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Abstract: To investigate the effect of selective laser melting (SLM) energy densities on the performance
of porous 316L stainless steel bone scaffolds, the porous bone scaffolds with a face-centered cubic
(FCC) structure were prepared using SLM technology, and a comprehensive study combining finite
element analysis (FEA) and experiments was conducted on the SLM-formed 316L porous bone
scaffolds. The mechanism of how various energy densities affect bone scaffolds were identified, and
the effects of different energy densities on the primary dendrite spacing, grain orientation, residual
stress, and transient melt pool variation in the scaffolds were discussed and summarized. It was found
that the change in the energy densities had a more serious effect on the primary dendrite spacing,
with the primary dendrite spacing increasing from 320 to 501 nm when the energy densities were
increased from 41.7 to 111.1 J/mm3. In addition, analysis of the residual stress in the formed scaffolds
showed that when an energy density of 41.7 J/mm3 was chosen for construction, the internal residual
stress in the scaffolds reached a minimum value of 195.78 MPa, a reduction of approximately 36.6%
compared to that of 111.1 J/mm3 for the porous scaffold. For the other properties of the scaffolds, the
choice of low energy densities for the construction of FCC-structured porous bone scaffolds allowed
for a maximum 10% reduction in the controlled deformation and a maximum 17% increase in the
compressive properties. At the same time, it was found that the analysis results of the SLM-forming
process by the FEA method were consistent with the experimental results. The main innovation of
this paper is the proposal of the best construction parameters for porous bone scaffolds with an FCC
structure formed by SLM and verification of the rationality of the best parameters through macro and
micro experimental analysis, which guides the construction of porous bone scaffolds with an FCC
structure formed by additive manufacturing. In addition, this study used finite element simulation
to analyze the SLM process. This provides early prediction, optimization, and improvement for
SLM-forming FCC porous bone scaffolds. The most important thing is that FEA can be used to more
rapidly and economically analyze SLM. In the future, FEA can be used to provide a reference for
porous bone scaffolds with different structures, different construction energy densities, different
materials, and additive manufacturing in other industries.

Keywords: energy density; selective laser melting; residual stress; finite element analysis; grain

1. Introduction

SLM technology has received a great deal of attention and application in many fields
such as engineering and biomedicine due to its ability to produce high-precision, high-
density, and high-performance metal parts [1–3]. SLM offers the advantage of being
precisely customizable and is also capable of being formed in a single pass for extremely
complex metal parts that can be put to use directly after a simple post-treatment process.
Many metallic biomaterials, such as Ti, Ta, and 316L stainless steel, are currently used in the
manufacture of surgical tools and medical implants through SLM technology due to their
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excellent biocompatibility [4], high fracture toughness [5], adjustable stiffness to match the
host tissue, and high wear and corrosion resistance [6]. However, many obstacles must be
overcome before SLM technology can become a key research and development process in
the biomedical field, the biggest of which is the relationship between process parameters
and the final service performance of SLM-manufactured parts. It has been reported that up
to hundreds of factors can influence the quality of additively manufactured parts [7,8] and
that the selection of appropriate process parameters (e.g., energy density, build orientation,
scanning strategy) plays a critical role in determining the final performance.

In the field of bone tissue engineering, changes in the manufacturing process [9,10],
materials [10,11], and structural shape [12,13] of porous bone scaffolds can achieve max-
imum optimization for the fatigue strength, elastic modulus, and yield strength of bone
scaffolds, and, together with the corresponding biomedical experiments, greatly facilitate
the application of artificial porous bone scaffolds. Jaroslav et al. [14] formed 316L stainless
steel scaffolds using the SLM technique, affirming SLM is a suitable technique for the
preparation of highly porous implants from 316L stainless steel in terms of the mechanical
properties and biocompatibility. Zhu et al. [15] found that the degree of densification of
SLM parts was increased by varying the forming process parameters, thereby improving
the wear resistance. E. Liverani et al. [9] found that the laser power of SLM had the greatest
effect on the part density while the hatching spacing and building orientation did not have a
significant effect in the range tested. Yadollahi et al. [16] found that the construction process
parameters play a decisive role in the thermal cycling during the forming process, which in
turn affects the tissue structure and thus the mechanical strength. Wang [17] and others
have pointed out that the thermal cycling generated by the rapid melting-solidification
characteristics of SLM technology can lead to the accumulation of residual stress within
the fabricated part, which can lead to deformation and negatively affect the performance
of the part. Mahyar et al. [18] found that by establishing the relationship between the
processing parameters, laser absorption rate, and dynamic changes in the melt pool, the
selection of optimal processing parameters in laser processing can achieve the effect of
controlling the induced heat and reducing the thermal residual stress. Mercelis et al. [19]
found that the material properties, sample and substrate height, laser scanning strategy, and
heating conditions were the most important parameters determining the magnitude and
shape of the residual stress distribution in the fabricated part. In addition, some scholars
have found in their research that although the parts formed by SLM technology show
improvements in terms of the yield strength, etc., there is a decrease in the elongation. To
address this phenomenon, Song [20] and Ab [21] have pointed out that the porosity and
denseness caused by the forming process are important factors affecting ductility while
the increase in the mechanical strength is related to the degree of grain refinement and
high dislocation density. Zhou et al. [22] studied the multi-scale relationship between the
curvature, microstructure, and fatigue properties of curved parts manufactured by additive
manufacturing and found that the workpiece with a large curvature has a lower fatigue life
while the workpiece with a small curvature has a higher forming quality and ideal grain
structure. This provides a theoretical basis for the fatigue performance of the formed parts.
Xu et al. [23] focused on the performance of the body-centered cubic porous bone scaffold
and concluded that the use of a low energy density can reduce the defects in the formed
parts and control the residual stress at a lower level.

The existing research on SLM technology in biomedicine has focused on the structure
and performance of porous bone scaffolds, but there has not been much detailed research
on whether different structures of porous bone scaffolds need to be built with specific
processing parameters, whether the processing parameters chosen for different structures
have the same effect on the quality of the scaffold, the mechanism of influence and the
defect prevention mechanism, and the types of defects that tend to occur in the construction
of certain structures and the types of defects that are likely to occur in the construction of
certain structures. Furthermore, their elimination methods have not been studied in much
detail. Manufacturing defects in additive manufacturing cannot be completely avoided,
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but significant improvements in defects can be achieved by optimally adjusting various
machining parameters and processing conditions. Sara et al. [24] found through their
research on SLM that by designing and fabricating several benchmark artifacts, the most
appropriate design for the desired part can be ensured in the SLM manufacturing process,
which has important implications for improving additive manufactured parts in biomedical
applications. In this paper, the effect of different process parameters on the melt pool was
investigated through a combination of FEA and experimental methods to study the effect
of SLM formation on porous bone scaffolds with an FCC structure and to explore the law
of grain structure development in the melt pool. This study aimed to better understand the
influence of the temperature field, melt pool flow, melt pool grain, and the distribution and
evolution of residual stress in the scaffolds on the microstructure and properties during the
processing of 316L stainless steel to obtain porous bone scaffolds of high-performance 316L
stainless steel.

2. Experiment Work
2.1. Powder Materials

In this study, 316L pellets obtained by argon atomization were used as the original
material (Figure 1) and its main chemical composition is shown in Table 1. The 316L pellets
are mainly spherical in shape and their particle size is mainly distributed between 11 and
45 µm. The average particle size was 27 µm.
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Figure 1. The 316L pellets and particle size: (a) SEM image of 316L pellets, (b) particle size distribution. 
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Table 1. Chemical compositions of the as-used 316L stainless steel pellets.

Element Fe C Mn Si Ni Cr Mo S P

Content (wt.%) Balance ≤0.03 ≤2.0 ≤0.75 12–14 16–18 2–3 ≤0.03 ≤0.045

2.2. Model

At present, there have been many studies on porous scaffold structures, such as body-
centered cubic (BCC) [18,25], three-cycle minimal surface [19,26], and column and face-
centered cubic structures [20,27], which can meet the requirements of human bone implants
by adjusting the design parameters such as porosity and pore diameter. The diagonal design
of the face-centered cubic structure has a higher bending stiffness, especially torsional
stiffness, than other structures. This scaffold was designed with 85% porosity and a
900 µm pore size [21,28]. The model is constructed as shown in Figure 2 (consisting of
4 × 4 × 4 cells), using an array method to replicate the individual cells, which in turn form
the dimensions required for experimental or engineering purposes.
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Figure 2. FCC structural porous bone scaffolds modeling process.

2.3. Experimental Program Design

The experimental equipment is FS121M manufactured by Huashu Hi-Tech, China. The
maximum laser power is 200 W, default is 180 W, double spot design diameter is 40–100 µm,
default is 60 µm, effective forming area is 115 mm × 115 mm × 100 mm, maximum
scanning speed is 1500 mm/s, default is 800 mm/s, layer thickness is 0.02–0.08 mm, default
is 0.03 mm. After integrating the equipment, the structure of the support, and the research
results of many scholars, it was decided to adopt the machining parameter scheme shown
in Table 2, where the energy density is calculated by Equation (1), and in this study, the
energy density was controlled within 40–120 J/mm3 to better explore the influence of the
parameters on the performance. The scanning strategy was processed using a selected turn
of 67◦ per layer [29], and the specific forming principle is shown in Figure 3:

ω =
p

vst
(1)

Table 2. Orthogonal parameter design.

Route Laser Power
P (W)

Scanning Speed
V (mm/s)

Hatching Spacing
S (mm)

Energy Density
ω (J/mm3)

1 100 500 0.06 83.3
2 100 600 0.10 41.7
3 100 700 0.08 44.6
4 130 500 0.10 65.0
5 130 600 0.08 67.7
6 130 700 0.06 77.4
7 160 500 0.08 100.0
8 160 600 0.06 111.1
9 160 700 0.10 57.1

In the formula, P is the laser power (W), v is the laser scanning speed (mm/s), s
is the laser hatching spacing (mm), and t is each laying powder thickness (mm), where
t = 0.04 mm.
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2.4. Analysis Methods

For the study of the 316L porous bone scaffolds, samples were sanded with 200–1200 grid
SiC papers and polished to a mirror surface with 1µ diamond paste. Etching with aqua
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regia (HCl:HNO3 = 3:1, ThermoFisher Scientific, Shanghai, China) and analysis of the
grain morphology size, etc. were carried out using a Scanning Electron Microscope (SEM)
(ZEISS SUPRA 55, Mainz, Germany). Phase characterization of porous bone scaffolds using
X-ray diffraction (XRD), (Rigaku smartlab, Tokyo, Japan). XRD measurements were made
with a step size of 0.05◦ and a step time of 1 s across 2θ positions between 20◦ and 100◦.
Residual stress testing of porous bone scaffolds using X-ray diffraction (Proto, Lasalle,
Windsor, ON, Canada), The X-ray method has the advantages of the mature principle (the
stress can be calculated by measuring the change in the lattice spacing), high precision,
and nondestructive testing. It has a recognized authority in the field of residual stress
nondestructive testing, which is helpful for effect verification before and after the process
implementation. Hardness testing of porous bone scaffolds was carried out using hardness
testing equipment (Union HV-1000, Guangdong, China) with a holding time of 15 s and a
test load of 0.5N (Union HV-1000, China), with a holding time of 15 s, test load of 0.5 N.
An electronic universal testing machine (WDW-100E, Shandong, China) was selected to
perform compression experiments on porous bone scaffolds formed with different energy
densities, and the loading speed was 0.1 mm/s for pressure loading.

2.5. Finite Element Simulations

In this study, the MSC Simufact Additive software was used to simulate the printing
and forming process of porous bone scaffolds with an FCC structure, and to calculate the
residual stress and deformation inside the scaffolds by means of an intrinsic strain model.
In order to better understand the temperature and stress changes in the melt pool during
processing, the temperature and stress fields in the melt pool were calculated using MSC
Simufact Welding software. In the pre-processing, the mesh size of the finite element model
was 0.05 mm and the boundary and loading conditions were consistent with the actual
experiments.

3. Results and Discussion
3.1. Phase Characterization of Bone Scaffolds

In this study, XRD tests were carried out on SLM-formed parts with energy densities
of 41.7, 65.0, 77.4, and 111.1 J/mm3, as shown in Figure 4. For the porous scaffold XRD
patterns in the range of 2θ (20◦–100◦), strong γ-Fe crystal faces (111), (200) and (220)
diffraction peaks, and high contents of Ni and Cr in the formed part as seen in the XRD
pattern can be clearly seen, where only a single austenitic phase was obtained. For the 2θ
position, the intensity of the diffraction peaks and the half-peak width of the main peak
data are shown in Table 3. A comparison with the 2θ position of the standard γ-Fe phase
reveals a slight shift in the 2θ position of the porous scaffold machined and shaped using
SLM, presumably arising from the thermal stress introduced by SLM itself. It is evident
from Table 3 that the width of the diffraction peak of the γ-Fe phase significantly decreases
when the energy density increases from 41.7 to 111.1 J/mm3, but the intensity increases
significantly.

Table 3. XRD data showing the 2θ values, intensity, and peak FWHM of the main peaks.

Sample 2θ Location Intensity Peak FWHM

Standard (PDF NO.33-0937) 43.582 - -
41.7 J/mm3 43.520 1891 0.355
65.0 J/mm3 43.565 2080 0.331
77.4 J/mm3 43.566 2895 0.317
111.1 J/mm3 43.565 3201 0.295
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In addition, we can also use the XRD results to make a general prediction and compar-
ison of the grain size of the porous bone scaffolds. The average crystallite size of the the
bone scaffolds could be estimated based on the following Scherrer equation:

DC =
0.9λ

B cos θ
(2)

where B is the full width at half maximum of the XRD peak, θ is the diffraction angle,
λ is the wavelength of the X-ray, and Dc is the grain size. From the formula, we can
clearly see the relationship between the grains and energy densities, peak width, and X-ray
wavelength. Combined with the test results of this study, we can boldly speculate that with
an increase in the peak width, the grain size inside the porous bone scaffold should show
a small trend. Through the XRD test, we found that the peak width is largely affected by
the energy density, showing an inverse relationship with the energy density. Therefore, we
can infer that with the increase in the energy density, the grain size inside the porous bone
scaffolds should be gradually reduced.

The SLM process is a complex thermal processing process in which many factors
affecting the internal grain structure and properties are incorporated into it. We cannot
generalize about the internal grain structure and draw conclusions based on a simple test
and mathematical model, which is obviously not rigorous. However, the appearance of
Equation (2) does provide a certain reference for predicting the internal grain structure of
the scaffolds.

3.2. Microstructure of Bone Scaffolds

The mechanical properties of bone scaffolds are mainly dependent on the microstruc-
ture of the material, and the thermal history during SLM processing plays a decisive role
in the microstructure to a large extent. Localized high-energy irradiation in the powder
bed tends to lead to large temperature gradients and high cooling rates, resulting in strong
internal stress, affecting the grain growth and orientation. Defects in the microstructure are
inherent to this process, and the reduction of the generation of defects and optimization of
the mechanical properties are the focus of this study.

The optical image of the three-dimensional organization of the SLM-formed scaffold
is shown in Figure 5, from which it is evident that in the XY plane, there is a melt pool map
of the laser processing strategy. The melt pool is similar to many aligned weld channels
from the top, and after etching, the boundaries become obvious and show a clear difference
in the laser scanning direction between the new and old layers. In the XZ and YZ planes,
there is a fish scale pattern in the melt pool structures produced by the laser process. These
structures are roughly made up of three parts: melt pool A and B and remelt part C. In
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the experiments, it was found that the defects in the scaffolds formed at different energy
densities varied, but most of them were dominated by regular round holes (shown by the
red arrows), and there were also a few cracks, and a few cracks and irregular holes were
also found near the edge of the melt pool (shown by the white arrows).
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Figure 5. Organization of the porous bone scaffolds.

Figure 6 shows the internal grain structure of the melt pool for scaffolds formed at
different energy densities . It is clear from Figure 6 that various crystal morphologies exist
in different areas of the melt pool, mainly consisting of columnar and hexagonal equiaxed
grains. The red dashed line shows the melt cell boundary, near which elongated hexagonal
grains or columnar grains are predominant. The columnar grains are generally around
0.3–0.5 µm in diameter and a few tens of micrometers in length while the equiaxed grains
are approximately 300–600 nm in size.

It is of interest to note that the columnar crystal organization near the boundary is
not perfectly perpendicular to the tangent of the boundary—normally, the direction of
maximum heat flow is generally normal to the fusion line—whereas in Figure 6, we see
that there is a certain angular difference θ (shown by the white arrows) and we can see a
significant difference in the size of θ as the processing parameters are changed. As shown
in Table 4, as the energy density increases, the grain growth direction significantly changes,
showing a tendency for the energy density to increase and the tangent angle to the melt
pool to decrease. Especially, when the energy density is greater than 44.6 J/mm3, the offset
angle changes most obviously. This provides a new entry point for the study of internal
stress in the melt pool. The rate of solidification of the melt pool is determined by the
temperature field, and the heat and flow within the melt pool define the shape of the melt
pool, resulting in different internal stresses in the melt pool, which also determines the
different grain growth directions. The angular difference may be due to the grain growth
direction not only being influenced by the direction of the heat flow but possibly also by the
preferred growth direction related to the grain structure, the tensile stresses at the edge of
the melt pool, and the compressive stress at the center of the melt pool, which also provides
internal energy for grain growth and elongation. In addition, the comparison reveals a
high number of defects in the scaffolds formed using high-energy-density (≥100.0 J/mm3)
processing, mainly in the form of irregular voids and cracks (shown by red arrows).
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In order to better investigate the effect of energy densities on the processed melt pool,
FEA was carried out on the temperature and stress fields of the melt pool in this study and
the results are shown in Figure 7.
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Figure 7. Temperature and stress fields in the melt pool for different energy densities: (a,b) ω =
41.7 J/mm3, (c,d) ω = 67.7 J/mm3, (e,f) ω = 77.4 J/mm3, and (g,h) ω = 111.1 J/mm3.
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Table 4. Theta angle between the grain and boundary tangent for different energy densities.

Energy Density ω (J/mm3) θ (◦)

41.7 80.126
44.6 80.013
57.1 53.319
65.0 54.201
67.7 52.074
77.4 48.490
83.3 46.367
100.0 43.647
111.1 50.727

From the temperature field (a), (c), (e), and (g) plots in Figure 7, it is seen that the
laser shows a predominantly comet-like path during processing, with a significantly higher
temperature gradient in front of the heat source than at the tail. The most important factor
influencing the difference in the melt pool morphology and temperature is the absorption
ratio of the laser. Mahyar et al. [18] demonstrated that the absorption ratio of the laser is
an important parameter to consider when studying the melt pool and related phenomena.
Figure 7 shows the simulated analysis of the SLM process for layer 1. As seen in the figure,
most of the heat generated by the laser beam is absorbed by the substrate, and as the energy
density rises, the temperature within the melt pool gradually rises and the area of the
generated thermal radiation increases. Combined with the cutaway view of the melt pool
in Figure 8, it can be seen that the melt depth of the melt pool changes as the energy density
increases from 41.7 to 111.1 J/mm3. For the difference in the melt pool depth, it is believed
that the reason for this is that at higher temperatures, the molten state of the metal solution
increases, and the pores between the surrounding unmelted powder cause the solution to
flow unconstrained, so it tends to produce a melt pool surface with uneven heights, and
when the laser beam is irradiated, the multiple reflections of the laser beam towards the
end of the melt pool will further cause the depth of the melt pool to increase further, thus
increasing the depth, as shown in Figure 8. A deeper melt pool allows for better bonding of
the subsequent layers, but it can also lead to the introduction of a large amount of thermal
stress, which causes corresponding internal stress in the solidified layer and the substrate
during cooling, thus increasing residual stress.
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Figure 8. Effect of different energy densities on the melt pool depth: (a) ω = 41.7 J/mm3 and
(b) ω = 111.1 J/mm3.

SLM processing is usually a long process, and the repeated exposure to high energy
densities causes the solidified layer to be reheated. Moreover, the greater the depth of radi-
ation from the heat source, the more pronounced the repeated heating, which undoubtedly
provides the conditions for more defects to arise, and potentially changes the morphology
and structural distribution of the grains in the melt pool. As can be seen in the Figure 7
stress fields (b), (d), (f), and (h), the change in the energy density has a huge impact not only
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on the temperature field but also on the matrix and solidification layer, which shows a posi-
tive relationship between the stress values and energy density. It is also interesting to note
from the diagram that most of the stresses after machining are concentrated in the substrate.
The reason for this is that the substrate was at room temperature at the beginning, and the
high-energy laser beam and the large temperature gradient cause thermal expansion of the
substrate, resulting in thermal stress and induced deformation. In the end, large residual
stresses were generated internally. The cladding layer of a porous scaffold is fused directly
to the substrate; therefore, the magnitude and distribution of residual stress within the
substrate will also have an influence on the magnitude and distribution of internal stress
in the scaffold due to force interactions, which in turn will also have an influence on the
shape of the melt pool and the orientation of the internal grain tissue growth.

Figure 9 shows the primary dendrite spacing inside the melt pool for the nine process
parameters. The primary dendrite spacing can be calculated from Equation (3), where M is
the magnification, N is the number in the selected area, and A is the area of the selected area.
As can be seen from the graph, the grain size changes with the SLM processing conditions.
When the energy density is 83.3 J/mm3, it reaches the minimum, and when the energy
density is 65.0 and 67.7 J/mm3, the grain size suddenly increases. It is speculated that this
is due to improper processing parameters, which affect the cooling and solidification in
the molten pool. In combination with the stress field analysis in Figure 7d, the stress field
range under this process parameter is significantly larger than that under other process
parameters, thus causing changes in the grain structure during crystallization:

δ =
1
M

(
A
N

) 1
2

(3)
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In SLM processing, if the melt pool is being studied, it is necessary to mention the
problem of subcooling. The difference in subcooling during the solidification of the melt
pool can easily lead to changes in the shape, size, and arrangement of the grains inside the
melt pool, and the kinetic subcooling in SLM processing is usually defined by Equations (4)
and (5), where λ is the interfacial kinetic coefficient, VS is the scanning velocity, V0 is
the speed of sound (m/s), KB is the Boltzmann constant, and TL is the liquid phase line
temperature (k). According to the relevant solidification theory of Fischer et al. [30], a larger
subcooling degree ∆Tk helps to increase the nucleation rate:

∆Tk =
Vs

λ
(4)
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λ =
∆H f V0

kBT2
L

(5)

In the experimental results of this study, if we refer to Equation (4) to explore the factors
affecting the development of dendrites, it was found that when a smaller energy density
was used, e.g., 44.6 J/mm3, a scanning speed of 700 mm/s was chosen and the largest grain
size was produced; when an energy density of 41.76 J/mm3 was used, the scanning speed
was 500 mm/s and the smallest grain size was produced. This is completely contrary to the
conclusion of Wang [31] and others that ∆Tk can be significantly enhanced with increasing
scan speeds, thereby refining the microstructure of SLM-machined parts and consequently
reducing the primary dendrite spacing. In this study, the biggest difference between the
above two energy densities in terms of processing parameters is the difference between the
scanning speed and the hatching spacing, and the hatching spacing is not specifically cited
in the supercooling degree.

In SLM processing, the processing principle is the use of the laser beam to transfer
heat to the heat-affected zone; then, the power of the laser beam and the radiation area will
also affect the development of cellular dendrites in the heat-affected zone. If we simply
use Equation (4) to explore the development law of cellular dendrites in SLM processing,
this is not rigorous, so we refer to the results of Fischer et al. [23] and analyze the change in
the maximum temperature rise in the melt pool using Equation (6), where A is the laser
absorption rate, k is the thermal conductivity, kth is the thermal diffusivity, and τp is the
laser irradiation duration:

∆Tmax =
2Aω

k

√
kthTp

π
(6)

From Equation (6), we see that the temperature field within the melt pool is influenced
by the thermal conductivity, thermal diffusion, laser absorption, etc. Combined with the
results of the present experimental analysis, it is found that low scanning speeds usually
result in higher energy densities, which leads to an increase in the working temperature
within the melt pool, with a large amount of heat tending to collect near the larger dendrites
and mainly dissipate through the melt pool boundary, which also provides energy for
cellular dendrites to grow. It was found that the use of a lower energy density or laser
power is small, and it is appropriate to reduce the scanning speed, which can enhance the
internal temperature of the melt pool, thus controlling the melt pool tissue grain size. When
the laser power is 160 W, it was found that with the speed of the promotion, the grain size
gradually became smaller. We propose that in SLM processing, when large laser power
processing is used, a faster scanning speed should be used and when small laser power
processing is used, a slower scanning speed should be chosen to ensure that in the melt pool,
heat transfer and solidification and the release of sufficient heat occurs, thus promoting
the new melt pool boundary being near the solidified layer of grain recrystallization and
growth to obtain fine grain refinement.

3.3. Residual Stress in Bone Scaffolds

Residual stress is stress that remains within the material when it has reached equilib-
rium with its surroundings. Residual stress varies with the size of the part and in most
cases is not required as it causes deformation of the desired shape. Every production
process introduces a certain amount of residual stress and the number of residual stresses
introduced varies considerably from one production process to another. It is well known
that in SLM processing, large and steep thermal gradients are created in the structure itself
due to rapid heating and slower heat transfer. Although additive manufacturing techniques
are capable of producing metal parts with complex geometries, their suitability for critical
applications is often adversely affected by residual stress control [17,32].

Figure 10 shows the magnitude and distribution of residual stress after the formation
of the porous bone scaffolds of the FCC structure atω = 111.1 J/mm3 calculated by finite
elements.
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Figure 10. Distribution and magnitude of residual stress within the FCC structure: (a) before substrate
removal, (b) after substrate removal.

Figure 10 shows the scaffold before and after the removal of the substrate after for-
mation. It can be clearly found that after the removal of the substrate, the residual stress
under the bone scaffold was significantly reduced, and there was also a slight reduction
in the middle and top of the scaffold. The reason for this may be that before the removal
of the substrate, the stress inside the scaffold was equal to the yield strength of the upper
layer of the substrate, and when the scaffold was removed from the substrate, the stress
state inside the scaffold changed drastically, and the stress generated in the scaffold was
reduced due to the relaxation effect. Additionally, it was found through FEA calculations
that the residual stress inside the scaffold is characterized by dynamic changes between
layers. The reason for this phenomenon may be that during the SLM formation process,
there are differences in the shape area between layers, resulting in the cooling shrinkage
of the melt pool being limited by the solidified cladding layer, which creates an elastic
compression strain. Figure 11 shows the stress variation in the substrate and laser scan
path as different layers are constructed. It can be visualized that each additional layer
introduces a different degree of residual stress in the substrate and the stress distribution
generated in the solidified layer below gradually expands. The large amount of residual
stress that accumulates in the substrate causes plastic deformation of the substrate, which
is particularly pronounced in the area where the substrate is fused to the scaffold fixation,
and thus tends to have an effect on the internal stress in the new layer.

The residual stress in the scaffolds was tested using the XRD non-destructive method,
and the results of the tests and finite element simulations are shown in Figure 12. As can be
seen from the graph, among the nine machining parameters, the use of an energy density of
41.7 J/mm3 for the manufacture of FCC structural supports has a small residual stress, but
when 111.1 J/mm3 was used, the residual stress in the bone scaffold increased significantly.
The results obtained from the finite element simulations and the actual experiments are
in general agreement, which also proves that the use of finite element means can produce
some pre-prediction of the residual stress generated in the actual manufacturing and thus
improve the situation.



Metals 2022, 12, 1712 14 of 20Metals 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Stress variation for different layers at an energy density of 41.7 J/mm3: (a) layer 1, (b) layer 

4, (c) layer 8, and (d) layer 10. 

The residual stress in the scaffolds was tested using the XRD non-destructive 

method, and the results of the tests and finite element simulations are shown in Figure 12. 

As can be seen from the graph, among the nine machining parameters, the use of an en-

ergy density of 41.7 J/mm3 for the manufacture of FCC structural supports has a small 

residual stress, but when 111.1 J/mm3 was used, the residual stress in the bone scaffold 

increased significantly. The results obtained from the finite element simulations and the 

actual experiments are in general agreement, which also proves that the use of finite ele-

ment means can produce some pre-prediction of the residual stress generated in the actual 

manufacturing and thus improve the situation. 

1 2 3 4 5 6 7 8 9
100

150

200

250

300

350

400

450

500

550

R
es

id
u
al

 s
tr

es
s 

(M
P

a)

Scaffolds

150

200

250

300

350

400

450

500

550

Finite Element Simulation

R
es

id
u
al

 s
tr

es
s 

(M
P

a)

Test

 

Figure 12. Residual stress analysis results. 

  

L
as

er
 p

ro
ce

ss
in

g
 d

ir
ec

ti
o

n
 

L
as

er
 p

ro
ce

ss
in

g
 d

ir
ec

ti
o

n
 

L
as

er
 p

ro
ce

ss
in

g
 d

ir
ec

ti
o

n
 

L
as

er
 p

ro
ce

ss
in

g
 d

ir
ec

ti
o

n
 

Figure 11. Stress variation for different layers at an energy density of 41.7 J/mm3: (a) layer 1, (b) layer
4, (c) layer 8, and (d) layer 10.
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Figure 12. Residual stress analysis results.

3.4. Residual Deformation of the Bone Scaffold

Two main factors contribute to the deformation of the bone scaffolds: one is the
deformation due to the stress strain during the SLM construction process, and the other is
the deformation caused by phenomena such as powder adhesion and the spherification
phenomenon during the machining process. Figure 13 shows the deformation of the porous
bone scaffolds at different energy densities. The larger deformation is found at the unit-
column joints and the lower surface of the unit-column of the FCC structure while the
other locations are deformed but to a lesser extent. The effect of the energy density on the
amount of deformation shown in Figure 14a shows that there are significant differences in
the effect of the energy density on the amount of residual deformation, with a relatively
small amount of deformation (0.63%) obtained with an energy density of 41.7 J/mm3. The
deformation in the manufacture of porous bone scaffolds is inevitable and mainly occurs
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because, when forming porous structures, the SLM system’s support function is abandoned,
resulting in the unit column with a certain upward inclination to the horizontal plane being
in a semi-supported state in the molten state, with the unmolten powder providing support.
This also results in direct contact between the melt pool and a large amount of powder
during the first layer or a small number of layers, which collects in the melt pool and
adheres to the surface during the solidification of the melt pool. In addition, it is explained
from the processing characteristics of SLM that when a solidified layer is formed and a
new layer is formed, the solidified layer acts as a support. At this time, the semi-molten
or unmelted powder existing on the upper surface of the old solidified layer is melted
by secondary processing with the irradiation of the laser beam while the bonded powder
on the lower surface is not fully irradiated by the laser because the powder bed fusion is
processed layer by layer. Although, the melting point of the powder may be reached at
high temperatures and new powder may be re-bonded after solidification. It can be clearly
seen from Figure 14b that the powder bonded on the upper surface of the FCC unit column
is compact and the surface is gentle while the bonded powder on the lower surface is loose
and messy, and there is a risk of falling off under stress.
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The long-term functional use of porous bone scaffolds as human implants does not
allow for a situation where the surface of the scaffold is stripped of unmelted powder during
use, so the selection of suitable processing parameters to reduce the amount of distortion
and defects in the adhering powder must be considered and optimized. Table 5 shows the
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comparison between the software design dimensions and the SLM formation dimensions
at different energy densities. It can be seen that due to the characteristics of powder bed
fusion processing, the dimensions of the FCC structural unit columns significantly change
and there are differences between the design values and the experimental values. The
main objective of this study was to compare and analyze different energy densities to select
the optimum processing parameters for the formation of porous bone scaffolds with an
excellent performance in all aspects.

Table 5. Design dimensions and actual dimensions of the FCC structure.

Porous Bone Scaffolds 1 2 3 4 5 6 7 8 9

Design diameter values (µm) 250 250 250 250 250 250 250 250 250
Build diameter values (µm) 322 ± 26 297 ± 15 310 ± 12 310 ± 16 322 ± 40 322 ± 20 328 ± 20 331 ± 30 314 ± 13

3.5. Mechanical Properties of Bone Scaffolds
3.5.1. Microhardness

Figure 15 shows the microhardness of the SLM-machined scaffolds, from which it
can be seen that there are significant differences in the hardness caused by the different
machining solutions, where the lowest average microhardness of 210.9 HV0.5 was obtained
at an energy density of 111.1 J/mm3 and the highest average microhardness of 237.34 HV0.5
was obtained at an energy density of 77.4 J/mm3. The main reasons for this significant
difference in microhardness are (1) that the different processing parameters lead to different
densities of the parts, which results in significant changes in the microhardness of the
scaffolds; and (2) the different processing parameters lead to different defects in the parts,
such as significant periodization, a large number of cracks and holes, and the presence of
molten powder inside the melt pool during the formation of the scaffolds, etc., which all
have an impact on the microhardness of the scaffolds.
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In conjunction with the microstructure characterization of the scaffold shown in
Figure 6, it can be seen that at higher energy densities (111.1 J/mm3), some large pores are
found between the adjacent melt pool boundary trajectories, which, on the one hand, affect
the densities of the scaffold and, on the other hand, can trap part of the unmelted powder
within the pores. When a lower energy density was used (41.7 J/mm3), no defects were
evident on the surface of the bone scaffold. Although the energy density was lower, the
diameter of the bone scaffold unit was also smaller, the laser radiation zone was smaller,
and the liquid flow in the melt pool was reduced, making it less likely that the powder
would adhere.
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3.5.2. Compression Properties

The microstructure determines the mechanical properties of SLM parts, and different
processing parameters are the main influencing factors of the different microstructures.
Figure 16 shows the stress–strain curves of the FCC-structured porous bone scaffold formed
at different energy densities for the compression experiments. The difference between
the stress–strain curves for high/low energy densities was found to be more pronounced,
with the porous scaffolds formed at high energy densities showing a poorer compression
performance, presumably due to the defects mentioned in the previous section, with
greater unmelted powder adherence to the surface of the unit causing a reduction in
the compressive performance. As can be seen from the figure, all the scaffolds exhibit
similar stress–strain trends, which can be broadly divided into three stages, and Table 6
corresponds to the three stages in Figure 16, respectively. The deformation in the initial
stage (I) is mainly characterized by the outward expansion of the surrounding area, and the
porous scaffold is in the elastoplastic deformation stage, which mainly relies on the tensile
deformation of the bone scaffold unit body. As the load force increases, in the intermediate
stage (II), the porous units are gradually deformed and distorted, the pore size of the
porous structure is significantly reduced, a significant fracture can be seen in the central
part, and the whole scaffold is plastically deformed, resulting in a relative reduction in the
compressive performance. As the load force continues to increase, the porous structure
continues to deform and the units gradually come into close contact with each other, leading
to an increase in the compressive performance and a later stage (III). However, another
factor that is not negligible in improving the compressive performance in this stage is the
large amount of agglomerated powder adhering to the surface of the scaffold, where the
high density of the aggregates can also prevent the compressive deformation of the pores
in the porous scaffold.
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where E* is the elastic modulus of the porous bone scaffold, Es is its solid elastic modulus, 
Es = 210 GPa, ρ* is the density of the porous bone scaffold, ρs is its solid density, ρs = 7.98 
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where E* is the elastic modulus of the porous bone scaffold, Es is its solid elastic modulus, 
Es = 210 GPa, ρ* is the density of the porous bone scaffold, ρs is its solid density, ρs = 7.98 
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3.5.3. Modulus of Elasticity of the Bone Scaffolds

One of the issues that cannot be ignored when implanting a metal porous bone scaffold
is the modulus of elasticity between the implant and the human bone. Scaffolds should be
designed to meet the mechanical properties of the natural bone at the implantation site, i.e.,
the modulus of elasticity, which ranges between 17 and 20 GPa for cortical bone and 3.2
and 7.8 GPa for cancellous bone. Scaffolds designed with too high or too low a modulus of
elasticity are prone to stress shielding and can lead to osteoporosis in the adjacent bone
after implantation. Table 7 shows the data relating to the modulus of elasticity of bone
scaffolds formed using nine energy densities.

Table 7. Modulus of elasticity of the porous scaffolds.

Route 1 2 3 4 5 6 7 8 9

Density (g/cm3) 2.37 2.36 2.37 2.37 2.37 2.38 2.44 2.47 2.36

Modulus of elasticity (GPa) 18.6 18.4 18.5 18.6 18.6 18.7 19.7 20.1 18.4

Equation (7) of the Gibson–Ashby [33] model is a formula used to calculate the
modulus of elasticity of porous structures, developed for porous structures:

E∗
ES

= C
(

ρ∗
ρS

)m
(7)

where E* is the elastic modulus of the porous bone scaffold, Es is its solid elastic mod-
ulus, Es = 210 GPa, ρ* is the density of the porous bone scaffold, ρs is its solid density,
ρs = 7.98 g/cm3, and C and m are the open structure geometric constants of C = 1 and m = 2,
respectively.

4. Conclusions and Prospects

In this experiment, a combination of finite element simulation and experiments were
used to investigate the mechanism of the impact of SLM on porous scaffolds with different
energy densities in the formation of FCC structures from different perspectives. The main
conclusions are as follows:

• In SLM processing, the difference in the laser energy density leads to the appearance
of grain structures with different shapes and different forming angles in the melt pool.
With the increase in the energy density, the direction of grain formation in the molt
pool shifts from 80◦ to 50◦. At the same time, improper energy density processing
is more likely to cause deformed grains at the edge of the molt pool, which leads to
cracks and holes, and reduces the mechanical properties of the porous scaffolds.

• Among the factors determining the energy density, the scanning speed of the laser and
the laser power have the most significant effect on the grain size of the porous scaffolds.
When the energy density increased from 41.7 to 111.1 J/mm3, the average primary
dendrite spacing increased from 441 to 501 nm and this change led to a significant
difference in the performance of the porous scaffolds.

• For the mechanical properties of porous scaffolds, laser processing with high energy
densities (≥100.0 J/mm3) tends to achieve a lower microhardness (214.92 HV0.5) while
processing with lower energy densities (<100.0 J/mm3) can increase the average
microhardness by a maximum of about 9.4% in comparison, up to 237.34 HV0.5. In
terms of the compressive performance, the porous bone scaffolds constructed with
high energy densities were approximately 10% to 17% less than the other construction
energy densities.

• The elastic modulus of the bone scaffolds was tested, and it was found that the
porous bone scaffolds formed by SLM basically met the requirements for human bone
implantation, but the high energy density (111.1 J/mm3) used to construct the porous
bone scaffolds with an FCC structure could easily lead to a decrease in the formation
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accuracy of the scaffolds and make the performance of the scaffolds exceed the ideal
expectations.

In this study, the mechanism of the effect of different energy densities on various
aspects of the performance of FCC-structured porous bone scaffolds was obtained; how-
ever, for the practical clinical application of bone scaffolds, a series of post-treatments (e.g.,
stress-releasing treatment, etc.) are required to better enhance the performance of the scaf-
folds. Numerous studies [16,34,35] have shown that the use of direct aging and annealing
treatments can significantly improve the performance of additively manufactured products,
and therefore the future focus of this study is to improve the performance of scaffolds by
means of heat treatment to enable better application of artificial bone scaffolds.
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