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Abstract: High-energy ball milling and spark plasma sintering (SPS) are used to create high-strength
Ti-25Nb-6Zr biomedical alloys with β structures. The Ti-25Nb-6Zr alloy microstructure and me-
chanical properties were examined as a function of the sintering temperatures. The results showed
that as the sintering temperature was raised, the densification process was expedited, and the
comprehensive mechanical characteristics increased at first, then dropped slightly. Moreover, un-
der high temperatures, the fracture morphology of the Ti-25Nb-6Zr biomedical alloys exhibited
more dimples, indicating enhanced plasticity of the material. Evaluating the mechanical properties
of the Ti-25Nb-6Zr biomedical alloy sintered at 1623 K indicated a high compressive strength of
1678.4 ± 5 MPa and an elongation of 12.4 ± 0.5%. The strengthening mechanisms are discussed in
terms of the formation and distribution of bcc-Ti in the matrix as well as the homogeneous distri-
bution of Nb and Zr. This research presents a new method for fabricating Ti-25Nb-6Zr biomedical
alloys with high strength and low modulus values. The theoretical grounds for the development
of high-performance Ti-Nb-Zr alloys will be laid by detailed research of this technology and its
strengthening mechanisms.

Keywords: Ti-Nb-Zr alloy; spark plasma sintering; powder metallurgy; microstructure; mechanical
properties

1. Introduction

Humans’ demands for biomedical implant materials have risen with the advancement
of society and medical science. Because of their outstanding antifatigue performance
and biocompatibility, medical implant materials such as titanium and titanium alloys
are particularly well-suited for bone restoration in load-bearing sections [1]. In particular,
titanium-based biomaterials with β-Ti-type structures with additions of Nb and Zr are suitable
as medical implant materials [2,3] and have become a hot spot in the current research due
to their good osteoblast adhesion [4,5]. There have also been three stages in the evolution
of titanium alloys: the first stage focused on pure titanium and Ti-6Al-4V [6,7]. Ti-6Al-4V
is mostly made up of α phase and β phase, and it has a moderate tensile strength of
893~931 MPa and a yield strength of 826~868 MPa [7]. When compared to pure titanium,
Ti-6Al-4V performs better but has a higher elastic modulus than pure titanium, making its
biocompatibility poor. Because it contains components such as Al and V that are hazardous
to the human body, researchers are committed to studying other biological alloys that can
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replace it, but at present, Ti-6Al-4V alloy is still widely used. [8,9]. The second stage was
titanium alloys for vanadium-free implants, whose representative alloys are Ti-5Al-2.5Fe
and Ti-6Al-7Nb [10,11]. Although the tensile strength and yield strength of Ti-6Al-7Nb
are higher than those of the first-generation medical titanium alloys, its high modulus of
elasticity is not close to that of human bone [10]. Although it is harmful to the human
body to replace V with Fe and Nb in the Ti-6Al-4V alloy, the existing Al element will
release Al ions after being implanted in the human body, which is also hazardous to
human health [10]. The third stage of alloy development uses medical implant materials
made of new vanadium-free and aluminum-free β-type titanium alloys that have a rather
low elastic modulus values and are biocompatible. β-type titanium alloys have superior
comprehensive mechanical characteristics and better biocompatibility than α-type titanium
alloys [12]. One representative alloy is Ti-13Nb-13Zr [13]. Ti-13Nb-13Zr exhibits high tensile
and yield strengths of 972~1038 MPa and 834~906 MPa, respectively, and, in addition,
has a low Young’s modulus of 80~85 GPa, making it more similar to the human skeleton
than other metal and alloy implants now in use [13]. It was also found that Nb and Zr
are nontoxic elements that are beneficial to cell proliferation and differentiation [14]. As a
result, the development of new β-type titanium alloys is one of the key research hotspots
in biometal materials research.

Currently, a number of investigations have described the synthesis of Ti-Nb alloys
using vacuum arc melting technology, deformation, and subsequent heat treatment. Sun
et al. [15] used cold rolling and heat treatment to obtain ultrafine grains and nanocrystalline
α andω phases with grain sizes of 1~2 µm, thereby improving the mechanical properties
of the material. Zhou et al. [16] prepared Ti40Zr25Ni8Cu9Be18 metallic glass through
copper mold casting at different liquid phase temperatures and improved the plasticity
of the material through crystallization. However, there are certain drawbacks to these
approaches, such as the ease with which grain growth can occur and the ease with which
composition segregation can occur when the melting temperatures of each component differ
substantially, affecting the alloys’ overall mechanical performance. Combining mechanical
alloying with spark plasma sintering allows the possibility to effectively increase the
mechanical characteristics and elastic modulus values of titanium-based bioalloys. For
example, Xu et al. [17] created a Ti-43Al-9V alloy with tiny grains following this approach.
Mechanical alloying and spark plasma sintering were also utilized by Zou et al. [18] to
create an ultra-fine-grained Ti-35Nb-7Zr-5Ta alloy. Its microstructure contained body-
centered cubic β-Ti surrounded by a hexagonal close-packed α-Ti structure. Wen et al. [19]
prepared a Ti-26Nb-5Ag alloy by three methods (mechanical alloying, vacuum furnace
sintering, and spark plasma sintering), and the properties of the alloys produced by these
three methods were compared. The fracture strength of this alloy after spark plasma
sintering (1240.5 ± 73.2 MPa) was nearly three times that of vacuum furnace sintering
(428.8 ± 42.7 MPa). Investigations by Xu et al. [20] showed that β-Ti has good fatigue
resistance. Mechanical alloying, on the other hand, has yielded a variety of results in the
creation of titanium-based biomaterials. In addition, spark plasma sintering was employed
to create a variety of titanium-based biomaterials. However, when compared to human
bone, sintered titanium-based alloys have elastic moduli of about 80–110 GPa, which are
higher than that of human bone (4–30 GPa) [7], and thus the mechanical properties still
need to be improved.

Via spark plasma sintering (SPS) [21] metal powder is prepressed and filled into a
graphite mold of a specific size and specification. Through the electrical conductivity of
graphite, a pulse current is applied to it, and the temperature of the metal powder and
graphite mold is rapidly increased through the discharge. Simultaneously, during sintering,
a particular pressure is applied to the alloy to ensure compaction and to improve the alloy’s
performance. Spark plasma sintering uses the discharge of pulse currents to convert electric
energy into heat, and compared with conventional sintering, it has the advantages of a
rapid temperature increase, a short sintering time, a relatively high density of the sintered
samples, and a uniform distribution of elements. Furthermore, a sintered sample has a
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high purity and a low impurity content as a result of the vacuum sintering process. SPS
can quickly produce high-strength and ductile titanium alloy specimens that are suitable
for biomedical applications [22,23].

In this paper, a Ti-25Nb-6Zr alloy was prepared using ball milling and spark plasma
sintering technology to investigate the effects of different sintering temperatures on the
mechanical properties and the elastic modulus of the Ti-25Nb-6Zr alloy, with the goal of
determining the best sintering temperature and process conditions. As a result, the alloy’s
overall mechanical properties were improved, and its elastic modulus was decreased.

2. Materials and Methods
2.1. Material Preparation

Elemental Ti, Nb, and Zr powders provided by Beijing Goldway Metal Technology
Development Co. Ltd. (Beijing, China) with a purity of 99.9% and an average particle
size of 50 µm were used as starting materials. The starting powders (80 g) were weighed,
and the weight ratio was Ti/Nb/Zr = 6.9:2.5:0.6 in a vacuum glove box. The mixed Ti,
Nb, and Zr powders were placed together with stainless-steel balls in a stainless-steel vial
for ball milling and mixing with a powder-to-ball weight ratio of 1:10, a rotation speed of
300 rpm/min, and a ball milling time of 1 h under argon atmosphere (Retsch Planetary
Ball Mill, PM400, Guangzhou Pufan Scientific Instrument Co., Ltd., Guangzhou, China).
Moreover, stainless-steel balls with diameters of 10 mm and 6 mm were used, the weight
ratio of which was 3:1, and the stainless-steel vial had an outer diameter of 126 mm, an inner
diameter of 90 mm, and a height of 100 mm. Because zirconium powder is combustible,
alcohol was added to the milling vial for wet grinding. The weight ratio of alcohol to
powder was 6:1. Every 30 min, the ball milling operation was paused for 10 min. The main
purpose was to prevent high temperatures during the ball milling process. The milled
powder was filtered and dried for 24 h in a vacuum drying oven (DZF-6020, Anhui BEQ
Equipment Technology Co. Ltd., Anhui, China). The drying temperature was 323–333 K,
and the vacuum degree was ≤10 Pa.

2.2. Sintering Profiles

The temperature profiles of the sintered Ti-25Nb-6Zr alloy are shown in Figure 1. First,
10 g of the dried powder was filled into a graphite mold with a diameter of 20 mm and a
thin graphite foil between the powder and the mold, which was beneficial for removing
the sample after sintering, preventing welding, and obtaining a more uniform current
flow [24]. Spark plasma sintering (LABOX-650F, Japan sinter land Co., Ltd., Tokyo, Japan)
was performed at 1223 K, 1323 K, 1423 K, 1523 K, and 1623 K for a holding time of 10 min.
Sintering took place in vacuum at a pressure of 50 MPa (before sintering, the vacuum was
manually pressurized to 50 MPa) and a heating rate of 100 K/min. The sintered cylindrical
samples with a diameter of 20 mm and a thickness of 5 mm were taken out of the furnace
after the heat preservation was completed, and the samples were allowed to cool to room
temperature. Finally, the samples were polished to remove the graphite foil from the
surface.

2.3. Mechanical and Microstructural Characterization

Before characterization, the sample was sufficiently ground and polished to minimize
or avoid the effect of carbon on the sample’s organization and properties. The Archimedes
method using an FK-300Y high-precision multifunctional densitometer (Ka precision mea-
suring instrument Shenzhen Co., Ltd., Shenzhen, China) was employed to determine the
density of the sintered specimens. To determine which phases were formed during the
sintering process, an X-ray diffractometer (MiniFlex600, Rigaku Corporation, Tokyo, Japan)
was utilized to evaluate the phases of the sintered samples. The diffractometer was a Cu
target, the operating voltage was 40 KV, the current was 40 mA, the scan rate was 5◦/min,
the scan angle was 20~80◦, and after the test the data were analyzed on MDI Jade software
(MDI Jade6.0, Materials Data, Livermore, CA, USA). The XL30ESEM-TMP field emission
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scanning electron microscope (FESEM, Nano Nova45, FEI, Eindhoven, The Netherlands)
was used to characterize the compressive fracture morphology of the samples for the
purpose of analyzing the toughness and brittleness of the specimens. For metallographic
observation (BA310Met-T metallurgical microscope, Chengdu Yingdu technology Co., Ltd.,
Chengdu, China), the samples were polished (the sintered specimens are sanded with
sandpaper of grit 120#, 240#, 500#, 800#, 1000#, 2000#, 3000#, and 7000# in sequence and
then mechanically polished) and etched with a 1% HF + 3% HNO3 + 96% H2O solution
for 5~8 s. The Vickers hardness was determined using an Mc010 series Vickers hardness
tester (Shanghai Yanrun Optical Machine Technology Co., Ltd., Shanghai, China) at a load
of 0.1 kgf, a dwell time of 15 s, and a loading speed of 0.05 mm/s. For compression testing,
the sintered blocks were cut into small cylindrical specimens of Ø 2.5 mm × 5 mm and pol-
ished with sandpaper to remove oil stains and burrs on the surfaces of the specimens. The
compressive strength, strain, and elastic modulus were measured using universal testing
equipment (AG-X plus, 20KN-50KN, Tokyo, Japan) at a crosshead speed of 0.1 mm/min.
The microstructures of the Ti-25Nb-6Zr specimens were revealed by transmission electron
microscopy (TEM, Tecnai-G2-TF30-S-Twin, FEI, Amsterdam, The Netherlands).
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Figure 1. Sintering profiles of Ti-25Nb-6Zr alloy.

3. Results

The as-received starting materials and the milled product powders had different
morphologies and sizes. Figure 2a–c show SEM images of the as-received Ti, Nb, and
Zr powders. Ti particles exhibited different irregular shapes, while Nb and Zr exhibited
regular spherical shapes. SEM micrographs and EDS mapping of milled Ti-25Nb-6Zr
powders are shown in Figure 2d. Compared to the as-received morphology, after milling
the average particle size was reduced.

3.1. Vickers Hardness and Compressive Properties

The Vickers hardness results of the Ti-25Nb-6Zr specimens sintered at different tem-
peratures are shown in Figure 3 and Table 1, revealing that the Vickers hardness reached
its maximum value of 595.505 ± 9.16 HV when the sintering temperature rose to 1623 K.
Compared to Ti-6Al-4V (385.48 HV) [24], a regularly used biomedical material, the Vickers
hardness of the present material is significantly higher.

The Archimedes method was used to determine the relative density of the sintered
samples. The relative density increased from 98.69 ± 0.2% to 99.45 ± 0.2% as the sintering
temperature increased from 1223 K to 1623 K (Figure 3 and Table 1). This trend in the
density values was correlated with the increasing Vickers hardness. The density and
Vickers hardness slightly increased as the temperature increased from 1423 K to 1623 K.
A possible explanation for this density and hardness increase may be related to the fact
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that plasma was formed between the powder particles during the SPS sintering process
using high-frequency discharge, which can establish a sintering neck between two powder
particles via element diffusion [25]. As a result, the porosity in the samples shrinks, and
the densification process is expedited at a high sintering temperature. Even when the
temperature rises, the sample’s relative density remains relatively constant.
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Table 1. The relative density and hardness of Ti-25Nb-6Zr alloy at different temperatures.

Temperature (K) Hardness (HV) Relative Density (%)

1223 541.838 ± 8.134 98.69 ± 0.2
1323 551.818 ± 9.15 99.28 ± 0.19
1423 592.206 ± 8.56 99.34 ± 0.15
1523 594.806 ± 9.12 99.4 ± 0.2
1623 595.505 ± 9.16 99.45 ± 0.2

The compressive engineering stress–strain curves of the Ti-25Nb-6Zr alloy sintered at
various SPS temperatures are shown in Figure 4 and Table 2. The compressive stress–strain
curves of the Ti-25Nb-6Zr alloy were strongly affected by the sintering temperature. As the
sintering temperature increased from 1223 K to 1523 K, the ultimate compressive strength of
the sample increased from 1445 ± 5 MPa to 1486 ± 5 MPa, and the yield stress of the sample
increased from 1340 ± 5 MPa to 1390 ± 5 MPa. The strain, on the other hand, increased
from 5.3 ± 0.5% to 7.5 ± 0.5%. For the samples sintered at 1623 K, the compressive strength
reached a high value of 1678 ± 5 MPa, with a yield stress of 1495 ± 5 MPa and a strain
of 12.4 ± 0.5%. The Ti-25Nb-6Zr samples sintered at low temperatures were not fully
densified, resulting in low Vickers hardness and fracture strength. The relative density and
Vickers hardness of the Ti-25Nb-6Zr alloy were positively correlated with the sintering
temperature. The Ti-25Nb-6Zr alloy had better mechanical properties when sintered at
higher temperatures. The variation in the fracture strength of the samples, on the other
hand, could be linked to their different microstructures.

A field emission scanning electron microscope was used to examine the compression
fracture morphology of samples sintered at different temperatures, as illustrated in Figure 5.
As depicted in Figure 5a, the Ti-25Nb-6Zr specimens sintered at 1223 K exhibited a modest
amount of quasicleavage and rough dimples on the fracture surface. More dimples could be
seen when the sintering temperature rose from 1323 K to 1523 K. A large number of dimples
appeared in the fracture morphology of the samples, implying that the ductility increased,
in good agreement with Figure 5b–d. When the sintering temperature reached 1623 K,
regular dimples in the fracture morphology were visible, revealing that the plasticity of the
samples was higher.
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Figure 4. Compressive engineering stress–strain curves for samples sintered at different temperatures.

Table 2. The compression properties of Ti-25Nb-6Zr alloy at different temperatures.

Temperature (K) Ultimate Compressive Strength (MPa) Yield Stress (MPa) Strain (%)

1223 1445 ± 5 1340 ± 5 5.3 ± 0.6
1323 1478 ± 8 1407 ± 6 6.61 ± 0.4
1423 1349 ± 6 1275 ± 5 7.41 ± 0.5
1523 1486 ± 5 1390 ± 5 7.5 ± 0.5
1623 1678 ± 5 1495 ± 5 12.4 ± 0.5

3.2. Microstructure and Phase Constitution

The microstructures of the Ti-25Nb-6Zr samples prepared by high-energy ball milling
and SPS at different temperatures are presented in Figure 6.

Obviously, all the alloys contained a two-phase region with bcc β-Ti and hcp α-Ti.
Meanwhile, the microstructure was of an hcp α-Ti region surrounded by a bcc β-Ti matrix.
α-Ti and a small amount of β-Ti in the structure could be observed when the sintering
temperatures were 1223 K and 1323 K, as shown in Figure 6a,b. With the increase in the
sintering temperature from 1423 K to 1623 K, the grain boundary was clear, and the two
regions were visible. The size of the two-phase region increased continuously, as shown in
Figure 6c–e.
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In order to investigate the elements and phase distribution of the Ti-25Nb-6Zr samples
sintered at different temperatures, SEM images and EDS maps were obtained using scan-
ning electron microscopy (SEM) (SEM-EDS), as shown in Figure 7. Apparently, the sintering
temperature had a significant effect on the microstructure evolution of the Ti-25Nb-6Zr
alloy fabricated by spark plasma sintering. At a low sintering temperature of 1223 K, Nb
and Ti elements were unevenly distributed (Figure 7a). This can be explained by the fact
that Nb and Ti cannot diffuse efficiently at a low sintering temperature. Figure 7b presents
characteristic micrographs of the Ti-25Nb-6Zr alloy sintered at 1323 K, which are consistent
with the observed results of the optical microstructure characteristics in Figure 6. It can
be seen that Nb and Zr were concentrated and distributed in the black cluster areas in the
microstructure, while Ti was the matrix. As revealed in Figure 7c,d, increasing the sintering
temperature from 1423 K to 1523 K reduced the black cluster areas, implying a higher level
of homogeneous element distribution at higher temperatures than at low temperatures in
this area. Nb and Ti were distributed homogeneously after sintering at 1623 K, as shown
in Figure 7e, confirming the effective alloying of the powders with increasing sintering
temperatures. It can be safely concluded that sintering at a higher temperature promotes
element diffusion and the alloying of the original elemental powder mixture, and the
element distribution gradually becomes uniform.

The XRD patterns of the Ti-25Nb-6Zr alloy sintered at different temperatures are
displayed in Figure 8. It can be seen that the samples sintered at different temperatures
were mainly composed of α-Ti, β-Ti, Nb, and a small amount of Zr.

The XRD patterns show that, compared with a pure Ti reference sample sintered at
1523 K, the diffraction peak intensity of α-Ti in the Ti-25Nb-6Zr sintered alloy gradually
decreased and the diffraction peaks of β-Ti gradually increased (marked as A and B)
when the sintering temperature increased from 1223 K to 1623 K. The β-Ti diffraction
peaks became most prominent with sintering at 1623 K. Apparently, higher sintering
temperatures promote the formation ofβ-Ti with a BCC structure. From the three diffraction
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peaks of β-Ti, (110), (200), and (211), as shown in Figure 8, the average grain size d
with temperature was determined from the peak-broadening analysis using the equation
Bcos θ = 0.9λ/d + ηsin θ (where B is the peak width at half maximum intensity, h is the
Bragg angel, λ is the wavelength of the X-ray, d is the grain size, and η is the strain) [18]. It
was found from Figure 8 that with increasing temperatures the peak broadening decreased,
and the grain size, d, increased gradually.
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Figure 9a shows a bright-field TEM micrograph of the Ti-25Nb-6Zr alloy sintered at
1623 K. The fast Fourier transform (FFT) in Figure 9b corresponds to the area of grain A in
Figure 9a and reveals a BCC-Ti crystal structure. Moreover, it can also be observed that the
zone axis of the BCC-Ti structure presented in the pattern is 011. It can be suspected that
grain A, with a BCC-Ti crystal structure, is newly formed since α-Ti always has an HCP
structure at an ambient temperature. Compared with the α-Ti phase, the β-Ti phase has
more slip systems and higher compressive strength. Therefore, the mechanical properties of
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the sintered Ti-25Nb-6Zr specimens with higher volume fractions of β-Ti phase produced
at higher sintering temperatures were improved, i.e., the compressive strength and the
ductility were higher.
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Figure 7. SEM images and EDS mapping of Ti-25Nb-6Zr sintered at different temperatures: (a) 1223 K,
(b) 1323 K, (c) 1423 K, (d) 1523 K, and (e) 1623 K.

Combining the XRD patterns, SEM images, and EDS maps of the Ti-25Nb-6Zr speci-
mens sintered at different temperatures, it can be noted that the addition of Nb had a strong
effect on the formation of a BCC-Ti crystal structure (as expected since the element is known
as a strong β-Ti-forming element [26]). Compared with the pure Ti sintered at 1523 K, the
diffraction peaks of β-Ti gradually increased (marked as A and B) when the sintering
temperature increased from 1223 K to 1623 K. Nb and Zr could be indefinitely dissolved in
Ti to form β-Ti. The diffusion of Nb and Zr in the matrix promoted the formation of β-Ti.
The effect of the Nb and Zr contents on the phase formation, microstructure development,
and the resulting mechanical properties of such SPS sintered alloys needs to be investigated
further.
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Figure 9. (a) Bright field TEM micrograph of a Ti-25Nb-6Zr alloy sintered at 1623 K. (b) FFT patterns
of β-Ti with a BCC structure.

4. Conclusions

In this study, high-strength Ti-25Nb-6Zr biomedical alloys with β-Ti structures were
prepared by high-energy ball milling and spark plasma sintering (SPS). The effect of
different sintering temperatures on the phase formation, microstructure evolution, and
mechanical properties of the Ti-25Nb-6Zr alloy were investigated. The results show that
the densification process was accelerated with increasing sintering temperatures. Simul-
taneously, more body-centered cubic titanium (bcc-β-Ti) phase was observed, and the
comprehensive mechanical properties were improved. The compressive fracture features
revealed a small amount of quasicleavage and dimples, indicating a predominately ductile
fracture mode. More dimples were observed in the fracture morphology of the compressed
Ti-25Nb-6Zr samples sintered at higher temperatures, indicating that the ductility of the
material was enhanced. The mechanical properties of the Ti-25Nb-6Zr biomedical alloy
sintered at 1623 K revealed a high compressive strength of 1678 ± 5 MPa and a strain of
14.5 ± 0.5%. The strengthening mechanism was discussed from the aspects of the higher
content of bcc-β-Ti phase formed as well as the more homogeneous distribution of Nb
and Zr at high sintering temperatures. This work provides a new fabrication method for
Ti-25Nb-6Zr biomedical alloy specimens with high strength and low modulus values. A
comprehensive study of this technology and its strengthening mechanisms will provide
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the basis for the preparation of high-performance Ti-25Nb-6Zr alloy samples with further
improved properties.
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