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Abstract: The intermetallic compounds (IMCs) at the interface between the solder joint and metal
bond pad/under bump metallization (UBM) exert a significant impact on the thermal–mechanical
behavior of microelectronic packages because of their unique physical properties. In this study, a
theoretical investigation of the physical properties, namely structural, mechanical, and thermody-
namic properties, of the Ag9In4 IMC was conducted using ab initio density functional theory (DFT)
calculations. The calculated equilibrium lattice constants were in good agreement with the literature
experimental data. Furthermore, with the calculated elastic constants, we can derive the ductility and
brittleness nature, elastic anisotropy, and direction-dependent elastic properties of Ag9In4 through
several elastic indices, three-dimensional surface representation, and two-dimensional projections
of elastic properties. The calculations inferred that the cubic Ag9In4 IMC confers structural and
mechanical stability, ductility, relative low stiffness and hardness, and elastic anisotropy. Finally, the
thermodynamic properties, i.e., Debye temperature, heat capacity, and minimum thermal conductiv-
ity, were also investigated. Evidently, the low-temperature heat capacity conforms to the Debye heat
capacity theory and the high-temperature one complies with the classical Dulong–Petit law.

Keywords: intermetallic compound; ab initio calculations; density functional theory; structure-property;
mechanical properties; thermodynamic properties

1. Introduction

In recent years, a great demand for electromechanical devices capable of operating at
high temperatures has dramatically arisen. For instance, hybrid electric vehicles (HEVs)
integrating a gasoline engine with an electric motor are equipped with built-in inverters
to control the flow of electric current [1]. These inverters comprise power modules with
an array of power integrated circuits (ICs) for low power loss, high current/voltage, high
switching frequency, and high-temperature operation [2]. Solders with high content of lead
(Pb) are generally adopted as die attachment materials for power semiconductor packaging.
However, Pb is an extremely deadly chemical, and, if not disposed of appropriately, would
cause severe damage to human health and the environment. For example, even low-level
exposure to Pb may still induce considerable deleterious chronic diseases in humans.
Recently, Pb has been banned from use in electronics devices, and many innovative Pb-free
solders have been reported as promising alternatives to Pb-based solders [3–5], where a
number of metal elements, including indium (In), bismuth (Bi), antimony (Sb), and zinc
(Zn), are used to replace Pb in the solder paste. Among these alternatives, In-based and pure
In solders are very attractive because of their excellent wettability, low melting temperature,
great thermal fatigue resistance, and good impact resistance [6–8]. These make them a very
encouraging prospect for low-temperature bonding and high interconnect reliability in
microelectronic packaging [9].
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Many fundamental technical issues need to be addressed prior to the application of
In-based solders. For example, Ag alloy has been widely used in microelectronic packaging
as under bump metallurgy (UBM) [10,11]. During the solder joint fabrication process,
the Ag-based UBM tends to readily dissolve in the In-based solder, eventually bringing
about the formation of a very thin Ag9In4 intermetallic compound (IMC) layer [12]. Song
et al. [13] investigated the phase evolution of Ag-In phase IMCs that are obtained from
isothermal reactions between In and Ag substrate metal. They indicated that the first
emerging IMC phase was AgIn2, but it eventually and completely turned into Ag9In4
after heating for 30 min at 180 ◦C. As a result, Ag9In4 is the primary IMC phase among
the Ag-In phase IMCs [13–15]. IMCs can give rise to a huge impact on the structural
strength and material properties of solder interconnects, which powerfully correlate with
the thermal–mechanical behavior of microelectronic packages. For instance, Qin et al. [16]
reported that the growth in the IMCs’ thickness above a threshold point would elevate the
risk of interconnect damage under loads. Cheng et al. [17] also found that the drop impact
interconnect fatigue life of three-dimensional (3D) chip-on-chip packaging would reduce
with an increasing IMC thickness. In brief, the thickness of IMCs plays a significant role in
the mechanical strength and fatigue life of the solder interconnects. Over the years, several
studies have focused on the formation and evolution of the Ag9In4 IMC [14,18,19]. Before
effective implementation of In-based solders in microelectronics packaging, a thorough
understanding of its physical characteristics is vital in successfully grasping the thermal
fatigue life of the solder interconnects. Investigations of the material properties of the
Ag9In4 crystal were extremely limited until Inukai et al. [20], where the electronic structure
of Ag9In4 was explored through first-principles simulations. Song et al. [13] explored the
Young’s modulus and hardness of the Ag9In4 IMC by an experimental approach using
nanoindentation. In contrast, its mechanical and thermodynamic properties are hardly
addressed in the literature, and worth further investigation. Thus, this study aimed to
conduct a theoretical estimation of the physical properties of the Ag9In4 IMC, comprising
structural, mechanical, and thermodynamic properties, using ab initio density functional
theory (DFT) calculations [21–23]. The focus was placed on the theoretical estimation of its
physical characteristics, such as mechanical stability, ductility and brittleness nature, elastic
isotropy and anisotropy, and directional relationship of elastic properties.

2. Computational Method and Details

The Ag9In4 crystal system is cubic with P-43M space group with a = b = c = 9.922 Å,
wherein the atomic locations of Ag and In atoms in an elementary cell are depicted in
Table 1 [24]. Figure 1 further exhibits the crystal structure of Ag9In4. In the study, the ab
initio study based on DFT [22–24] by Cambridge Serial Total Energy Package (CASTEP)
(version 2020, BIOVIA, San Diego, CA, USA) [25] was carried out to evaluate the physical
properties of the Ag9In4 IMC. For years, this package has been extensively utilized to
analyze the physical properties and behaviors of several crucial materials [26–34]. For
example, Pan. [28] explored the structural stability and optical properties of NiPt nano-
material using DFT calculations. Yu et al. [29] examined the elasticity, sound velocity,
and minimum thermal conductivity of low-boride VxBy compounds using first-principles
calculations. Lin et al. [30] applied first-principles calculations to investigate the thermal
and electrical transport properties of bcc and fcc dilute Fe–X (X = Al, Co, Cr, Mn, Mo,
Nb, Ni, Ti, V, and W) binary alloys. Moreover, Li et al. [33] employed DFT methods to
study the elastic and thermal properties of M2InX (M = Ti, Zr and X = C, N) phases. An
ultrasoft pseudopotential [35] was applied to describe the interactions of ion–electron, and
the exchange–correlation energy was approximated by the Perdew–Burke–Ernzerhof (PBE)
generalized gradient approximation (GGA) [22]. Moreover, the ground state configuration
of the crystal was derived through energy minimization using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton algorithm [36]. Moreover, the selected plane wave
basis set cut-off was 400 eV. The Brillouin-zone sampling [37] adopted an 8 × 8 × 8 k-point
mesh generated by the Monkhorst–Pack algorithm [38]. In the geometry optimization, the
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following convergence thresholds were employed: the maximum energy change, force,
stress and ionic displacement were set to 5 × 10−6 eV/atom, 0.01 eV/Å, 0.02 GPa, and
5 × 10−4 Å.

Table 1. Atomic coordinates for Ag9In4 before relaxation.

Atom x y z

Ag 0.605 0.605 0.605

Ag −0.162 −0.162 −0.162

Ag 0.318 0.318 0.318

Ag 0 0 0.355

Ag 0.5 0.5 0.854

Ag 0.320 0.320 0.034

In 0.122 0.122 0.122

In 0.808 0.808 0.530
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In atoms).

Generally, the elastic coefficients are closely related to the fundamental microscopic
and macroscopic physical properties of materials, by which the information of crystal
stability and stiffness can be disclosed. The elastic coefficients of materials can be derived
by the generalized Hooke’s law:

σij = Cijklεkl (1)

where σij and εkl denote the Cauchy stress tensor (σij = σji) and infinitesimal strain tensor,
respectively, and Cijkl is the elastic stiffness tensor. It is often useful to express Hooke’s law
in matrix notation, also called Voigt notation. Then, by taking advantage of the symmetry
of the stress and strain tensors and expressing them as six-dimensional vectors in an
orthonormal coordinate system (e1, e2, e3) as
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[σ] =



σ11
σ22
σ33
σ23
σ13
σ12

 =



σ1
σ2
σ3
σ4
σ5
σ6

; [ε] =



ε11
ε22
ε33
2ε23
2ε13
2ε12

 =



ε1
ε2
ε3
ε4
ε5
ε6

 (2)

Then, the stiffness tensor (C) can be expressed as

[C] =



C1111 C1122 C1133 C1123 C1131 C1112
C2211 C2222 C2233 C2223 C2231 C2212
C3311 C3322 C3333 C3323 C3331 C3312
C2311 C2322 C2333 C2323 C2331 C2312
C3111 C3122 C3133 C3123 C3131 C3112
C1211 C1222 C1233 C1223 C1231 C1212

 =



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

 (3)

and Hooke’s law is written as

{σi} = [Cij]{εi} (4)

For a cubic system, the Cij can be described as [39]

[Cij] =



C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

symm. C44 0
C44

 (5)

The matrix has only three independent elastic coefficients (i.e., C11, C12, and C44). The
inverse of the elastic stiffness tensor Cij yields the compliance tensor.

To evaluate the elastic anisotropic features of the cubic Ag9In4 crystal, a 3D surface
construction of the elastic anisotropy was carried out. The directional relationship of
the Young’s modulus and shear modulus of the Ag9In4 crystal were explored using the
following equations [40],

E(θ, ϕ) =
1

S′11(θ, ϕ)
=

1
aiajakalSijkl

(6)

G(θ, ϕ, χ) =
1

4S′66(θ, ϕ, χ)
=

1
4aibjakblSijkl

(7)

where Sijkl stands for the compliance coefficients and a and b are the unit vectors. The
unit vector a needs two angles θ and ϕ to describe it. In addition, shear modulus requires
another unit vector b, which is characterized by the angle χ. Moreover, unit vector b is
perpendicular to unit vector a. The relationships of unit vector a, unit vector b and angles θ,
ϕ and χ are shown in Figure 2. The θ is in the range of 0~π; ϕ and χ are in range of 0~2π.
The coordinates of two vectors a and b are shown below.

a =

sin θ cos ϕ
sin θ sin ϕ

cos θ

, and b =

cos θ cos ϕ cos χ− sin θ sin χ
cos θ sin ϕ cos χ + cos θ sin χ

− sin θ cos χ

 (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv)
versus temperature [41]. The temperature dependence of the energy can be calculated
as follows:

E (T) = Etot + Ezp +
∫
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where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the
frequency, k is the Boltzmann constant, T is the Kelvin temperature,

Metals 2022, 12, 1852 5 of 14 
 

 

θ ϕ θ ϕ χ θ χ
θ ϕ θ ϕ χ θ χ

θ θ χ

   −
   = = +   
   −   

sin cos cos cos cos sin sin
sin sin ,and cos sin cos cos sin

cos sin cos
a b  (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv) 
versus temperature [41]. The temperature dependence of the energy can be calculated as 
follows: 

ω ω ω
ω

= + +
−

 ( ) ( )
exp( ) 1

tot zpE T E E F d

kT




 
(9)

where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the 
frequency, k is the Boltzmann constant, T is the Kelvin temperature,  is Planck’s constant 
and F(ω) is the phonon density of states. Ezp can be expressed as follows: 

1 ( )
2zpE F dω ω ω=    (10)

The lattice contribution to the heat capacity, CV, is calculated as follows: 

2

v 2

exp
( )

xp 1

kT kT
C k F d

kT

ω ω

ω ω
ω

   
   
   =
  −  

  


 


 (11)

A well-known representation of the experimental data on heat capacity is based on 
the comparison of the actual heat capacity to that predicted by the Debye model. This 
leads to the concept of the temperature-dependent Debye temperature, θD. Heat capacity 
in the Debye model is given by [42]: 

θ

θ
 

=    − 


3 4/

v 20
( ) 9

( 1)
D

xt

x
D

t x eC t Nk dx
e

 (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD, 
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then 
inverting Equation (9) to obtain θD. 

 
Figure 2. Definitions of angles used to describe directions in calculations. 

is Planck’s constant
and F(ω) is the phonon density of states. Ezp can be expressed as follows:

Ezp =
1
2

∫
F(ω)

Metals 2022, 12, 1852 5 of 14 
 

 

θ ϕ θ ϕ χ θ χ
θ ϕ θ ϕ χ θ χ

θ θ χ

   −
   = = +   
   −   

sin cos cos cos cos sin sin
sin sin ,and cos sin cos cos sin

cos sin cos
a b  (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv) 
versus temperature [41]. The temperature dependence of the energy can be calculated as 
follows: 

ω ω ω
ω

= + +
−

 ( ) ( )
exp( ) 1

tot zpE T E E F d

kT




 
(9)

where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the 
frequency, k is the Boltzmann constant, T is the Kelvin temperature,  is Planck’s constant 
and F(ω) is the phonon density of states. Ezp can be expressed as follows: 

1 ( )
2zpE F dω ω ω=    (10)

The lattice contribution to the heat capacity, CV, is calculated as follows: 

2

v 2

exp
( )

xp 1

kT kT
C k F d

kT

ω ω

ω ω
ω

   
   
   =
  −  

  


 


 (11)

A well-known representation of the experimental data on heat capacity is based on 
the comparison of the actual heat capacity to that predicted by the Debye model. This 
leads to the concept of the temperature-dependent Debye temperature, θD. Heat capacity 
in the Debye model is given by [42]: 

θ

θ
 

=    − 


3 4/

v 20
( ) 9

( 1)
D

xt

x
D

t x eC t Nk dx
e

 (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD, 
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then 
inverting Equation (9) to obtain θD. 

 
Figure 2. Definitions of angles used to describe directions in calculations. 

ωdω (10)

The lattice contribution to the heat capacity, CV, is calculated as follows:

Cv = k
∫ (

Metals 2022, 12, 1852 5 of 14 
 

 

θ ϕ θ ϕ χ θ χ
θ ϕ θ ϕ χ θ χ

θ θ χ

   −
   = = +   
   −   

sin cos cos cos cos sin sin
sin sin ,and cos sin cos cos sin

cos sin cos
a b  (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv) 
versus temperature [41]. The temperature dependence of the energy can be calculated as 
follows: 

ω ω ω
ω

= + +
−

 ( ) ( )
exp( ) 1

tot zpE T E E F d

kT




 
(9)

where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the 
frequency, k is the Boltzmann constant, T is the Kelvin temperature,  is Planck’s constant 
and F(ω) is the phonon density of states. Ezp can be expressed as follows: 

1 ( )
2zpE F dω ω ω=    (10)

The lattice contribution to the heat capacity, CV, is calculated as follows: 

2

v 2

exp
( )

xp 1

kT kT
C k F d

kT

ω ω

ω ω
ω

   
   
   =
  −  

  


 


 (11)

A well-known representation of the experimental data on heat capacity is based on 
the comparison of the actual heat capacity to that predicted by the Debye model. This 
leads to the concept of the temperature-dependent Debye temperature, θD. Heat capacity 
in the Debye model is given by [42]: 

θ

θ
 

=    − 


3 4/

v 20
( ) 9

( 1)
D

xt

x
D

t x eC t Nk dx
e

 (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD, 
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then 
inverting Equation (9) to obtain θD. 

 
Figure 2. Definitions of angles used to describe directions in calculations. 

ω
kT

)2
exp

(

Metals 2022, 12, 1852 5 of 14 
 

 

θ ϕ θ ϕ χ θ χ
θ ϕ θ ϕ χ θ χ

θ θ χ

   −
   = = +   
   −   

sin cos cos cos cos sin sin
sin sin ,and cos sin cos cos sin

cos sin cos
a b  (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv) 
versus temperature [41]. The temperature dependence of the energy can be calculated as 
follows: 

ω ω ω
ω

= + +
−

 ( ) ( )
exp( ) 1

tot zpE T E E F d

kT




 
(9)

where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the 
frequency, k is the Boltzmann constant, T is the Kelvin temperature,  is Planck’s constant 
and F(ω) is the phonon density of states. Ezp can be expressed as follows: 

1 ( )
2zpE F dω ω ω=    (10)

The lattice contribution to the heat capacity, CV, is calculated as follows: 

2

v 2

exp
( )

xp 1

kT kT
C k F d

kT

ω ω

ω ω
ω

   
   
   =
  −  

  


 


 (11)

A well-known representation of the experimental data on heat capacity is based on 
the comparison of the actual heat capacity to that predicted by the Debye model. This 
leads to the concept of the temperature-dependent Debye temperature, θD. Heat capacity 
in the Debye model is given by [42]: 

θ

θ
 

=    − 


3 4/

v 20
( ) 9

( 1)
D

xt

x
D

t x eC t Nk dx
e

 (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD, 
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then 
inverting Equation (9) to obtain θD. 

 
Figure 2. Definitions of angles used to describe directions in calculations. 

ω
kT

)
[
xp
(

Metals 2022, 12, 1852 5 of 14 
 

 

θ ϕ θ ϕ χ θ χ
θ ϕ θ ϕ χ θ χ

θ θ χ

   −
   = = +   
   −   

sin cos cos cos cos sin sin
sin sin ,and cos sin cos cos sin

cos sin cos
a b  (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv) 
versus temperature [41]. The temperature dependence of the energy can be calculated as 
follows: 

ω ω ω
ω

= + +
−

 ( ) ( )
exp( ) 1

tot zpE T E E F d

kT




 
(9)

where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the 
frequency, k is the Boltzmann constant, T is the Kelvin temperature,  is Planck’s constant 
and F(ω) is the phonon density of states. Ezp can be expressed as follows: 

1 ( )
2zpE F dω ω ω=    (10)

The lattice contribution to the heat capacity, CV, is calculated as follows: 

2

v 2

exp
( )

xp 1

kT kT
C k F d

kT

ω ω

ω ω
ω

   
   
   =
  −  

  


 


 (11)

A well-known representation of the experimental data on heat capacity is based on 
the comparison of the actual heat capacity to that predicted by the Debye model. This 
leads to the concept of the temperature-dependent Debye temperature, θD. Heat capacity 
in the Debye model is given by [42]: 

θ

θ
 

=    − 


3 4/

v 20
( ) 9

( 1)
D

xt

x
D

t x eC t Nk dx
e

 (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD, 
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then 
inverting Equation (9) to obtain θD. 

 
Figure 2. Definitions of angles used to describe directions in calculations. 

ω
kT

)
− 1
]2 F(ω)dω (11)

A well-known representation of the experimental data on heat capacity is based on
the comparison of the actual heat capacity to that predicted by the Debye model. This leads
to the concept of the temperature-dependent Debye temperature, θD. Heat capacity in the
Debye model is given by [42]:

Cv(t) = 9Nk
(

t
θD

)3∫ θD/t

0

x4ex

(ex − 1)2 dx (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD,
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then
inverting Equation (9) to obtain θD.

Metals 2022, 12, 1852 5 of 14 
 

 

      
      

  

   
   

     
      

sin cos cos cos cos sin sin
sin sin ,and cos sin cos cos sin

cos sin cos
a b  (8)

The calculation results of phonon spectra were used to compute heat capacity (Cv) 
versus temperature [41]. The temperature dependence of the energy can be calculated as 
follows: 

  


  


 ( ) ( )
exp( ) 1

tot zpE T E E F d

kT




 
(9)

where Etot stands for the total static at 0 K, Ezp is the zero-point vibrational energy, ω is the 
frequency, k is the Boltzmann constant, T is the Kelvin temperature,  is Planck’s constant 
and F(ω) is the phonon density of states. Ezp can be expressed as follows: 

1 ( )
2zpE F d      (10)

The lattice contribution to the heat capacity, CV, is calculated as follows: 

2

v 2

exp
( )

xp 1

kT kT
C k F d

kT

 

 


   
   
   
  

  
  


 


 (11)

A well-known representation of the experimental data on heat capacity is based on 
the comparison of the actual heat capacity to that predicted by the Debye model. This 
leads to the concept of the temperature-dependent Debye temperature, θD. Heat capacity 
in the Debye model is given by [42]: 




 

     


3 4/

v 20
( ) 9

( 1)
D

xt

x
D

t x eC t Nk dx
e

 (12)

where N is the number of atoms per cell. There, the value of the Debye temperature, θD, 
at a given temperature, t, is obtained by calculating the heat capacity, Equation (8), then 
inverting Equation (9) to obtain θD. 

 
Figure 2. Definitions of angles used to describe directions in calculations. Figure 2. Definitions of angles used to describe directions in calculations.

3. Results and Discussion
3.1. Structural Properties

First of all, the equilibrium lattice parameters and relaxed atom structure of the Ag9In4
unit cell in the ground state were computed through structural optimization. Table 2 shows
the relaxed atomic coordinates of the Ag9In4 crystal. The calculated lattice constants and
volume of the unit cell together with the literature data [24] are exhibited in Table 3. It is
clear to see that the modeled results were in a good consistency with the literature data [24]
in both length and volume, where the differences in lattice constant and volume are merely
about 0.07% and 0.24%, respectively. In this study, the elastic constants of Ag9In4 were
obtained by linear fitting using four strains of ±0.001 and ±0.003.
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Table 2. Atomic coordinates for Ag9In4 after relaxation.

Atom x y z

Ag 0.6049 0.6049 0.6049

Ag −0.1699 −0.1699 −0.1699

Ag 0.3259 0.3259 0.3259

Ag 0 0 0.3563

Ag 0.5 0.5 0.8556

Ag 0.3179 0.3179 0.02834

In 0.1236 0.1236 0.1236

In 0.8103 0.8103 0.5331

Table 3. Calculated lattice constants, equilibrium volume V, elastic coefficients, Cauchy pressure
(GPa), bulk modulus K (GPa), shear modulus G (GPa), Young’s modulus E (GPa), hardness Hv (GPa),
Poisson’s ratio v, and ratio of bulk modulus to shear modulus K/G of the Ag9In4 crystal, together
with comparison with the other seven IMC systems in terms of E and Hv.

Mechanical
Properties

Lattice
Constants (Å) V(Å3) C11 C44 C12 PCauchy K G E Hv v K/G

Present study a = b = c = 10.029 1008.73 128.6 28.2 54.9 26.7 79.47 31.37 83.17 3.67 0.3 2.53

Experiment [24] a = b = c = 10.037 1011.14 - - - - - - - - - -

Experiment [13] - - - - - - - - 89.4 ± 2.2 3.2 ± 0.22 - -

Cu6Sn5 [13] - - - - - - - - 110 ± 3.1 7.3 ± 0.08 - -

Cu3Sn [13] - - - - - - - - 140 ± 2.1 7.2 ± 0.21 - -

Cu5Zn8 [13] - - - - - - - - 170 ± 2.2 6.9 ± 0.09 - -

Ni3Sn4 [13] - - - - - - - - 127 ± 2.9 4.5 ± 0.13 - -

AuZn3 [13] - - - - - - - - 111 ± 2.3 2.2 ± 0.07 - -

Cu11In9 [13] - - - - - - - - 109.5 ±
0.84 6.57 ± 0.15 - -

3.2. Elastic and Mechanical Properties

It is important to note that the calculated elastic coefficients for the crystal must be
positive, and obey the mechanical stability criteria [39]:

C11 − C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0 (13)

The calculated elastic coefficients of the cubic Ag9In4 crystal structure are tabulated in
Table 3, where C11, C44 and C12 are about 128.6 GPa, 28.2 GPa and 54.9 GPa. These elastic
coefficients are further used in Equation (13). It turns out that they well conform to these
mechanical stability criteria, suggesting that the Ag9In4 crystal is mechanically stable.

The ductile/brittle nature of a cubic material can be depicted by the Pettifor criterion
of Cauchy pressure [43]:

PCauchy = C12 − C44 (14)

Normally, materials having a positive Cauchy pressure reveal metallic-like bonds and
ductility. In contrast, a negative Cauchy pressure suggests a brittle material. According
to Ref. [44], a negative Cauchy pressure is primarily attributable to the long-range elec-
trostatic contribution. The calculated Cauchy pressure for the Ag9In4 crystal is given in
Table 1. There is an evident positive Cauchy pressure (i.e., 26.7 GPa) for the crystal, thereby
exhibiting ductility.

Bulk modulus (K) is a measure of the resistance of a material against volume change
upon an applied hydrostatic pressure; shear modulus is an estimate of the resistance of
a material to shear deformation; Young’s modulus is a measure of the resistance of a
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material against elastic deformation under load; and Poisson’s ratio is a measure of the
change in shape of a material to an applied load or the ratio of transverse-to-axial strain
of a material under axial load, ranging from −0.5 to 0.5. An increased Poisson’s ratio
would raise plasticity. These polycrystalline mechanical properties are vital for engineering
applications, which can be described as a function of these independent elastic coefficients
according to the Voigt–Reuss method [45]:

GV =
1
5
[C11 − C12 + 3C44] (15)

GR =
15

4S11−4S12+3S44
(16)

KV =
1
3
(C11 + 2C12) (17)

KR =
1

3S11 + 6S12
(18)

where GV and GR denote the upper (Voigt) and lower (Reuss) bounds of the shear modulus
(G) and KV and KR denote those of bulk modulus of polycrystalline aggregate, respectively.
Furthermore, the effective bulk and shear moduli can be further computed through the
Voigt–Reuss–Hill estimate [46], which is roughly equivalent to the geometric mean of bulk
and shear moduli:

K =
√

KV · KR (19)

G =
√

GV · GR (20)

In addition, with these two moduli, we can obtain the effective Young’s modulus and
Poisson’s ratio of the Ag9In4 polycrystalline aggregate,

E =
9KG

3K + G
(21)

v =
3K− 2G

2(3K + G)
(22)

The calculated bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio
are illustrated in Table 3. The Young’s modulus value is about 83.17 GPa, which is highly
compatible with the literature experimental data (i.e., 89.35 ± 2.2 GPa under the strain rate
of 3× 10−4 l/s) measured by Song et al. [13] using nanoindentation. This Young’s modulus
value is relatively low in comparison with other IMCs widely used in microelectronics
packaging, such as Cu6Sn5, Cu3Sn, Cu5Zn8, Ni3Sn4, AuZn3, and Cu11In9 [13] (see Table 3).

To identify the brittleness or ductility of a material, Pugh [47] proposed a criterion
based on the K/G ratio. The threshold value for the K/G ratio is 1.75: if the K/G ratio
exceeds the threshold value, the material possesses the ductile nature; otherwise, a brittle
one. The calculated K/G ratio of the Ag9In4 crystal is also presented in Table 3, and the
K/G ratio is superior to 1.75, revealing that Ag9In4 is a ductile material. This result is
a good match with the prediction based on the Pettifor criterion of Cauchy pressure, as
shown in Equation (14). Thus, it is well believed that due to its ductile nature, this IMC
possesses good impact resistance and thus can potentially enhance the drop impact solder
interconnect reliability of microelectronic packages [48]. The hardness of a material usually
plays a crucial role in abrasive-wear-resistant applications. Teter [49] proposed a linear
relationship between the Vickers hardness Hv and the shear modulus G if a material is
intrinsically brittle. Noteworthy is that material hardness is also linked to both shear
modulus G and bulk modulus K for various materials. Chen et al. [50] introduced an
improved non-linear correlation in terms of both K and G. It is, however, found that this
correlation may lead to a negative Vickers hardness as a result of the last correlation term
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“−3”. Later on, Tian et al. [51] introduced a modified correlation model that can ease
this concern,

Hv = 0.92α1.137G0.708, α = G/K (23)

It was reported that materials with a Vickers hardness greater than 40 GPa can be
categorized as a superhard material [52]. The calculated value of Hv for Ag9In4 is 3.67 GPa,
as shown in Table 3, which is far less than the threshold value, implying that Ag9In4 may be
considered as a low densification material. The calculated Vickers hardness of the Ag9In4
crystal is also in line with the literature experimental data [13] (i.e., 3.18 ± 0.22 GPa under
the strain rate of 3 × 10−4 l/s). Table 3 further demonstrates the comparison of Vickers
hardness between Ag9In4 and other commonly found IMCs in microelectronics packaging,
such as Cu6Sn5, Cu3Sn, Cu5Zn8 and Cu11In9 [13]. It is clear to see that the Ag9In4 is a
material with a relatively low hardness, and the relatively low Vickers hardness may be
pertinent to the weak metal bond.

3.3. Characterization of Elastic Anisotropic Properties

One of the most important issues for a material is the elastic anisotropy, primarily
determining the bonding nature in various crystallographic directions. Essentially, this
elastic parameter would greatly affect the materials’ physical properties, such as elastic
instability, anisotropic plastic deformation, and crack behavior. Previously, the study of
elastic anisotropy of a material has been well-developed in the physics of crystal. The elastic
anisotropy can be further depicted using the universal anisotropic index AU [53] and the per-
centage elastic anisotropy in compressibility and shear, i.e., AB and AG [54,55], respectively,

AU = 5
GV
GR

+
KV
KR
−6 (24)

AB =
KV − KR
KV + KR

× 100% (25)

AG =
GV − GR
GV + GR

× 100% (26)

These values range from zero, representing an isotropic material, to 1 (100%), denoting
the maximum anisotropy. The calculated results are displayed in Table 4, where the AU

value of Ag9In4 is 0.088, implying elastic anisotropy. Furthermore, the zero value of AB

indicates elastic isotropy in its compression behavior, while the value of 0.87 for AG reveals
shear anisotropy (%).

Table 4. The calculated anisotropic indices of the Ag9In4 crystal.

Anisotropic Index AU AB (%) AG (%)

Value 0.088 0 0.87

The 3D surface representation of the Young’s modulus of Ag9In4 and its two-dimensional
(2D) projections onto the yz, xz, and xy planes are given in Figure 3, respectively. The degree
of anisotropy depends on the deviation of a geometrical body from the spherical shape.
If a geometrical body is a sphere, it presents isotropy. Therefore, the directional Young’s
modulus showed the Ag9In4 holds the anisotropic characteristic. In addition, the Young’s
modulus of Ag9In4 had a maximum value of 95.78 GPa in the <001> crystal direction and a
minimum value of 75.56 GPa in the <111> crystal direction. The maximum and minimum
Young’s moduli are listed in Table 5.
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Table 5. Maximum and minimum Young’s moduli for Ag9In4 crystal.

Young’s Modulus Whole yz xz xy

Emax (GPa) 95.78 95.78 95.78 95.78
Emin (GPa) 75.56 79.78 79.78 79.78

Generally, the maximum and minimum values in each direction are used to evaluate
the directional shear modulus. Figures 4 and 5 display the 3D surface and its 2D projections
onto the yz, xz, and xy planes of Ag9In4. Similar to the Young’s modulus, there is an
anisotropic nature in the shear modulus in the three crystal planes. Furthermore, the
maximum shear modulus of Ag9In4 was maximum in the <110> crystal direction and
minimum in the <001> crystal direction. On the other hand, the minimum shear modulus
was maximum in the <111> crystal direction and minimum in the <001> crystal direction.
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Table 6. Maximum and minimum values for the shear moduli of Ag9In4.

Shear Modulus Whole yz xz xy

Gmax (GPa) 36.86 28.16 28.16 28.16
Gmin (GPa) 28.16 28.16 28.16 28.16

3.4. Thermodynamic Properties

The predicted Debye temperature for Ag9In4 is approximately 201.4K at zero pressure
and 300K. The temperature-dependent heat capacity is exhibited in Figure 6. It indicates
that the heat capacity grows markedly with the increase in temperature from 0K to the
Debye temperature. In addition, by performing the curve fitting process at temperatures
less than the Debye temperature, the heat capacity presents a power-law temperature
relationship with a power exponent of around 3 (i.e., 2.96). This power-law exponent
fully coincides with the so-called Debye heat capacity theory, which infers that at constant
volume, the low temperature heat capacity is proportional to T3 [56]. At 300K, the predicted
heat capacity is 25.3 J/(mol·K), and at temperatures greater than the Debye temperature, it
is converging to around 25.9 J/(mol·K), which is the classical Dulong–Petit value [57]. In
general, the Dulong–Petit value appears in solids at temperatures way above the Debye
temperature. Additionally, it was conspicuous that the heat capacity became constant at
high temperature. This indicated that the phonons do not interact with each other, thus
leading to an independent relationship between crystal volume and temperature. Therefore,
the present approach could not evaluate the thermal expansion coefficient, which describes
the relationship between volume change and temperature variation.

The thermal conductivity of a material tends to decrease with temperature and ulti-
mately reaches a limiting magnitude, which is termed the minimum thermal conductivity
or high-temperature thermal conductivity. For a high-temperature application, a good
estimate of the material’s minimum thermal conductivity is crucial. The minimum thermal
conductivity can be described using Cahill et al.’s equation [58],

kmim =
kB

2.48
(p)

2
3 (νl + 2νt) (27)
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where kB stands for the Boltzmann constant, p denotes the number of atoms per unit volume,
and νl and νt represent the longitudinal and transverse sound velocities, respectively. The
νl and νt can be expressed as follows,

νl = [(K + 4G/3)/ρ]
1
2 (28)

νt = [G/ρ]
1
2 (29)

where ρ represents the material density. Table 7 illustrates the computed longitudinal
sound velocity, transverse sound velocity, and minimum thermal conductivity. Substituting
the calculated longitudinal and transverse sound velocities into Equation (27) gives the
minimum thermal conductivity of 0.544 W/(m·K) at zero pressure.
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Table 7. Mass density, longitudinal, transverse sound velocities and minimum thermal conductivity
of Ag9In4.

Property ρ (Kg/m3) νl (m/s) νt (m/s) kmin (W/(m·K))

Value 9389.8 3594.2 1827.8 0.544

4. Conclusions

This study applied ab initio DFT simulations to characterize the physical properties
of the cubic Ag9In4 crystal. Their relationship with crystalline direction and temperature
was investigated. The calculated lattice constants, Young’s modulus, and Vickers hardness
turned out to be in great conformity with the experimental results from the literature,
indicating the feasibility of the present theoretical predictions. The theoretical calcula-
tions demonstrated that Ag9In4 possesses structural and mechanical stability and ductility,
thereby possessing good impact resistance. In addition, Ag9In4 is a material with a rela-
tively low stiffness and hardness, as compared to other broadly found IMCs, including
Cu6Sn5, Cu3Sn, Cu5Zn8, and Cu11In9, and elastic anisotropy. Specifically, Ag9In4 reveals
an anisotropic characteristic in the shear modulus and Young’s modulus but an isotropic
nature in compressibility and the bulk modulus. At last, the heat capacity of Ag9In4 at
temperatures below the Debye temperature obeys the T3-law, and that at temperatures
above the Debye temperature follow the classical Dulong–Petit rule.
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