KN and an extension rate of 0.3 mm/min. The sampling points
and dimensions of micro-tensile samples are shown in Figure 2.

Metals 2022, 12, x FOR PEER REVIEW 3 of 15 
 

 

the surface, which is termed the reddening process. Finally, the temperature was reduced 
to 200 °C at a rate of 1 °C/s to simulate the air-cooling process.  

Table 1. Chemical compositions of four test steels (wt.%). 

Steel C Si Mn P S Ni Cr Mo Cu Nb Ti 
15Si 0.061 0.15 1.05 0.0080 0.0022 0.37 0.20 0.30 0.30 0.02 0.012 
36Si 0.06 0.36 1.08 0.0084 0.0025 0.37 0.22 0.32 0.30 0.02 0.012 
48Si 0.058 0.48 1.04 0.0094 0.0025 0.34 0.23 0.31 0.32 0.02 0.012 
77Si 0.06 0.77 1.06 0.0077 0.0018 0.37 0.21 0.30 0.31 0.021 0.015 

  
Figure 1. Schematic depicting the simulation of TMCP. 

Micro-tensile tests were performed at room temperature on a universal tensile testing 
machine with a load of 3 KN and an extension rate of 0.3 mm/min. The sampling points 
and dimensions of micro-tensile samples are shown in Figure 2.  

 
Figure 2. (a) Sampling points of a micro-tensile sample, (b) cross-section of the sample. 

The surface underneath the thermocouple was polished and etched in a 4 vol.% Nital 
solution and observed using an axiover-200mat optical microscope (OM). M/A constitu-
ents were observed using the OM after etching with the Lepera reagent. The quantitative 
results related to the M/A constituent were obtained using the Image-Pro Plus software. 
Moreover, the grain boundary misorientation and mean equivalent grain size of the sam-
ples were studied using scanning electron microscopy (Hitachi S-3400) and electron back-
scatter diffraction (EBSD). According to EBSD, the effective grain area was the region sur-
rounded by low-angle and high-angle grain boundaries, which was calculated by deter-
mining the equivalent diameter of a circle with respect to the area of a single grain. The 
fine structures of ferrite laths and M/A constituents were characterized using a transmis-
sion electron microscope (TEM; JEM-2010). Furthermore, the dislocation density of each 
sample was determined via quantitative analysis of X-ray diffraction spectra (D/Max 2500 
X-ray diffractometer). The diffraction profiles were obtained using a scanning angle (2θ) 
range of 40–110° and a step size of 0.02°. 

Figure 2. (a) Sampling points of a micro-tensile sample, (b) cross-section of the sample.

The surface underneath the thermocouple was polished and etched in a 4 vol.% Nital
solution and observed using an axiover-200mat optical microscope (OM). M/A constituents
were observed using the OM after etching with the Lepera reagent. The quantitative results
related to the M/A constituent were obtained using the Image-Pro Plus software. Moreover,
the grain boundary misorientation and mean equivalent grain size of the samples were
studied using scanning electron microscopy (Hitachi S-3400) and electron back-scatter
diffraction (EBSD). According to EBSD, the effective grain area was the region surrounded
by low-angle and high-angle grain boundaries, which was calculated by determining
the equivalent diameter of a circle with respect to the area of a single grain. The fine
structures of ferrite laths and M/A constituents were characterized using a transmission
electron microscope (TEM; JEM-2010). Furthermore, the dislocation density of each sample
was determined via quantitative analysis of X-ray diffraction spectra (D/Max 2500 X-ray
diffractometer). The diffraction profiles were obtained using a scanning angle (2θ) range of
40–110◦ and a step size of 0.02◦.
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3. Results
3.1. Tensile Properties

The tensile properties of each Si-containing steel sample were measured. Figure 3
shows the typical tensile curves of all the samples, and the results are summarized in
Table 2. With a rise in the Si content from 0.15% to 0.77%, the yield strength increased
slightly from 431 to 499 MPa, while the tensile strength (TS) increased significantly from
607 to 738 MPa. Furthermore, the strain hardening magnitude (∆σ) increased from 176 to
239 MPa, while the yield ratio (YR) decreased slightly from 0.710 to 0.676. The YR and ∆σ

values are used to express the strain-hardening ability of a material, while a low YR or high
∆σ indicates an excellent strain-hardening capacity.
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Figure 3. Typical engineering stress-strain curves of each Si-containing sample.

Table 2. Summary of the tensile results.

Steel YS/MPa TS/MPa ∆σ/MPa YR

15Si 431 607 176 0.710
36Si 452 653 201 0.692
48Si 471 685 221 0.681
77Si 499 738 239 0.676

YS: Yield strength, TS: Tensile strength, ∆σ: Strain hardening magnitude, and YR: Yield to tensile strength ratio.

3.2. Microstructure

Typical optical micrographs of the samples with different Si contents are shown in
Figures 4 and 5, and the quantitative results are summarized in Table 3. A mixed microstruc-
ture comprising QF, GBF, and M/A constituents was formed in each Si-containing steel
sample. Increasing the Si content also augmented the QF and GBF contents. In addition,
the area fraction of M/A constituents increased from 4.2 to 6.3%, while their average size
also increased from 0.8 to 1.5 µm.

Table 3. Microstructure observations.

Steel f M/A/% DM/A/µm MED2◦≤θ≤15◦ /µm f p/% Dp/nm ρ/×1014m−2

15Si 4.2 0.8 3.4 2.9 ± 0.3 × 10−4 40.2 ± 0.4 3.3
36Si 4.8 1.2 3.9 2.8 ± 0.2 × 10−4 39.9 ± 0.3 3.1
48Si 5.5 1.3 4.3 2.5 ± 0.3 × 10−4 39.3 ± 0.3 2.8
77Si 6.3 1.5 4.8 2.3 ± 0.2 × 10−4 38.9 ± 0.2 2.3

f M/A—area fraction of M/A constituent, DM/A—average size of M/A constituent, MED2◦≤θ≤15◦—mean equiv-
alent diameter of ferrite grain with boundaries at low misorientation tolerance angle 2–15◦, ρ—the dislocation
density, f p—fraction of precipitates, Dp—average size of precipitates.
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Si, (c) 0.48 wt.% Si, and (d) 0.77 wt.% Si.

Figure 6 shows the inverse pole figures (IPFs) determined using EBSD. The white and
black lines represent the low-angle boundary (2◦ ≤ θ ≤ 15◦) and high-angle boundary
(θ > 15◦), respectively [14,16]. The mean equivalent diameter (MED) of the matrix structure
with a misorientation tolerance angle (MTA) from 2◦ to 30◦ was measured. Figure 7
shows that the MED of GBF and QF (Table A1) increased with a rise in Si content. The
quantification results also indicated that the MED of the matrix structure whose MTA
ranges from 2◦ to 15◦ increased from 3.4 to 4.8 µm when the Si content increased from 0.15
to 0.77 wt.%.

The fine morphologies of the ferrite matrix and M/A constituents were observed using
the above-mentioned TEM (Figure 8). The elongated and blocky M/A constituents were
distributed along the ferrite boundary. Figure 8a–c shows that increasing the Si content
augmented the QF content with low dislocation density, and the average size of QF, GBF,
and M/A constituents increased. These results are consistent with the OM and EBSD
observations. Figure 8d–f shows that the island phase is composed of martensite and
austenite.
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TEM micrographs of the precipitates and the corresponding energy dispersive X-ray
(EDX) results for all samples are shown in Figure 9. Based on the TEM spectrum, these
complex precipitates ((Ti, Nb) (C, N) particles) with sizes of 30–80 nm were formed in each
Si-containing steel. As the Si content increases, the fraction and average size of precipitated
phases decrease slightly. Table 3 lists the average size (Dp) and volume fraction (f p) of
precipitates in each sample.
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Figure 10 shows the XRD profiles of each Si-containing sample, and their dislocation
densities are shown in Table 3. The γ phase and α phase were calibrated with PDF card
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number PDF#33-0397 and PDF#44-1292, respectively. The average dislocation density, ρ, is
calculated as follows:

ρ =
6πε2

b2 (1)

where ε is the inhomogeneous strain determined from the XRD line profile and b is the
Burgers vector of dislocations in α-Fe [17]. Table 3 shows that the average dislocation
density in the QF+GBF matrix of steels decreases with an increase in Si content. Marion
Calcagnotto et al. [18] calculated the dislocation density of ultrafine ferrite of the dual-phase
steels using XRD to be approximately (2–3) × 1014 m−2, which is similar to that observed
in this work.
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4. Discussion
4.1. Effect of Si Content on the Mixed Microstructures

As shown in Figures 4 and 8, a QF+GBF+M/A microstructure was formed in each
Si-containing steel sample. After increasing the Si content, the GBF content decreased, and
the QF content increased. However, the MED of QF+GBF matrix increased. Meanwhile,
the fraction and average size of M/A constituent increased. The evolution of the final
microstructure due to an increase in the Si content can be explained as follows:

The expansion curves of samples with different silicon contents during the cooling
process are shown in Figure 11 [16,19]. The temperature at which the transformation of
GBF and QF starts (Ar3) increased from 674 ◦C to 718 ◦C, indicating that super-cooling
degree decreases with an increase in the Si content from 0.15% to 0.77%.
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Evolution of the final microstructure occurs due to competition for the nucleation and
growth of QF and GBF (Table A1). With an increase in Si content, the initial temperature
required for the γ→QF+GBF transformation was increased. According to [20], the QF
transformation normally precedes the GBF transformation. However, since QF has a higher
thermodynamic driving force compared to that of GBF at a lower super-cooling degree, the
QF content increases. On the contrary, a low Si content with its high super-cooling degree
can facilitate the transformation of GBF and increase the GBF content at the expense of the
QF content.

The MED of QF+GBF matrix increased with a rise in Si content mainly due to its lower
super-cooling degree and higher QF content. On the one hand, a lower super-cooling
degree leads to a higher growth rate than the nucleation rate of GBF and QF, resulting in the
coarsening of the QF+GBF matrix [21]. On the other hand, intragranular or intergranular
QF can preferentially occupy large regions in the prior austenite grains, thus inhibiting the
GBF transformation in the remaining regions. The proportion of sub-grains in QF is lower
than that in GBF (Figure 6). Meanwhile, the sub-grain boundaries can not only refine the
final microstructure but also impede the dislocation movement and improve strength [22].
With an increase in Si content, the amount of sub-grain boundaries decreased, and the MED
of QF+GBF matrix increased.

The cooling transformation of experimental steels can be mainly divided into two
steps: γ→α (QF and GBF) + γ′ (metastable austenite) and γ′→M/A constituent. The
γ→α + γ′ transformation was accompanied by the diffusion of C from α into γ′, which
occurred via bulk diffusion or dislocation channel diffusion [22–25] due to the difference
in their solubilities. Consequently, this resulted in the enrichment of C in γ′. The second
stage involves the transformation of γ′ into partial martensite and residual stable austenite
during the subsequent cooling process (i.e., M/A constituent).

Thus, the γ′ fraction, which is related to Ar3 and C diffusion, has an important influ-
ence on the formation of M/A constituent. Since Ar3 increased with a rise in Si content,
the transformation temperature of QF and GBF increased under the same control cooling
process, indicating the diffusion of C at an enhanced temperature. The C diffusion coeffi-
cient increased with a rise in the transformation temperature according to the Arrhenius
relation [26], indicating that a higher Ar3 plays a positive role in the diffusion of C. The
degree of C-enrichment in γ′ increases, thereby leading to the further stabilization of γ’.
Moreover, Si can promote carbons as a solid solution by inhibiting the formation of carbides
from super-cooled austenite during the transformation of γ→α+ γ′ and further enhance
the residual austenite content at room temperature [27]. The increasing Si content can
promote the enrichment of C in γ’ and accordingly enhance the stability of γ’. During
subsequent cooling to room temperature, the C-riched γ′ would further transform into
the M/A constituent. Therefore, the area fraction of M/A constituent increases with a
rise in Si content, as shown in Figure 5 and Table 3. Moreover, the average size of M/A
constituents also increased with a rise in the Si content based on the following mechanism:
The intersection regions between QF and GBF plates, where the γ′ is located during the
transformation of γ→QF + GBF + γ′, tend to expand with the coarse QF and GBF plates
due to the increased Si content [2].

4.2. Effect of Si Content on the Tensile Properties

The effect of Si content on the yield strength of weathering bridge steel has been
mainly determined using different strengthening mechanisms. The contribution of various
factors to yield strength can be expressed by the following formula:

σy = σ0 + σss + σρ + σgb + σp + σM/A (2)

where σ0 is lattice strengthening, σss is solid solution strengthening, σgb is grain boundary
strengthening that is dependent on the grain size, σρ is dislocation strengthening, σp
is precipitation strengthening, and σM/A is the strengthening that occurs due to M/A
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constituents. The contributions of different strengthening methods to yield strength are
discussed in detail.

The Hall–Petch equation was used to calculate the contributions of grain boundary
strengthening. As shown in Figure 6, the effective grain area determined using EBSD can be
divided into low-angle (2◦ ≤ θ < 15◦) and high-angle grain boundaries (θ≥ 15◦). According
to the literature [28,29], low-angle grain boundaries can effectively hinder dislocation
movement and thus improve the yield strength of steel. Therefore, a misorientation angle
of 2◦ is considered an effective threshold unit to control the yield strength. Besides the low-
angle grain boundary, the high-angle grain boundary also affects the correlation coefficient
of Hall–Petch equation [30,31] as follows:

kHP(θ) = kαMµ
√

bθ (3)

Therefore, the contribution of grain boundary strengthening can be further expressed
using the following equation [30,31]:

σgb = kHP(MED2◦)
−0.5 ∼=

[
∑

2◦≤θi≤15◦
fi
√

θi +

√
π

10 ∑
θi≥15◦

fi

]
(MED2◦)

−0.5 (4)

where α, M, µ, and b represent a constant, Taylor factor, shear modulus, and Burgers
vector, respectively. For experimental steels with different Si contents and ferrite matrix
microstructures, the values of α, M, µ, and b are 0.3, 2.75, 81.6 GPa and 2.48 × 10−7 mm,
respectively [30,32]. Furthermore, f i is the relative frequency in interval i, and θi is the
misorientation angle in interval i. The Hall–Petch coefficient can be directly calculated from
the EBSD results, which circumvents the need to fit the relationship between grain size and
strength [17]. The grain boundary strengthening contribution is obtained using the above
calculation method, as shown in Table 4. The grain boundary strengthening contribution
decreased with an increase in the Si content due to the rise in the MED of QF+GBF matrix.

Table 4. Contributions of grain boundary strengthening, dislocation strengthening, and precipitation
strengthening.

Steels YS/MPa (σss + σ0 + σM/A)/MPa σgb/MPa σρ/MPa σp/MPa

15Si 431 41 220 149 21
36Si 452 79 206 146 21
48Si 471 126 186 139 20
77Si 499 175 179 126 19

The sum of solution strengthening (σss), lattice strengthening (σ0) and M/A constituents strengthening (σM/A)
can be expressed by the following equation, and the quantitative results are shown in Table 4.

Table 3 shows that the average dislocation density in the QF+GBF matrix of steels
decreases with an increase in Si content, owing to the increased transformation temperature
of QF+GBF. The contribution of dislocation enhancement (σρ) to the YS can be estimated
from the following equation [31,33,34]:

σρ = αMGbρ1/2 (5)

where α, M, G, b, and ρ represent a constant, Taylor factor, shear modulus, Burgers vector,
and dislocation density, respectively. For experimental steels with different Si contents
and ferrite matrix microstructures, the values of α, M, µ and b are 0.15, 2.75, 81.6 GPa and
2.48 × 10−7 mm, respectively. The dislocation strengthening contribution is obtained using
the above calculation method, as shown in Table 4.

Table 3 lists the average size, Dp, and volume fraction, f p, of precipitates in each sample.
As the Si content increases, the fraction and average size of precipitated phases decrease
slightly, which is consistent with the inhibiting effect of Si on carbide formation [27].
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The contribution of precipitation strengthening (σp) to the YS can be estimated using
Equation (6) [34–37], which is based on the fraction and average size of precipitates:

σp =
11.3 f 1/2

p In
(

Dp
0.496

)
Dp

× 103 (6)

σ0 + σss + σM/A = σy −
(

σρ + σgb + σp

)
(7)

Table 4 shows that although the contributions of grain boundary strengthening, dis-
location strengthening, and precipitation strengthening decreased with an increase in Si
content, the sum of the contributions of solution strengthening, lattice strengthening, and
M/A strengthening increased significantly, thereby leading to an increase in the final yield
strength. On the one hand, Si increased the contribution of solution strengthening. On the
other hand, although the size of M/A constituent slightly increased, its fraction significantly
increased and effectively improved its strength. Grain boundary strengthening was the
primary mechanism at an Si content of 0.15–0.36 wt.%, whereas the roles of solid solution
strengthening and M/A constituent strengthening gradually became prominent at an Si
content of 0.48–0.77 wt.%.

Figure 3 and Table 2 show that YS and TS increased with a rise in Si content from 0.15
to 0.77 wt.%. However, the increment in YS was lower than that in TS, resulting in the YR
decreasing. This phenomenon is mainly caused by two reasons: Increased fraction of the
M/A constituent and increased MED of the QF+GBF matrix. The M/A constituent with
high hardness can induce a high plastic deformation to the surrounding soft ferrite matrix
and decrease the YR [38,39]. For multiphase steel, the higher the difference in the hardness
of the soft phase and hard phase, the lower the YR [40]. A rise in the MED decreases
the hardness of the QF+GBF matrix and increases the difference in hardness between the
QF+GBF matrix and M/A constituent, thereby decreasing the YR.

5. Conclusions

In summary, the influence of Si content on the microstructure and tensile properties of
420 MPa grade weathering bridge steels produced by TMCP was studied, and the following
conclusions were drawn:

1. A QF+GBF+M/A microstructure was formed in each Si-containing steel. With an
increase in Si content from 0.15–0.77 wt.%, the MED of QF+GBF matrix increased
from 3.4–4.8 µm due to a decrease in the super-cooling degree and an increase in the
QF content.

2. The fraction and average size of the M/A constituent increased from 4.2–6.3 µm and
0.8–1.5 µm, respectively, with an increase in the Si content because of the sufficient
diffusion of carbon at a high transformation temperature.

3. Although the contributions of grain boundary strengthening, dislocation strengthen-
ing, and precipitation strengthening decreased from 220–179, 149–126, and 21–19 MPa,
respectively, with an increase in Si content from 0.15–0.77 wt.%, the sum of the contri-
butions of solid solution strengthening, lattice strengthening, and M/A strengthening
increased significantly from 41–175 MPa, leading to an increase in the final yield
strength from 431–499 MPa.

4. The increased Si content changed the strengthening contribution. Grain boundary
strengthening was the main strengthening mechanism at the Si content of 0.15–0.36 wt.%,
whereas the roles of solid solution strengthening and M/A constituent strengthening
gradually became prominent at the Si content of 0.48–0.77 wt.%.
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Appendix A

Table A1. Acronyms and their full names.

Acronyms Full Names

TMCP thermal mechanical control process
QF quasi-polygonal ferrite

GBF granular bainitic ferrite
M/A martensite/austenite
MED mean equivalent diameter
OM optical microscope

EBSD electron back-scattered diffraction
TEM transmission electron microscope
MED mean equivalent diameter
MTA misorientation tolerance angle
EDX energy dispersive X-ray
YS yield strength
TS tensile strength
YR yield strength/tensile strength

LAGB low-angle grain boundary
HAGB high-angle grain boundary

∆σ train hardening magnitude
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