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Abstract: Due to the complex and changeable working environment of assembled camshafts using
tube hydroforming (THF) technology, the manifestations of failure, the causes of failure and the
preventive measures for these failures are a major concern. Therefore, in view of this new connection
technology for assembled camshafts, it is important to put forward a prediction and evaluation
method of failure for hydraulic expanding assembled camshafts. In this study, an isometric-trilateral
profile cam was used to complete the hydroforming connection with the hollow shaft (tube) under
different hydraulic pressures. Orthogonal torsion experiment and laser measurement experiment
were performed. Finite element analysis was carried out using ABAQUS 6.14 software, and relevant
research data were obtained. A more accurate BP neural network model was constructed to predict
the main failure factors of assembled camshafts. The failure manifestations of assembled camshafts
are displayed by the experiment from the microscopic perspective. The causes of failure are analyzed
by using the minimum cut set in the failure Tree (FT) theory. The effect of basic causes on the
subsystems is analyzed, and the weight distribution of the main events in the FT is given. Finally,
the specific measures to prevent failure are proposed from a macro perspective. The research is of
great significance to study the failures of assembled camshafts in service to further the production,
manufacturing, failure prevention, faults monitoring and performance improvement of assembled
camshafts in the engine industry.

Keywords: assembled camshaft; failure manifestations; hydraulic expanding; BP neural network;
failure tree

1. Introduction

Camshafts are mainly composed of spindle, cam and journal, which is the key part
of the valve drive group in the engine valve train [1]. The manufacturing process of tra-
ditional camshafts is mainly one-piece casting or forging. The materials of all parts are
the same, which makes it difficult to meet the performance requirements of different parts.
There are problems such as heavy weight and low manufacturing precision. Assembled
camshafts combine different parts (shaft, cam, journal, etc.) separated and manufactured
according to different performance requirements to better exert the performance of dif-
ferent materials. Among them, hollow shaft can effectively reduce the overall quality of
camshafts, which has significant advantages in large-scale and lightweight production in
the automobile industry [2]. Therefore, the assembled camshaft has a broad development
prospect in automobiles, railways, heavy military vehicles, warships, marine engines and
other fields [3,4].

According to the literature [5], the connection methods of assembled camshafts mainly
include: hydroforming technology, interference fit technology and bonding technology.
Tube hydroforming (THF) is a competitive hollow part forming technology and a camshaft
assembly technology with broad prospects [6,7]. That is, the shaft is bulged under the
hydraulic pressure and axial force and finally press-fitted on the cam hole to achieve
connection. Through the assembled camshaft after hydraulic expanding, a mechanical
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mutual embedded expanding structure is formed at the expanding interface between the
cam and the shaft. However, with the continuous improvement of the power and torque
speed of the engine, when the camshaft is required to transmit large torque, this stable
interface state may be difficult to maintain. In light cases, vibration, impact, etc., occur,
affecting the transmission accuracy and stability. At worst, it causes the separation between
the cam and the shaft, resulting in the failure of the camshaft. Therefore, it is of great
significance to analyze the failures of assembled camshafts as a service to the production
and manufacturing of camshafts, failure prevention and fault monitoring in the engine
industry. At present, most scholars have predicted and studied the failure, fatigue, fault
and life of engine camshafts or crankshafts and have achieved a series of research results.

First, many scholars have carried on the related research by using the experimental
method. Zhang et al. [8] carried out uniaxial and multi-axial low cycle fatigue tests on
hollow cylindrical butt joints bonded with automobile sealant under the stress control
mode; analyzed the effects of equivalent stress amplitude, equivalent average stress and
loading frequency on the fatigue life of the specimens and proposed a comprehensive
consideration of the effects of loading path, equivalent stress amplitude, equivalent average
stress and loading frequency on multi-axial fatigue life. The results show that the improved
fatigue life prediction model can better predict the multi-axial fatigue life of bonded
butt joints. Yanarocak et al. [9] introduced the synchronous design and development
work of the diesel engine valve system, solved the problems of installing instruments
on the quick lubrication system running at about 140 ◦C and selecting the appropriate
position that can reflect the correct stress, and eliminated the risk of catastrophic failure
of valve control system and related engine components through optimization research
and verification process. Singh et al. [10] summarized the fatigue failure mechanism of
automobile crankshaft under working loading from a random point of view. In this study,
the fatigue failure of crankshafts is summarized; the random method is discussed by using
the empirical model, and the safety life method is used to evaluate the random fatigue
failure and damage. Ktari et al. [11] studied the failure by means of SEM, fracture analysis
and tensile and hardness experiments. To further strengthen this point, Becerra et al. [12]
analyzed the failure through chemical analysis, X-ray analysis and visual technology.
Liu et al. [13] and Ling et al. [14] monitored the random fatigue damage model under
variable amplitude loading, which provided an important index for durability evaluation.
To evaluate the fatigue properties of metals, Jeon et al. [15] developed a practical expert
system to predict the fatigue properties of metals. It is possible to predict the life of materials
by fatigue, but this is only limited to the actual loading process of components from the
experimental analysis.

Next, some scholars use the method of combining experiment and simulation to carry
out relevant research. Wang et al. [16] tested the camshaft made of gray cast iron under
cyclic bending and torsion, simulated it with the finite element method and proposed a new
crack simulation technology to predict the fatigue limit. Ossai et al. [17] proposed a random
method, which can generate random and nearly similar data experimental results and
predict the fatigue life cycle or imminent fatigue damage by deterministic and stochastic
methods. In a random process, the loading data are converted into equal time steps using
the relevant continuous or discrete time. Meanwhile, the statistical root mean square
error and other parameters are used to test the data divergence level and the accuracy of
failure in the random model. Nipane [18] performed finite element modeling and failure
analysis for standard gray cast iron camshafts and composite camshafts through Pro-E 4.0
and ANSYS Workbench 11.0 software. The results show that the fatigue life of composite
camshafts is better than that of cast iron camshafts. Zhai et al. [19,20] designed two new
types of camshaft mating surface structures, i.e., isometric-trilateral profile and logarithmic
spiral, measured the contact clearance and contact length between the shaft and the cam
through the finite element method to reflect the connection strength, and developed the
experiment verification, but did not investigate related failure of the assembled camshaft.
Qiao et al. [21] simulated and analyzed the assembly process of the knurled connection



Metals 2022, 12, 1639 3 of 20

camshaft, discussed the equivalent stress at different torsional moments, and tested the
static torsion strength. It was found that when there is angular displacement (accuracy is
0.7 degrees) between cam and shaft, the torque is regarded as the static torsion strength,
which meets the actual working requirements of camshaft through verification and proves
that the assembly has certain reliability. Londhe et al. [22] established a spatial model of
the valve mechanism of a four-stroke engine and established a camshaft model based on
hydroforming. The contact stress between the cam and the push rod in the high-speed
rotating camshaft was analyzed, and it was found that the camshaft can withstand the
impact force brought by the push rod when there is torsion at high speed. Moreover, the
fatigue coefficient of camshafts is discussed.

Finally, some scholars adopt the theory of optimization algorithm and deep learning
to develop a series of research. Dong et al. [23] used the K-means clustering algorithm to
select the clustering center of radial basis function neural network for camshaft grinder,
the key equipment of camshaft production line, and proposed a fault prediction model
based on RBF neural network. The results show that the distribution density is 1, and
the approximation error of the neural network is more reasonable. The application of the
model is illustrated by an industrial example, which proves that the proposed method
is effective. Yang [24] developed to apply the Drosophila optimization algorithm to the
multivariable process fault diagnosis model and analyzed the out-of-control sample data
in automobile crankshaft production. Li et al. [25] proposed a fault diagnosis method
based on manifold learning and swarm intelligence optimization. Firstly, three manifold
learning algorithms are used to fuse the features extracted from the original vibration data
of diesel engine into a new nonlinear space. Secondly, a multi class multi kernel correlation
vector machine optimized by swarm intelligence is proposed, and the fault is identified
by using the fusion features. Subsequently, the comprehensive advantages of multi-core
function and weighting strategy are used to realize the fault detection of diesel engine.
Finally, the experimental data of a commercial diesel engine verify the effectiveness of this
method herein.

However, most of the above studies have been carried out through experimental
research, numerical analysis and related optimization algorithm and achieved certain
results, but some studies lack quantitative analysis. In addition, for the novel structure of
assembled camshafts using hydraulic expanding technology, failure research is affected by
many factors, and some parameters are not easy to obtain. There are some difficulties in the
determination, prediction and analysis of failures for the assembled camshaft. Therefore, the
cam with isometric-trilateral profile is selected to connection with hollow shaft (tube) under
different hydraulic pressure. The orthogonal torsion experiment and laser measurement
experiment under different parameters are performed; ABAQUS 6.14 software is used to
carry on the finite element simulation, and the related data are obtained. The BP neural
network model is established, and the main failure factors are determined and predicted.
Then, the failure manifestations of assembled camshafts are displayed. The causes of failure
are analyzed by using the minimum cut set in the failure tree (FT) theory. Finally, the
specific measures to prevent failure are proposed in this study.

This paper is organized as follows. The introduction is presented in Section 1. The
experimental research, including hydraulic expanding experiment, orthogonal torsion
experiment and laser measurement experiment, is provided in Section 2. The finite element
analysis, including the establishment of a finite element model and relevant parameters
settings, is given in Section 3. The BP neural network model is established in Section 4.
The results and discussion, which are prediction result and error analysis of failure factors
using BP neural network, the failure manifestations of assembled camshaft, the calculation
of FT minimum cut set to analyze the cause of failure of the assembled camshafts and the
specific measures to prevent failure, are showed in Section 5. Finally, the main conclusions
are highlighted in Section 6.
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2. Experimental Research

This study mainly includes three parts of the experiment. The first part is the hy-
draulic expanding experiment, namely, the cam and the tube are assembled under different
hydraulic pressures. The second part is the orthogonal torsion experiment under different
parameters which is carried out for the camshaft after the expansion. The purpose is to
obtain a sufficient amount of experimental data for the training of the BP neural network to
obtain a higher-precision training model. The final part is the laser measurement experi-
ment, which is used to obtain the parameters (i.e., the main failure factors) that cannot be
directly measured in the orthogonal torsion experiment.

2.1. Description of Structure and Materials

The assembled camshaft was formed by connecting the shaft with the inner hole of
the cam. However, the inner hole profile of the cam affects the torsion strength of the
assembled camshaft. In recent years, some scholars have shown that the inner hole profile
of the cam can be made into a non-circular structure. Some non-circular structures include
isometric-trilateral [26], logarithmic spirals [20], sinusoids and cycloids. In this study, the
isometric-trilateral profile structure was selected as the inner hole profile of the cam, as
shown in Figure 1a. The isometric-trilateral profile can be expressed as [27].

x(α) = (Di/2 + e) cos α− e cos nα cos α− ne sin nα sin α (1)

y(α) = (Di/2 + e) sin α− e cos nα sin α + ne sin nα cos α (2)

where Di is the diameter of the small circle, n is the number of polygon sides (n = 3 in this
study), and e is the offset distance, which determines the shape of the profile. In addition,
α is the angle formed by a certain point on the function curve in the rectangular coordinate
system. According to the properties of the curve, the curve is composed of three arcs FB,
BD, and DF and is symmetrical about the segments AD, CF, and EB, respectively. The
diameter of the big circle can be calculated as follows:

De = (Di + 4e) (3)
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the cam and (c) actual image of the cam [28].
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The outer shape of the cam was designed as a square structure with a length of 36 mm
(Figure 1c). To facilitate the subsequent analysis, three identical cams with a thickness of
15 mm were designed in this study (Figure 1a). The diameters Di and De of the small and
big circles were 25.3 and 28.5 mm, respectively (Figure 1b), and the offset distance e of the
cam was 0.8 mm. The length, diameter and wall thickness of the tube were 110, 25 and
0.6 mm, respectively. The materials of the tube and cam were SUS304 stainless steel and
45 steel, respectively. The chemical composition of the two materials is listed in Table 1.
Table 2 presents the material mechanical parameters of the tube and the cam.

Table 1. Chemical composition of SUS304 tube and 45 steel cam (wt.%).

Part Fe C Si Mn P S Cr Ni Cu Al

Tube Base 0.07 0.47 1.94 0.028 0.001 16.59 8.29 — 1.05
Cam Base 0.45 0.27 0.65 — — 0.18 0.2 0.2 —

Table 2. Mechanical properties of SUS304 tube and 45 steel cam.

Part Young’s Modulus
E/GPa

Poisson
Ratio µ

Yield Strength
σy/MPa

Tensile Strength
σb/MPa

Tube 215 0.285 423 1466
Cam 203 0.269 355 660

2.2. Experimental Details
2.2.1. Hydraulic Expanding Experiment

The connection experiments were performed on a hydraulic machine with a CNC
system (YB98-200A from Guangdong Sihao Hydraulic Technology Co., Ltd., Foshan, Guang-
dong, China), as shown in Figure 2a. The connection of the camshaft is mainly completed
by the main cylinder, the left and right stamping cylinders, the control panel, the hydraulic
pump, the pressurized cylinder, the left and right punches and the THF die. The punches
are installed on the left and right stamping cylinders, and the stamping cylinders realize
left and right synchronized feed movement of the punches. The purpose is to provide
sealing to both ends of the tube. The hydraulic pump (4DSY-22/60 from Shenmo Electric
Co., Ltd., Shanghai, China) and the pressurized cylinder provide hydraulic pressure for the
camshaft connection test. The inside of the tube is filled with fluid through the left punch
hole, causing the tube to plastically deform. Hydraulic pressure is applied by the control
panel, which also applies variation of hydraulic pressure with time. In the hydroforming
system, the rated maximum hydraulic pressure is 85 MPa. The synchronization accuracy
of the left and right stamping cylinders is not greater than 0.1 mm. The THF principle of
the equipment is demonstrated in Figure 2b. First, the cam and tube are placed and fixed
between the upper and bottom dies. Second, the upper and lower dies are clamped by the
pressure of the main cylinder to fix the cam and the tube. Third, the left and right punches
move the left and right to provide sealing to the ends of the tube, filling the tube with fluid
through the left punch hole to provide hydraulic pressure. Finally, the cam and tube are
assembled under different hydraulic pressures.

The hydraulic pressures used in this experiment are 65, 70, 75 and 80 MPa, respectively.
Since the linear loading mode of hydraulic parameters is easy to control compared with
other broken line loading modes on the equipment, the loading curve is not easy to
shake. Therefore, the hydraulic parameters in this study are linearly loaded to ensure the
expanding performance of the assembled camshafts.
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Figure 2. (a) CNC tube hydroforming system YB98-200A and (b) the connection principle of the
assembled camshaft [29].

2.2.2. Orthogonal Torsion Experiment

The equipment used for orthogonal torsion experiment of camshaft is TTM502-A1
electronic torsion test rig produced by Shenzhen Sansi Zongheng Technology Co., Ltd.
(Shenzhen, Guangdong, China), as shown in Figure 3a. The measuring range of the torque
is 1–100% FS (full scale). The relative error of the torque, torsion angle and torsion angle
of the torsion meter are ±0.5%, ±1.0%, and ±1.0%, respectively. The torsion velocity
range is 4–720 ◦/min, and the relative error of the torsion velocity is within ±1.0% of
the set value. This can be used for torsion performance experiment on metal materials,
non-metallic materials, composite materials and components. Since the camshaft in this
study is a hollow structure, considering the installation problem, a set of torsion fixtures is
self-designed, as demonstrated in Figure 3b. During this torsion experiment, cams 1 and
3 were fixed, cam 2 was torqued, and the torsion strengths between cam 2 and tube were
obtained and recorded in real-time using the computer acquisition software.
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Figure 3. Orthogonal torsion experiment equipment for assembled camshafts [28]: (a) TTM502-A1
electronic torsion test rig and (b) detailed view.

By changing the maximum expanding hydraulic pressure, torsion velocity and maxi-
mum torsion angle, the torsion orthogonal experiment with three factors and four levels is
carried out. The specific system parameters are listed in Table 3. With the aid of professional
experimental design software Design_expert_8, the optimal design method in response
surface design is adopted, and the quadratic model is selected for three-factor four-level
orthogonal experimental design. Finally, 20 sets of experimental schemes were obtained,
as displayed in Table 4. The experimental scheme not only avoids the heavy experiment
task but also considers the influence of multiple system parameters on the experimental
results, which is more reasonable and effective. Furthermore, repeated experiments were
performed to verify the repeatability of the experiment.
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Table 3. Factors and levels of orthogonal torsion experiment.

Factors Level 1 Level 2 Level 3 Level 4

Maximum hydraulic pressure Pmax/(MPa) 65 70 75 80
Torsion velocity v/(◦/min) 4 5 6 7

Torsion angle a/(◦) 6 7 8 9

Table 4. Orthogonal torsion experiment scheme (input value of BP neural network).

No. Torsion Velocity v/(◦/min) Maximum Hydraulic
Pressure Pmax/(MPa) Torsion Angle a/(◦)

1 4 65 6
2 4 65 9
3 4 75 7
4 4 80 8
5 5 70 7
6 5 70 7
7 5 75 9
8 5 75 9
9 5 80 6

10 5 80 6
11 6 65 8
12 6 65 8
13 6 70 7
14 6 70 7
15 6 80 9
16 7 65 6
17 7 70 9
18 7 75 6
19 7 80 8
20 7 80 8

Through the above-mentioned 20 sets of orthogonal torsion experiments, the torque
values listed in Table 5 were measured. In addition, the drawings of assembled camshafts
before and after torsion are shown in Figure 4.

Table 5. Main failure factors of assembled camshaft (output value of BP neural network).

No. Torque
T/(N.m)

Surface
Roughness Rq

Scratch width
bavg/(um)

Shear Stress
τ/(MPa)

Residual Contact
Pressure Pn/(MPa)

1 21.4145 1.306 14.256 15.9366 170.099
2 30.7890 3.951 46.329 20.6680 179.326
3 20.2384 1.842 12.753 6.2725 82.904
4 25.9765 0.958 23.699 17.9093 207.934
5 23.6245 1.306 25.124 13.7821 138.834
6 18.9849 1.236 19.169 13.4588 133.252
7 29.5700 2.557 45.238 7.7986 83.071
8 31.2356 2.311 52.733 8.2564 83.297
9 18.3333 0.627 15.530 18.7162 203.519
10 19.4047 1.891 15.223 18.3961 206.802
11 25.4813 1.817 26.871 12.2360 168.744
12 27.6493 2.472 28.036 11.7208 170.439
13 17.9282 2.264 16.497 8.5697 139.241
14 21.0662 2.015 24.326 9.3190 142.312
15 31.5135 1.391 47.229 17.5566 207.925
16 19.4324 2.786 27.049 13.4096 170.256
17 20.4762 3.467 25.637 8.7113 139.929
18 25.9765 1.573 37.125 10.4553 95.032
19 25.9894 1.478 36.758 17.6845 206.519
20 26.1291 1.633 39.146 18.1240 202.168
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2.2.3. Laser Measurement Experiment 
After the orthogonal torsion experiment, the drawings of assembled camshafts as 

shown in Figure 4b are obtained. Since the failure modes we proposed, including tubular 
surface roughness and scratch width, are not easy to measure directly in torsion experi-
ment, it is necessary to use an OLYMPUS OLS4100 3D measuring laser microscope for 
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Figure 4. Drawing of a partially assembled camshaft [28]: (a) before torsion and (b) after torsion.

2.2.3. Laser Measurement Experiment

After the orthogonal torsion experiment, the drawings of assembled camshafts as
shown in Figure 4b are obtained. Since the failure modes we proposed, including tubular
surface roughness and scratch width, are not easy to measure directly in torsion experiment,
it is necessary to use an OLYMPUS OLS4100 3D measuring laser microscope for measure-
ment, as illustrated in Figure 5a. The equipment is a high-precision technology product
of Olympus Co., Ltd., of Tokyo, Japan. It has two sets of optical systems for information
collection, namely, an optical system for obtaining color information of samples and a laser
confocal optics for measuring irregularities on the sample surface, with a resolution of
1 nm and a measurement accuracy of ±1.5%. The microscopic profile and 3D shape of the
parts can be measured, including the surface topography, length and width, height, volume
and surface roughness.
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The main measurement procedure is displayed in Figure 5c, including the following
processes: First, the focal length of the micro lens is roughly adjusted. The measuring
surface of the tube is placed in the middle of the stage. The lens is aligned with the
measurement area by mouse and controller. Then, the focal length of the instrument
lens is fine-tuned by adjusting the mouse wheel until the outline is clear, so as to obtain
a clear focal length range. Subsequently, the appropriate focal length is selected and
the measurement button is clicked. The system scans and calculates the sample contour
through the microscope lens. According to the obtained two-dimensional micrograph,
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the surface roughness and geometric measurement buttons are clicked, respectively, the
appropriate area to calculate the surface roughness and scratch width is selected, and finally
the relevant data are obtained as listed in Table 5. To reduce measurement error, scanning,
measurement and calculation are carried out three times on the tubular outer surface at the
same position. Finally, to obtain better morphology, the 2D micrograph is converted into
3D morphology. The measurement software interface is shown in Figure 5b.

3. Finite Element Analysis

Because the individual parameters and samples required by the BP neural network
cannot be directly obtained from the above experiments, the purpose of this finite element
analysis (FEA) is to extract the residual contact pressure and shear stress values for building
an accurate BP neural network model. The FE model of hydraulic expanding assembled
camshaft is established using ABAQUS 6.14 software, as shown in Figure 6a, which mainly
includes four parts: cam, tube, left die and right die. The structure, materials and process
parameters are consistent with the above experiment. For example, the hydraulic pressure
is 65, 70, 75 and 80 MPa, and the loading path adopts linear loading and is consistent
with the above experiments, as presented in Figure 7. Two analysis steps are set in this
simulation. The first step time is 0–8 s, and the tube is mainly assembled with the cam under
the hydraulic pressure and finally the process of hydraulic pressure release and rebound.
The second step is 9–12 s; the assembled camshaft is subjected to a torsion analysis under
different conditions, and the torque is increased linearly with a maximum of 200 N·m in this
FEA. Particularly, the setting of the torsion was important in the second step. Cams 1 and 3
were fixed, and cam 2 was torqued. First, a center point was created at the center of cam 2,
and the center axis of the geometric model passed through the center point. Subsequently,
the outer surface of cam 2 was coupled with its center point, i.e., a coupling relationship
was established between the outer surface and the center point. Next, an appropriate
spatial coordinate system O-xyz was established at the same center point of cam 2, and the
torque about the center axis was applied to cam 2 (Figure 6b). Finally, the torsion angle
θ of the cam was obtained by outputting the angular displacement of the center point in
ABAQUS 6.14 software, as shown in Figure 6c. Furthermore, Standard/Explicit was used
to analyze the model, which significantly saved the simulation time and improved the
calculation accuracy.
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Furthermore, the basic size of all the components in the finite element model was set
the same as that in the above experiments, as shown in Figure 6a. In this FEA, the mesh
sizes of the tube and cam were 1 and 2 mm, respectively. The mesh type was hexahedral,
and the element type was C3D8R. Symmetrical constraints were applied to dies 1, 2 and
cams, whereas a free constraint was applied to the tube. The dies were set as rigid, and
the tube and cam were set as deformable. Cams 1 and 3 were set as fixed constraints, i.e.,
cam 2 needed to be torqued in the second analysis step. The two dies were used to locate
the two ends of the tube. The friction coefficient between the cam and the tube was 0.12,
and that between the other components was 0.8. Table 6 lists the relevant parameters of
FE model of hydraulically expanding assembled camshaft. Moreover, in ABAQUS 6.14
software, the point B in Figure 1b is selected to extract the residual contact pressure and
shear stress under various conditions. The specific data are listed in Table 5.

Table 6. Relevant parameters of isometric-trilateral profile in ABAQUS 6.14 software.

Cross-Section
Profile of

cam-Bores

Hydraulic
Pressure

Pmax/MPa

Mesh Quantity
of Cams 1, 2

and 3
Mesh Quantity

of Tube
Analysis

Step

Isometric-trilateral
profile 65, 70, 75, 80 11,415 20,956 2

4. Establishment of BP Neural Network Model

In this section, based on the analysis results of orthogonal torsion experiment, laser
measurement experiment and finite element simulation, the BP neural network model
which is most widely used in the artificial neural network is established. Through repeated
training of the BP neural network samples, the network structure, transmission function,
learning function, training function and error function are determined. A more accurate
training model will be used to predict the main failure factors and further determine the
failure manifestation of the assembled camshafts.

4.1. Basic Principles

As we all know, BP neural network is a multi-layer network model with multi-layer
network learning algorithm and back-propagation [30]. The network has the advantages of
complete structure, concise and easy to improve algorithm, strong nonlinear adaptability,
highly autonomous learning and organizing ability, dynamic characteristics of learning
and adapting uncertain system, strong robustness and fault tolerance, etc. It is the most
widely used network model of artificial neural network in practical application and is most
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suitable for solving complex and uncertain sum nonlinear problems. The general structure
of the neural network is shown in Figure 8a.
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4.2. Parameters Determination

In the process of constructing a BP neural network model, the structure of the BP
neural network should be determined; that means to determine the number of hidden
layers and corresponding nodes of the BP neural network. According to the previous
experience, the number of hidden layer nodes can be designed according to Equation (4).

n =
√

ni + no + a (4)

where n, ni and no represent the number of nodes in the hidden layer, input layer and output
layer, respectively; a is the adjustment constant, which is usually selected between [1,10]. In
this study, the BP neural network has only one hidden layer, and according to Equation (4),
the number of hidden layer nodes is 12.

The S-type Tansig function (see Equation (5)) is selected as the transfer function
between the input layer and the hidden layer of the BP neural network, and the linear
Purelin function shown in Equation (6) is selected for the transfer function between the
input layer and hidden layer of the BP neural network. The training function is Trainlm
function, and the learning function is the default Learngdm function in MATLAB R2018b
neural network toolbox. The error performance function is mean squared error (MSE). It is
shown in Equation (7).

f (x) =
1

1 + e−x (5)

f (x) = kx + c (6)

mse =
∑n

k=1(tk − ak)
2

n
(7)

In the above equations, n is the number of output units; c is a constant; ak is the actual
value of the k-th output unit; tk is the expected value of the k-th output unit. In summary,
the final BP neural network structure is shown in Figure 8b.
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4.3. Learning Procedure

The learning of BP neural network is essentially the training of the BP algorithm,
namely, learning and correcting the thresholds and weights of the neural network algorithm
through a large number of test samples. It is an important process for establishing an
accurate neural network model. The neural network toolbox in MATLAB automatically
divides the data into two parts: training and testing, in the process of training the network.
The specific learning and training steps are demonstrated in Figure 8c.

5. Results and Discussion

In this section, the accuracy of the BP neural network model is verified with the
regression analysis method; then the main failure factors of the assembled camshaft are
analyzed and predicted, and the error analysis of the predicted values of output parameters
is performed. Then, the failure manifestations of assembled camshaft are displayed by the
experiment from the microscopic perspective. Finally, the causes of failure are analyzed by
using the minimum cut set in the FT theory; the weight distribution of the main events in
the FT is given, and the specific measures to prevent failure are proposed.

5.1. Prediction of Main Failure Factors using BP Neural Network

The regression analysis method is used to quantitatively analyze the correlation
between the training results of the neural network and the target value, which is described
by the correlation coefficient R. Figure 9 shows the regression analysis results of training
samples, test samples and all samples. The abscissa of each graph represents the target
value, and the ordinate represents the output value, which is the training result. The
range of correlation coefficient R is [−1, 1], and the closer R is to ±1, it indicates that the
greater the correlation between the two variables, the higher the prediction accuracy of
neural network. As illustrated in Figure 9a, the correlation coefficient R of the training
sample reaches 0.99979, indicating that the training output value is almost identical to the
target value. As illustrated in Figure 9b, the correlation coefficient R of the test sample is
0.99362, which is slightly lower than that of the training sample, but the verification result
is still good. Figure 9c presents the final correlation coefficient R of all samples which is
0.99835. On the whole, the output value has a good correlation with the target value, and
the prediction accuracy of the BP neural network is higher herein.

As demonstrated in Figure 10a, the network has been repeatedly trained. Finally, it is
found that when the training reaches eight times, the training accuracy of the BP neural
network has reached the maximum value, and the training stops automatically. At this
time, the corresponding minimum mean square error is 0.0030455, which does not meet the
requirement of 0.0001, but the training result is the best among the repeated training results.
In addition, it can be seen from Figure 10b that the relevant parameters of the gradient
descent algorithm used in the BP neural network changed in this study. The main failure
factors of assembled camshafts are predicted by the trained BP neural network as follows.

Using the above training function as the BP neural network model after training, the
last three groups of test samples shown in Table 5 are simulated. After the simulation, the
output results of torque, surface roughness, scratch width, shear stress and residual contact
pressure are displayed in the same picture as the target value in Figure 11. The output
values corresponding to the 17 groups of samples are the results of training 17 groups of
training samples with the BP neural network, and the output values of the last three groups
of samples are the predicted output values obtained using simulation of the BP neural
network obtained through training. The prediction results, target values and relative error
values of three test samples, 18, 19 and 20, obtained using the BP neural network simulation
are listed in Table 7. It can be seen from Table 7 that the maximum relative error of torque
prediction value is −6.97%; the maximum relative error of surface roughness prediction
value is 5.75%; the maximum relative error of scratch width prediction value is 8.34%;
the maximum relative error of shear stress prediction value is −7.63%, and the maximum
relative error of residual contact pressure prediction value is −6.61%. As a whole, the
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fitting degree between the training results of the five output parameters and the target
value can be obtained. The fitting degree of torque and scratch width is relatively poor,
and the prediction accuracy of shear stress and residual contact pressure is higher. The
prediction accuracy of all prediction results is more than 91%, and the highest prediction
accuracy can reach 99.78%.
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5.2. Failure Manifestation of Assembled Camshaft

To see the partial failure manifestation more clearly and intuitively, a 2D microscopic
image of the tubular outer surface was obtained with the OLYMPUS OLS4100 3D measuring
laser microscope, as shown in Figure 12. After the orthogonal torsion experiment under
different conditions, there are different degrees of scratches on the tubular outer surface.
Most of these scratches are generated along the torsion direction; some are regular; some
are disordered, and the width and depth of these scratches have a vital impact on the
accumulation of surface damage. Once there are scratches on the tubular surface, the
surface roughness changes accordingly, gradually accumulating and finally developing
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surface damage, which causes the relative sliding between cam and tube and leads to the
failure generation of the assembled camshaft.
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Table 7. Predicted values and relative errors of three test samples.

No. Output Parameters Target Values Predicted Values Relative Errors (%)

18 Torque T/(N.m) 25.9765 24.1643 −6.97
18 Surface roughness Rq 1.573 1.496 −4.89
18 Scratch width bavg/(um) 37.125 36.954 −0.46
18 Shear stress τ/(MPa) 10.4553 9.6566 −7.63
18 Residual contact pressure Pn/(MPa) 95.032 88.741 −6.61
19 Torque T/(N.m) 25.9894 25.4208 −2.18
19 Surface roughness Rq 1.478 1.563 5.75
19 Scratch width bavg/(um) 36.758 39.825 8.34
19 Shear stress τ/(MPa) 17.6845 18.0052 1.81
19 Residual contact pressure Pn/(MPa) 206.519 206.972 0.22
20 Torque T/(N.m) 26.1291 25.4208 −2.71
20 Surface roughness Rq 1.633 1.612 −1.28
20 Scratch width bavg/(um) 39.146 41.218 5.29
20 Shear stress τ/(MPa) 18.124 18.0465 −0.42
20 Residual contact pressure Pn/(MPa) 202.168 208.569 3.16
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In addition, there are pits, holes, distortion and excessive wear on the tubular surface
as shown in Figure 12c,d,g,h. These failure manifestations affect the surface roughness of
the tube, thus weakening the anti-torsion ability of the camshaft and resulting in the failure
of the assembled camshaft which cannot be used normally.

The 3D failure manifestations of the outer surface of the tube in Figure 12a,c,e,g are
displayed in Figure 13, and the failure manifestations of the assembled camshaft can be
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observed more intuitively, that is, failures such as wear, scratch, damage, hole, pit and
distortion on the tubular surface.
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5.3. Analyzing Failure Causes with Failure Tree Theory

Failure tree (FT) is a deductive failure analysis method from top to bottom. It is a
deductive, structured methodology that is used to identify potential causes of a top event.
It uses Boolean logic to combine low-order events to analyze the unwanted state in the
system. It is mainly used in the field of safety engineering and reliability engineering to
understand the cause of system failure and find the best way to reduce risk or to confirm
the occurrence probability of a certain safety accident or specific system failure [31].

Fault tree analysis (FTA) uses the establishment of the logic diagram of the whole
system to find the relationship among failure, subsystem and redundant safety design
elements [32]. If there is a specific event in the result event, it affects multiple subsystems,
and this is called common cause. From the perspective of graph, an event appears many
times in the failure tree, and the common cause will bring about dependency among the
events. The path from the initiator to the event is called cut set. The shortest path from
the basic event to the event is called the minimum cut set, and the related calculation and
analysis will be expanded in the Results and discussion. The failure tree model in this study
is illustrated in Figure 14, and the relationships between events are described using gate
symbols. The constructed FT model is useful for investigating the risks of the top event
both qualitatively and quantitatively.
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Qualitatively, an expression is derived for the top event through the combinations of
primary and basic events and using Boolean algebra. The qualitative evaluation of failure
trees by the accounting of cut or path sets is conceptually simple. The OR gate logic in a
tree represents the union set of input events. Similarly, the AND gate logic represents the
product set of input events.

OR gate: as long as any one of the input events occurs, the output event occurs. If the
input event is Bi (i = 1, 2, . . . , n), its logical relationship can be written as:

A = B1 ∪ B2 ∪ . . . ∪ Bn = ∪n
i=1Bi (8)

AND gate: only when all input events exist at the same time, the output event occurs.
Assuming that the AND gate has n input events Bi (i = 1, 2, . . . , n), its logical relationship
can be expressed as:

A = B1 ∩ B2 ∩ . . . ∩ Bn = ∩n
i=1Bi (9)

Quantitatively, the probability of the top event can be calculated from the primary and
basic events regarding the minimal cut sets. The quantitative evaluation of failure trees can
determine the probability of occurrence of the top event. To further determine the possible
combined failure modes of assembled camshafts, based on the FT theory, the minimum cut
set of the system is obtained. The expression of the minimum cut set can be obtained as:

T = G1 = x2 + G2 + G3 + x5 (10)

Then,
T = x2 + G4x7G5 + G6G7 + x5 (11)

Further,

T = x2 + (x11 + x12 + x13)(x7)(x11 + x12 + x13) + (x11 + x12 + x13)(x11 + x12 + x13) + x5 (12)

According to the absorption law and idempotent law in Boolean algebra, the simplified
results are as follows:

T = x2 + x11
2x7 + x12

2x7 + x13
2x7 + 2x11x12x7 + 2x11x13x7 + 2x12x13x7 + x11

2 + x12
2 + x13

2 + 2x11x12 + 2x11x13 + 2x12x13 + x5 (13)

Thus, the minimum cut sets in the FT of the assembled camshaft are as follows: {x2},
{x5}, {x11}, {x12}, {x13}, {x7, x11}, {x7, x12}, {x7, x13}, {x11, x12}, {x11, x13}, {x12, x13}, {x7, x11, x12},
{x7, x11, x13} and {x7, x12, x13}. There are 14 minimum cut sets in the FT, and 14 possible
top events. The basic events x11, x12 and x13 are common causes, that is, it will have
complex effects on multiple subsystems. For example, x11, x12 and x13 affect M6 and M8,
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namely, torque, torsion angle and torsion velocity affect surface roughness and scratch
width, respectively. In addition, the weight distribution of the major events (main failure
factors) is shown in Figure 15.
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As demonstrated in Figure 15, the probability of occurrence of the basic events x11, x12
and x13 is 24%. Since the basic event is the common cause of the system, it has a complex
impact on the above intermediate events, and the probability of occurrence is high. The
probability of occurrence of omit events x2 and x5 is 2%, which is not considered by the
system for the moment, while the probability of omit event x7 is as high as 24%, which
is caused by the repeated occurrence of event x7 when calculating the minimum cut set.
Furthermore, event x7 represents the excessive plastic deformation of the tube, which is not
obvious in this system, so it is not considered as the main factor at present. Namely, torque,
torsion angle and torsion velocity will have certain influence on the surface roughness,
scratch width, shear stress and residual contact pressure, corresponding to the outer surface
damage of tubular material and the internal damage of material, respectively; the failure
or damage of cam surface and material itself will not be considered. During torsion, due
to the different torque, torsion velocity and torsion angle, the tubular outer surface will
be scratched, and the surface roughness will change under the interaction of basic events
x11, x12 and x13. When the basic events x11, x12 and x13 reach a certain value, the shear
stress and residual contact pressure between the tube and cam contact interface change
suddenly. From the view of mechanics, it can be concluded that the failure of camshaft has
occurred at this time. That is, the failure of the assembled camshaft is affected by many
factors, which are interrelated.

Therefore, in the actual application of camshafts, a series of measures, such as reason-
ably matching the engine velocity, timely adjusting the operating cycle and torsional angle
and appropriately adding lubricant to reduce friction and wear, are necessary to prevent
the failure of hydraulic expanding assembled camshafts.

6. Conclusions

In this study, a more accurate BP neural network model is constructed to predict
the main failure factors of the hydraulic expanding assembled camshafts. The failure
manifestations of the assembled camshaft are displayed. The causes of failure are analyzed
by using the minimum cut set in the FT theory; the weight distribution of the main events
is provided, and the specific measures to prevent failure are proposed from a macro
perspective. The main conclusions of this study are as follows:

(1) A BP neural network method for predicting the main failure factors of hydraulic
expanding assembled camshafts is proposed. The correlation between the training results of
the neural network and the target value is quantitatively analyzed by using the regression
analysis method, and the accuracy of the BP neural network model is verified. The research
shows that the accuracy of the BP neural network model is good, and the prediction
accuracy of all results is more than 91%, of which the highest prediction accuracy can
reach 99.78%.
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(2) The failure manifestations of assembled camshaft mainly include wear, scratch,
damage, hole, pit and distortion on the tubular surface. The FT model of the assembled
camshaft is constructed; the minimum cut set of the camshaft system is calculated by using
the FT theory, and the causes of the failure of the assembled camshaft are analyzed. The
more minimum cut sets, the more dangerous the assembled camshaft system.

(3) During torsion, due to factors such as different torsion force, torsional angle and
torsion velocity, the tubular surface is excessively worn, which changes the frictional
characteristics (surface roughness) between the cam and the tube and causes the shear
stress and residual contact pressure to change abruptly. Further, relative sliding occurs
between the tube and the cam, resulting in the failure of the assembled camshafts.

Because some data in this study are not easy to obtain, the data used come from the
two parts of experiment and simulation, which may lead to some errors. Certainly, to
reduce the error, the experiment and simulation conditions are set to be identical as far as
possible in this study. In addition, there are few systematic studies on the failure of the
novel hydraulic expanding assembled camshafts. We believe that this study can provide
some guidance and reference value for the follow-up work, the actual industrial produc-
tion, failure prevention, faults monitoring and performance improvement of hydraulic
expanding assembled camshafts in the future.
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