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Abstract: Shapley value regression with machine learning models has recently emerged as an
axiomatic approach to the development of diagnostic models. However, when large numbers of
predictor variables have to be considered, these methods become infeasible, owing to the inhibitive
computational cost. In this paper, an approximate Shapley value approach with random forests
is compared with a full Shapley model, as well as other methods used in variable importance
analysis. Three case studies are considered, namely one based on simulated data, a model predicting
throughput in a calcium carbide furnace as a function of operating variables, and a case study related
to energy consumption in a steel plant. The approximately Shapley approach achieved results very
similar to those achieved with the full Shapley approach but at a fraction of the computational cost.
Moreover, although the variable importance measures considered in this study consistently identified
the most influential predictors in the case studies, they yielded different results when fewer influential
predictors were considered, and none of the variable importance measures performed better than the
other measures across all three case studies.

Keywords: Shapley value regression; variable importance analysis; calcium carbide; steel production;
Boruta algorithm

1. Introduction

As in many other technical disciplines, the development and implementation of
models are key to efficient operation of metallurgical processes. These models are often
data-based, as developing first-principles models may either be too costly or infeasible.
With the increasing availability of large quantities of high-quality process data, such models
may provide reliable prediction of key performance indicators in process systems, as
evidenced by recent examples of material characterization [1,2], process operations [3–5],
and design [6]. However, if these processes are highly nonlinear and complex, as is often
the case, the models may not be easily interpretable, which may be a problem if the
trustworthiness of models is critical or if such models are used for diagnostic purposes.

Variable importance analysis [7] comprises a variety of methods that are used to
interpret data-based models. Although most approaches are empirical, Shapley value
analysis has recently attracted attention as an axiomatic approach that can be used with
machine learning models [8,9].

Although the underlying principle of Shapley value regression was formulated in the
1950s [10], it has only recently been applied in conjunction with machine learning models,
such as random forests [8]. In principle, regression is interpreted as a cooperative game
in which the predictors are players and the model output is the reward that has to be
allocated fairly among the predictors [11]. Shapley values are uniquely characterized by
the following axioms [9], as informally summarized below:
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• Efficiency: The worth (e.g., the target variable variance explained) of the full model is
losslessly distributed among the predictors;

• Null Player: Predictors not contributing to the model are identified by Shapley values
of zero;

• Symmetry: Predictors contributing equally to the model have equal Shapley values; and
• Additivity: If the model score is derived from the sum of two intermediate values,

then the overall contribution allocated to a specific predictor is equal to the sum of the
contributions of the predictor to each of the intermediate values.

Despite these intuitively appealing characteristics of Shapley value methods, they
are not necessarily suitable or optimal feature selectors [9,12]. Relatively few comparative
analyses of variable importance measures have been conducted; therefore, in this paper,
we explore the application of Shapley regression analysis with random forest models.
Furthermore, we propose an approximation of the approach that does not suffer from the
computational cost of Shapley methods, yielding results similar to those obtained with full
Shapley models but at a fraction of the computational cost.

The remainder of this paper is organized as follows. In Section 2, the overall analytical
methodology is briefly described. In Sections 3–5, variable importance measures associated
with random forests are investigated. In Section 6, the results are discussed. Finally, in
Section 7, we summarizes the conclusions of the study.

2. Analytical Methodology

Random forest models were constructed, and four variable importance measures
based on these models were used to evaluate the influence of different predictors on the
performance of models based on simulated data, data from a calcium carbide furnace,
and data from a steel plant. These measures were based on the permutation importance,
an impurity criterion, Shapley regression values, and an estimate of the Shapley values
based on a subset of the coalitions of predictors used in the models. These approaches are
formally summarized below.

2.1. Random Forests

Random forests [13] are ensembles of classifications of regression trees that have be-
come widely established in industrial processes, manufacturing, the healthcare industry,
business, and finance since their development in the 1990s. These analytical tools have
cutting edge capability in terms of classification and regression; can handle categorical
or continuous variables, missing data [14], and high-dimension, low-sample-size prob-
lems [15]; and can be used in unsupervised learning applications [16]. In metal processing,
they are used not only for their predictive capabilities but also as diagnostic tools to better
understand the influence or contributions of operational or system variables on target
variables [17–19].

Given a training data set (X ∈ Rn×M) with labels (y ∈ Rn) consisting of n samples of
M variables, random forests are constructed by:

i. Selecting ntree samples from X;
ii. Selecting mtry predictors from X at each split to construct a classification or regres-

sion tree;
iii. Repetition of (i) and (ii) until each terminal node of the tree has reached the maxi-

mum depth of the tree (lmax) as specified by the user or fewer, and each terminal
node contains the minimum number of samples (nnode) as specified by the user;

iv. Repetition of (i), (ii), and (iii) until the specified number of trees (K) has been grown; and
v. Aggregation of the information from the K trees in the forest averaged for regression

or making use of majority voting for classification.
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2.2. Permutation Variable Importance Measure (PVIM)

The permutation variable importance measure is based on the use of out-of-bag (OOB)
data. More formally, let Tk be the OOB data consisting of nOOB samples seen by the k′th
tree in the random forest during training, i.e.,

Tk =
{(

x(k)j , y(k)j

)}
, k = 1, 2, . . . ntree and j = 1, 2, . . . nOOB (1)

The mean squared error (MSE) of the k’th tree can then be defined as:

MSEk =
1

nOOB

nOOB

∑
j=1

(
y(k)j − ŷ(k)j

)2
(2)

and

MSEk,i =
1

nOOB

nOOB

∑
j=1

(
y(k)j − ŷ(k)j\{i}

)2
(3)

where ŷ(k)j and ŷ(k)j\{i} are the predictions of the model before and after random permutation
of the i′th variable Xi, respectively.

The permutation variable importance measure (PVIM(k)
i ) of the k′th tree for the i′th

variable is then:
PVIM(k)

i = MSEk,i −MSEk (4)

and

PVIMi =
1

ntree

ntree

∑
k=1

PVIM(k)
i (5)

For categorical output, PVIMi is defined as the mean difference between the error
rates of the OOB data after and prior to permutation of the values of variable Xi.

2.3. Impurity Variable Importance Measure (IVIM)

Unlike the permutation variable importance measure, which is model-agnostic, impu-
rity variable importance measures, such as the Gini variable importance measure [20] and
cross-entropy measure are associated with the structure of the random forest model. At
each node in each tree of the forest, the selection of both the variable to split and the split
point is based on maximizing the decrease in the impurity index of the node.

More formally, considering a binary classification problem, let pF(Ci) be the frequency
or fraction of the samples allocated to class Ci i = 1, 2. The Gini index of the node can then
be defined as:

GIF =
C

∑
i 6=j

pF(Ci)pF
(
Cj
)
= 1−

C

∑
i 6=j

p2
F(Ci) (6)

The change in the Gini index that is maximized when the node is split is:

∆GI = GIF − pRGIR − pLGIL (7)

where GIL and GIR are the Gini indices of the left and right descendent node, respectively,
in the binary split; and pL and pR are the fractions of samples associated with the left and
right descendent node, respectively.

GVIM(k)
i of variable Xi in the k′th tree is defined as the sum of the decreases in the

impurity indices of the nodes splitting on variable Xi. GVIMi of variable Xi is determined
by summing or averaging GVIM(k)

i across all the trees in the random forest.
This approach is readily extendable to regression trees [16], for which the mean square

error is typically used as the impurity measure; that is, splitting of nodes in regression trees
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is not based on the Gini index as such, but the prediction errors in the descendent nodes
are minimized, i.e.,

I IF = ∑Xi,L
(yi − ŷi)

2 + ∑Xi,R
(yi − ŷi)

2 (8)

The importance of a predictor in a random forest model used for regression is es-
sentially based on the weighted average of the incremental purities associated with each
variable (split) using the node population as a weight. In this paper, these variable impor-
tance measures are referred to as impurity variable importance measures (IVIMs), with
IVIMi indicating the impurity variable importance of the i′th ofM predictors.

2.4. Shapley Variable Importance Measure (SVIM)

Consider a set (S) ofM predictors with a reward function ( υ : P(M)→ Rυ ), such
that υ(∅) = 0. Rυ ⊆ R is a real number, and P(M) is a family or coalition of sets overM.
If S ⊂M, then υ(S) is the reward generated by the coalition S when they cooperate. The
Shapley value of the i′th predictor in the set is defined by Equation (9), where |S| is the
cardinal number of S, i.e., the number of predictors in the coalition.

φi(υ,M) =
M
∑

S⊆M\{i}

(M− |S| − 1)!S!
M!

[υ(S ∪ {i})− υ(S)] (9)

In this investigation, the reward function (υ) is defined as the coefficient of determina-
tion of the model, i.e., υ = SVIMi = R2

i .

2.5. Approximate Shapley Variable Importance Measure (ASVIM)

Generating Shapley values for the predictors is an non-deterministic polynomial-time
(NP)-hard optimization problem with an exponential computational time related to 2M.
In practice, this means computation of Shapley values for high-dimensionality systems is
not feasible.

Therefore, instead of considering all the coalitions to generate the Shapley values, only
the coalitions with the largest weights are considered. As indicated in Figure 1, these are
essentially the models containing either very small or very large coalitions of predictors.
More specifically, only the 2M coalitions defined by S = ∅, S = {i}, S ⊂ M\{i} and
S =M, for i = 1, 2, . . . M are considered.
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This reduces the time complexity to a linear relationship, i.e., related to 2M.
As before, the variable importance measure is defined by υ = SVIM∗i = R2

i , with the
‘*’ superscript indicating an estimate based on the reduced set of coalitions considered.

3. Case Study 1: Introductory Example with Simulated Data
3.1. Simulated Data with No Correlation between Variables

A simulated data set with 1000 samples was generated, where X ∈ R1000×3 and
Y ∈ R1000×1, where Y = X3

2 + 1
X3

. The matrix (X) consisted of multivariate random
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numbers with a mean vector of
¯
x = [0 0 0] and a covariance matrix (Σ). As indicated by

Equation (10), the three variables have no correlation with each other.

∑ =

1 0 0
0 1 0
0 0 1

 (10)

Random forest models were fitted to the data, with the following optimal hyperpa-
rameters: K = 100; mtry = 3; ntry = 80% of the data; minimum leaf size, nlea f = 5. On average,
the random forest model could explain 67% of the variance of the response variable. For
the SVIM, and ASVIM, the data were randomly divided into training and test sets with a
ratio of 80 to 20, respectively.

The results of the variable importance analysis are shown in Figure 2. All four variable
importance measures (PVIM, IVIM, SVIM, and ASVIM) identified X3 as the most important
variable. PVIM and IVIM identified X2 as the second most important and X1 as the least
important. In contrast, SVIM and ASVIM could not distinguish between the importance of
X1 and X2, as indicated by the fact that the median values of these indicators are within the
ranges of the notches of the box plots. Moreover, SVIM indicated that both these variables
contribute essentially zero to the variance explained by the model. The same results would
likewise be obtained with rescaled ASVIM values.
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3.2. Simulated Data with Strong Correlation between Variables

A simulated data set with 1000 samples was generated, where X ∈ R1000×3 and
Y ∈ R1000×1, where Y = X3

2 +
1

X3
. The matrix (X) comprised multivariate random numbers

with a mean vector of x = [0 0 0] and a covariance matrix (Σ). As indicated by Equation (11),
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the first and second variables were strongly correlated with each other, whereas the third
variable was independent of the other two variables.

∑ =

 1 0.9 0
0.9 1 0
0 0 1

 (11)

Random forest models were fitted to the data, with the following optimal parameters:
K = 100; mtry = 2; ntry = 80% of the data; minimum leaf size, nlea f = 5. On average, the
random forest model could explain 70% of the variance of the response variable. As before,
for SVIM and ASVIM, the data were randomly divided into training and test sets with a
ratio of 80 to 20, respectively.

The results obtained with the variable importance measures are shown in Figure 3.
The ability of both permutation and impurity variable importance measures to discriminate
between predictors were adversely affected with increased correlation between predic-
tors [14] With the exception of PVIM, none of the variable importance measures could
discriminate between the effects of variables X1 and X2.
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4. Case Study 2: Calcium Carbide Furnace

Historic process data collected daily over an eight-month period of production of CaC2
in an industrial submerged arc furnace previously reported by Aldrich and Reuter [21] were
considered in the analysis. These data were also considered by Jemwa and Aldrich [22]
in the context of fault diagnosis with kernel-based systems. In contrast to these previous
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studies, Shapley value regression was used to facilitate a quantitative analysis of the
importance of the operational variables in the furnace.

The 9 predictor variables with 240 samples each are summarized in Table 1. The
variables in the last two rows, namely carbide production and carbide grade, were the
key performance indicators of the furnace and therefore also the response variables to be
predicted from the operational variables.

Table 1. Calcium carbide furnace data.

Variable Units Data

Furnace load ton
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A color-coded image of the correlation matrix of the predictor and target variables is
shown in Figure 4. The two target variables showed significant correlation, although the
data suggest that this may be attributed to outliers or extreme values at low production
rates. The furnace load and resistance also showed significant correlation with carbide
recovery. Three predictors in particular were highly correlated: The furnace load and lime
consumption (with a binary correlation of R = 0.935), as well as the furnace load and the
coke consumption (R = 0.644).
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The multicollinearity of the predictors is summarized by two commonly used indica-
tors, namely the condition index of the predictors, i.e., CI = 70.3, which exceeds the value
of 30 that is often used as an indication of significant collinearity [23]. However, based on
the variance inflation factors (VIFs) of the numerical predictors summarized in Table 2,
and a criterion of >10 [23], only the lime seems to be significantly correlated with the
other predictors.

Table 2. Variance inflation factors of the calcium carbide furnace predictors.

Predictor Furnace
Load Energy Resistance Lime Charcoal Coke Anthracite Lime Under Lime Over

VIF 9.68 1.26 1.43 14.5 5.93 3.25 2.77 1.15 1.16

Random forest models were fitted to the data, with the following optimal parameters:
K = 100 mtry = 6; ntry = 80% of the data; minimum leaf size, nlea f = 5. On average, the
random forest model could explain 96% of the variance of the response variable. Similar to
the previous two case studies, the data were randomly split into training and test sets in an
80:20 ratio for computation of the ASVIMs and SVIMs.

As shown in Figure 5, the four variable importance measures all identified the two
most important variables, i.e., the furnace load and lime, but from the third place onwards,
results differed. The Shapley measures (SVIM and ASVIM) flagged charcoal as the third
most important, significantly explaining approximately 12% of the variance of the target
variable. PVIM and IVIM both flagged power consumption as the third most important
variable. PVIM and IVIM tended to rank the variables similarly, whereas SVIM and ASVIM
provided similar ranking but differing from the predictions of PVIM and IVIM. SVIM and
ASVIM yielded the same ranking profiles, but as expected, ASVIM showed larger variance
in the results.
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5. Case Study 3: Simulation of a Steel Plant

The final case study is based on a public data set that was obtained from the University
of California Irvine UCI Machine Learning Repository (UCI Machine Learning Reposi-
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tory: Steel Industry Energy Consumption Dataset Data Set). The data set consisted of
35,040 samples of nine input variables, as summarized in Table 3.

Table 3. Predictors of energy consumption in a steel plant (Sathishkumar et al. [24]).

Variable Symbol Units

Energy consumption (target) * E kWh

Lagging current reactive power ** LagRP kVAh

Leading current reactive power ** LeadRP kVAh

Carbon dioxide emission ** CO2 ppm

Lagging current power factor ** LagPF %

Leading current power factor ** LeadPF %

Number of seconds from midnight ** NSM s

Week status *** WStatus 0 (weekend) 1 (weekday)

Day of week *** DWeek Mon, Tue, Wed, . . . Sun

Load type *** LType Light, Medium, Maximum
* Target variable, ** continuous predictor, *** categorical predictor.

Multicollinearity in the predictors could be characterized by a condition index of
CI = 296.5, indicative of strong multicollinearity. The variable inflation factors are summa-
rized in Table 4. The CO2 predictor stands out as highly correlated with the other predictors,
whereas LeadRP and LeadPF also show borderline strong multicollinearity.

Table 4. Variance inflation factors of the predictors of energy consumption in a steel plant.

Predictor LagRP LeadRP CO2 LagPF LeadPF NSM

VIF 7.46 9.64 43.2 3.98 10.9 1.52

5.1. Boruta Algorithm

Boruta algorithms [25] are wrapper methods built around random forest models.
The Boruta algorithm is initiated by complementing the predictors to be analyzed

with shadow predictors, i.e., a permuted version of each variable. A random forest is
subsequently fitted to the data, with the original and shadow features as predictors. This
model is used to assess the importance of each variable or predictor.

A threshold equal to the performance of the best shadow feature or predictor is
calculated, and variables with performance exceeding the threshold are designated as ‘hits’
on the model. This process is repeated a set number of times, and the hits of all predictors
are recorded. The Boruta algorithm does not use a hard limit (% of hits) for retention
or elimination of features. Instead, predictors are grouped into three sets based on the
binomial distribution of the recorded hits.

5.2. Boruta Analysis of Data

The importance of the nine predictors summarized in Table 3 with respect to the
energy consumption (E) in a steel plant in South Korea was previously investigated by
Sathishkumar et al. [24], who made use of a Boruta algorithm for analysis. Their results are
summarized in Figure 6, with BVIM indicating the Boruta variable importance measure.
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Figure 6. Boruta analysis of the importance of predictors of energy use in a steel plant
(Sathishikumar et al. [24]).

5.3. Shapley and Random Forest Variable Importance Measures

As before, random forest models were fitted to the data, with the following optimal
parameters: mtry = 5; ntry = 80% of the data; minimum leaf size, mlea f = 5. On average, the
random forest model could explain 99.8% of the variance of the response variable. For the
SVIM and ASVIM, the data were randomly divided into a training set and test set with a
ratio of 80% to 20%, respectively.

For comparative purposes, the results are visualized in Figure 7. The top row shows
the ranking of the variables by the Boruta algorithm, as reported by Sathishkumar et al. [24].
As indicated, all the algorithms were in agreement on the ranking of the first three variables
(CO2, LagRP, and LagPF), except for the random forest with the impurity criterion, which
ranked LType as the third most important variable.

Predictor ranking are shown in Table 5. The most notable differences are between
the random forest using the permutation and impurity criteria and the Boruta algorithm.
Boruta (BVIM) ranked LType last (ninth position), whereas all the other measures gave
ranked it higher (sixth position). This is interesting because the Boruta algorithm is an
iterative version of the random forest using the permutation variable importance measure.

Table 5. Ranking of predictors of energy consumption in a steel plant based on median values of
variable importance measures (BVIM, PVIM, IVIM, SVIM, and ASVIM).

CO2 LagRP LagPF LeadRP NSM WStatus LeadPF DWeek LType

BVIM 1 2 3 4 5 6 7 8 9

PVIM 1 2 4 7 6 9 5 8 3

IVIM 1 2 4 7 6 9 5 8 3

SVIM 1 2 3 7 4 9 6 8 5

ASVIM 1 2 3 7 4 9 6 8 5
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The Shapley algorithms and the Boruta algorithm concurred on the ranking of the three
most important predictors. In contrast, PVIM and IVIM ranked LagPF as the least important,
whereas BVIM, SVIM, and ASVIM ranked it in third position. Other differences in the
ranking of the variables are also apparent, although it should be borne in mind that the
median variable importance measures of the lower ranked predictors are relatively small,
and these differences are not as pronounced as those between the top-ranked predictors.

As shown in Table 5, the Shapley algorithm and its approximation yielded identical
results. They differ in that the full Shapley algorithm distributes the variance explained by
the model (the R2-coefficient) across all the predictors, whereas the approximate Shapley
model does not. However, the virtually identical profiles of the variables generated by
the two Shapley approaches suggest that the approximated Shapley values can simply be
rescaled to similarly yield an estimate of the variance explained by each predictor.

6. Discussion of Results

In this investigation, an approximation to Shapley value regression was proposed, and
this approach, as well as full Shapley value regression, were empirically compared with
other variable importance measures associated with random forests. We found that the
approach based on the approximated Shapley value regression yielded results similar to
those obtained with the full Shapley value model but at a fraction of the computational
cost as a result of linearly scaling with the number of predictors in the model.

Care should be taken when variable importance measures are compared, as the bases
for comparison are not the same. For example, in Shapley value models, predictors are
evaluated on the basis of their marginal contributions to the model payoff (R2 value
in this investigation) in different coalitions of predictor variables (SVIM and ASVIM).
The permutation variable importance measure (PVIM) evaluates predictors based on
their effect on the model when eliminated from the full model. In contrast, the impurity
variable importance measure (IVIM) evaluates the importance of predictors in terms of
their inclusion in the structures of the trees of the random forest.

The impurity variable importance measure is popular, owing to its simplicity and
speed with which it can be computed. On the downside, impurity variable importance mea-
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sures may be biased toward predictors with many possible split points [20,26]. Intuitively,
as every possible split point is tested at each node in the tree, continuous or high-cardinality
variables will have many more split points to evaluate than categorical or low-cardinality
variables. With this multiple testing, there is an increased probability that, purely on a
random basis, a predictor may predict the target well and therefore be included in the tree
structure of the random forest. This problem is exacerbated when predictors are correlated,
as the tree can only consider uniaxial splits. As a consequence, it may underestimate the
effect of categorical variables with a few groups only, as indicated by the low ranking of
the LType predictor in Case Study 3.

In contrast, the permutation variable importance measure is not affected by this bias
and is therefore generally preferred over the impurity variable importance measure [27].
However, PVIMs are computationally demanding for high-dimensional data and may
provide less robust results than IVIMs [28].

The four variable importance measures (PVIM, IVIM, SVIM, and ASVIM) provided
similar results. The approximate Shapley method (ASVIM) provided results similar to
those of the Shapley measure (SVIM) but at a fraction of the computational cost. This
approach could enable analysis of high-dimensional systems that would not otherwise be
possible, owing to computational limitations.

The Boruta variable importance measure considered in Case study 3 has previously
been compared with PVIM [29], where it performed better, also outperforming a number of
other algorithms. In the last case study in this investigation, it yielded results that differed
from those obtained with PVIM, IVIM, SVIM, and ASVIM with regard to the lower-ranked
variables.

However, the lower-ranked predictors contributed similarly and weakly to the target
variable, which would make exact ranking difficult, as was also suggested by the results of
the simulations in Case Study 1.

7. Conclusions

Based on the results of this investigation, it can be concluded that full Shapley value
models can be reasonably approximated by a combination of their full and single predictor
coalitions. This approach yielded predictor rankings similar to those obtained by the full
Shapley model. The payoff is a model that scales linearly with the number of predictors to
be evaluated, making it applicable to high-dimensional systems, where full Shapley value
models cannot be used.

When applied to operational data from a calcium carbide furnace, all variable impor-
tance measures identified the furnace load and lime consumption as the most important
predictors of throughput. The SVIM and ASVIM measures also indicated the importance
of charcoal and coke consumption in the model.

Similar results were obtained with the identification of the most important variables on
the consumption of electrical energy in a steel plant previously studied in [24]. The top-three
variables for which there was consensus among the Shapley and Boruta variable importance
measures explained approximately 67% of the variation in the energy consumption.
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Nomenclature

Ci Class to which a sample belongs in a decision tree
CO2 Carbon dioxide emission
COKE Coke consumption in a calcium carbide furnace
DWeek Day of week
4GI Change in the Gini index that is maximized when the node is split
E Energy consumption
GIF Gini index of a node in a decision tree
GIL Gini index of left-descendent node following the split of a parent node in a decision tree
GIR Gini index of right-descendent node following the split of a parent node in a decision tree
GVIMi Gini variable importance measure of the i′th predictor in a random forest classifier

GVIM(k)
i Gini variable importance measure for the i′th predictor in the k’th tree in a random

forest classifier
IVIMi Impurity variable importance measure of the i′th predictor in a random forest
lmax Maximum depth of a tree in a random forest
K Number of trees in a random forest
LagPF Lagging current power factor
LagRP Lagging current reactive power
LeadPF Leading current power factor
LeadRP Leading current reactive power
lmax Maximum depth of a tree in a random forest
LType Load type
M Number of predictors in a machine learning model
MSEk Mean squared error of the k′th tree in a random forest
MSEk,i Mean squared error of the k′th tree in a random forest when the i′th predictor is permuted
mtry Number of variables drawn from training data at node splits in a random forest
n Number of samples in a data set
NSM Number of seconds from midnight
nOOB Number of OOB samples in a random forest model
nlea f Minimum leaf size in a decision tree
ntree Number of observations drawn from training data at node splits in a random forest
pF Fraction of samples allocated to a category
pL Fraction of samples allocated to the left of a split node in a tree
pR Fraction of samples allocated to the right of a split node in a tree
P(M) Coalition of predictor sets overM
PVIMi Permutation variable importance measure of the i′th predictor in a

random forest

PVIM(k)
i Permutation variable importance measure of the k’th tree for the i′th predictor in a

random forest
R2 Coefficient of determination of a machine learning model
Rυ A real number representing the value of a reward function (υ)
S Coalition of variables or predictors in a machine learning model
SVIMi Shapley variable importance measure of the i′th predictor in a random forest
Tk OOB data consisting of nOOB samples seen by the k′th tree in a random forest

during training
φi Shapley value of the i’th predictor
υ Reward function in Shapley value analysis
WStatus Week status
X Data matrix with n samples ofM predictors

x(k)j i′th vector of predictors seen by the k′th tree in a random forest
Y Labels of variables X
y(k)j i’th label associated with x(k)j seen by the k′th tree in a random forest

ŷ(k)j i’th label estimated by the k′th tree in a random forest with input x(k)j

ŷ(k)j\{i} i′th label estimated by the k’th tree in a random forest with input x(k)j not containing

the i’th predictor
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