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Abstract: Aluminum alloy components typically have structural characteristics such as large size
and complex shape, making the in situ non-destructive detection of internal residual stress in these
structures a challenge that the manufacturing sector has tried to solve. Ultrasonic longitudinal criti-
cally refracted (LCR) waves have shown good sensitivity to normal stress in the horizontal direction
and could be used to detect the distribution of internal residual stress in components, offering an
advantage not shared by other detection methods. In this study, we investigated the propagation
mode of LCR waves in a 2A14 aluminum alloy component and established the characterization model
of the average normal stress of LCR waves in different depth ranges. The blocking effect of LCR waves
by a groove with a depth equal to twice the wavelength was analyzed and experimentally verified
using a machined aluminum alloy test specimen. Then, the propagation depths of LCR waves in the
aluminum alloy at different frequencies were determined. A load test on a cantilever beam based
on the stress depth distribution model was designed, and the stress characterization model and LCR

waves’ propagation depth were further verified by the self-developed LCR wave stress detection
system. The test results showed that the LCR wave could accurately detect the depth distribution of
stress and could serve as a useful tool for evaluating the depth distribution of normal stress inside
aluminum alloy components.

Keywords: aluminum alloy; LCR wave; residual stress; finite element simulations

1. Introduction

Aluminum alloy components have many desirable properties such as being lightweight
and having high specific strength and good thermal conductivity; hence, they are widely
used in the aerospace industry [1,2]. Aluminum alloy machining residual stress is an
important factor affecting machining accuracy and fatigue life [3,4]. Therefore, in situ
non-destructive testing of internal residual stress in parts is a challenging problem that the
aerospace manufacturing industry tries to solve. Currently, mature destructive residual
stress detection methods mainly include the blind-hole drilling and crack compliance
methods [5,6], which cannot be applied to finished aluminum alloy components, while
the non-destructive X-ray diffraction method does not meet the detection requirements
of internal residual stresses of aluminum alloy components [7,8]. Ultrasound offers good
penetrability in metallic aluminum alloy materials [9,10], and especially longitudinal waves
have been shown to be very sensitive to the macroscopic residual stresses inside the compo-
nent and are less sensitive to material microstructure [11]. By using a physical relationship
between the speed of sound and stress in the acousto-elasticity, Pei [12] numerically simu-
lated the acoustic emission effect in a prestressed material and assessed the possibility of
using longitudinal critically refracted (LCR) waves to detect the residual stress state inside
a component. Ramasamy [13] evaluated the feasibility of detecting the internal stresses
of carbon steel using LCR waves through explicit finite element numerical simulations.
Javadi [14,15] studied the ultrasonic detection of residual stresses in welded stainless steel
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components and found good agreement compared to the finite element simulation results.
Therefore, when compared to other inspection methods, the ultrasonic method is shown
to be more suitable for finished parts or processed components. Currently, the ultrasonic
method has gradually replaced the X-ray method as the main method for detecting residual
stresses in additive manufacturing [16–18].

Because ultrasonic waves were shown to be quite sensitive to detection factors and
their measurement accuracy is affected to varying degrees by factors such as the sur-
face roughness of the part under testing, temperature changes, and the grain size of the
component under measurements, more in-depth research is needed. Zhu [19] experi-
mentally obtained a relationship between the internal stress and ultrasonic propagation
time in steel, provided the acousto-elastic coefficient of Q345, and investigated the influ-
ence of the coupling layer thickness and temperature on residual stress measurements.
Mohammadi et al. [20] used LCR waves for ultrasonic stress detection and measured the
acousto-elastic coefficients at different spacings. The results showed that the ultrasonic
measurements of the macroscopic residual stresses had the highest detection accuracy at a
spacing of 30 mm. Liu et al. [21] carried out a numerical analysis on the sensitivity of tem-
perature changes and coupling conditions and reached an experimental measurement error
value of ±20 MPa after improving the coupling conditions. This elevated the practicability
of ultrasonic stress detection. Li et al. [22] measured the planar anisotropy constant of LCR
waves in rolled aluminum plate, and the results showed that the LCR wave of the aluminum
plate was laterally symmetrical in the surface layer and was orthogonally asymmetrical
at the mid-plane, which provided supporting evidence of the effectiveness of in-depth
ultrasonic propagation. Liu et al. [23] experimentally obtained the microstructure correction
for LCR wave detection of welding residual stress and observed in the experiments that
elastoplastic inhomogeneity due to the anisotropic microstructure and dimensional stress
in the thickness direction caused the errors in the welding residual stress measurements.

However, the depth distribution detection of residual stress in the components by LCR
waves still awaits further investigation. Guz’F et al. [10] made preliminary calculations
for the relationship between the propagation depth of LCR waves and frequency and pro-
vided an initial estimate of the propagation depth of different frequencies. Javadi [24–26]
investigated the in-principle feasibility of LCR wave detection for welding residual stress
and found that the detection results were consistent with the simulation analysis. Based on
the stress distribution detected at different frequencies, the researchers further predicted
the existence of a preliminary relationship between the depth range of ultrasonic detection
for residual stress and frequency. Song [27] developed a simplified model for the uniform
distribution of residual stresses within the material and studied a mathematical model of
internal stress changes and ultrasonic propagation time for a fixed transmit-receive distance
of 30 mm and established an ultrasonic propagation depth model in steel. Sadeghi [28] used
the longitudinal ultrasonic waves of different frequencies to perform depth measurements
of residual stresses on a friction-stir-welded aluminum plate and the obtained results were
also in agreement with the finite element simulation model. Liu [29] simulated the propa-
gation mode of LCR waves of different frequencies in steel and obtained an approximate
ultrasound propagation depth range in steel. Pei N [30] compared numerous parameters for
generating critically refracted longitudinal waves, such as transducer frequency, transducer
diameter, and incidence angle, to demonstrate the effect of frequency on the depth of LCR
wave propagation and to optimize the system parameters required to generate LCR waves.

Even though a large number of experiments proved that LCR waves of different
frequencies can detect stress at different depths, there is still a lack of accurate analysis of
the dependence between detection depth and frequency. The purpose of this study is to
study the corresponding relationship between the detection stress range of LCR waves at
different frequencies and the stress distribution at different depths in aluminum alloys.
The propagation behavior of a multi-frequency LCR wave in aluminum alloy is studied
by simulation, and aluminum alloy test blocks with grooves of different depths were
designed. Due to the influence of different-depth grooves on the ultrasonic propagation
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time [29], in order to avoid analysis errors, this study selects the attenuation degree of the
displacement signal amplitude at the receiving end as a reference. According to the internal
stress distribution state of components, an ultrasonic stress depth distribution detection
model is proposed, a load model for a simply supported beam is designed, and a loading
test was designed for verification, which provided a theoretical basis for LCR to detect the
normal stress of aluminum alloy members at different depths.

2. Principle of Stress Measurement by LCR Waves
2.1. Testing Method for the Acousto-Elastic Theory

Ref. [31] showed that, when the material was isotropic, longitudinal waves were most
sensitive to changes in stress. Because the LCR waves reached the sensor the earliest, LCR
was the most commonly used detection method. The model and formula of the propagation
mode for LCR waves and the direction of stress are shown in Figure 1 and Equation (1) [32]:

ρ0V2
xxx = λ + 2µ +

σx

3λ + 2µ

[
λ + µ

µ
(4λ + 10µ + 4m) + λ + 2l

]
(1)

where ρ0 indicates the density of the material without deformation, λ and µ denote the
second-order elastic constants, and l, m, and n are the third-order elastic constants of the
material. σx denotes the stress in the unitary body in the x-direction, Vxxx indicates the
speed of propagation of sound waves in a particular direction, and the first, second, and
third subscripts of Vxxx denoting the wave propagation direction, particle polarization
direction, and stress direction, respectively. The aluminum alloy’s parameters are shown in
Table 1 [27,33].
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Table 1. Second-order and third-order constants of aluminum alloy.

Material λ (Gpa) µ (Gpa) l (Gpa) m (Gpa) n (Gpa)

Aluminum alloy 62 25 −69 −354 −206

When the solid material is in an unstressed state, the speed of sound of the longitudinal
wave in this state is:

V0 =

√
λ + 2µ

ρ0
(2)

Substituting Equation (2) into Equation (1), we could obtain:

V2 = V0
2(1 + k1σ) (3)

where

k1 =

4λ+10µ+4m
µ + 2l−3λ−10µ−4m

λ+2µ

3λ + 2µ
(4)
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where V represents the longitudinal wave velocity for a propagation direction in the same
direction as the applied stress, V0 represents the longitudinal wave velocity in a stress-free
state, and k1 is the acousto-elastic coefficient.

By simultaneously differentiating both sides of Equation (3) and simplifying the
infinitesimal quantities, we could obtain:

dσ =
2

k1V0
· dV (5)

where k1 is the longitudinal wave acoustic elasticity coefficient, which can be obtained
experimentally using a tensile compression tester that provides standard stress values [34].
The coefficient of aluminum alloy 2A14 is 4.5, which can be obtained by a tensile test. By
measuring dV (relative change in the sound velocity) and V0 (the sound velocity in the
unstressed state), we could obtain the internal stress in the material. Using the method of
time for the flight difference, we obtained the change in time of flight for a certain sound
range by measuring the time of flight for a certain sound range. Thus, the stress could be
obtained more accurately by using Equation (5).

When LCR is used for the detection of internal stress for aluminum alloy components,
the sound has to be refracted from a medium with a slower sound speed into a medium
with a faster sound speed, and the refraction angle is determined by Snell’s law [35]. To
study the effect of LCR waves at a frequency on propagation depth, the diameter and
incidence angle of the ultrasonic transducer was fixed in this paper, the optimal angle for
generating LCR waves was chosen to be 30 degrees according to the literature, and the
transducer piezoelectric ceramics were all 5mm in diameter [30]. By using the oblique
incidence method, the LCR wave was excited into transmitting to a receiving transducer, as
shown in Figure 2. Polymethyl methacrylate (PMMA) was used as a common material for
making transducer wedges for stress detection with LCR waves.
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2.2. Detection Principle of Stress Depth Distribution

According to Equation (5), it can be seen that the LCR wave can detect the average
positive stress in a certain area range. The model of horizontal normal stress distribution at
different depths is shown in Figure 3. The study [27] concluded that different frequencies
of LCR waves correspond to different detection depths and gave an empirical formula for
ultrasonic detection of stress depths in Q235 steel by establishing a simplified stress gradient
model. The study [29] modified the empirical equation of LCR wave propagation depth in
Q235 steel by finite element simulation. The depth of LCR wave propagation corresponds
to the frequency, so the depth of detection of stress is also frequency-dependent.
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Since the stress distribution in the component is not uniform, to describe the principle
of LCR wave detection of residual stress at different depths as exactly as possible, an
ultrasonic detection model for normal stress at different depths was established in this paper.
Assuming that the ultrasonic transducer frequency f1, f2, f3 corresponds to a detection
depth of D1, D2, D3, the horizontal stress distribution in the depth direction is σ1, σ2, σ3.
To determine the mean normal stress in the x-direction σz1 at the depth z1, the following
formula can be used:

σx−z1 =

s

y,z
(

x∫
0

σdx)dydz

dVz1

=

s

y,z
(

x∫
0

σdx)dydz∫
x
(
s

y,z
dydz)dx

(6)

σx−z1 is expressed as the average normal stress in the x-direction in a cube of length x,
width y, and depth z1.

As the length in the x-direction is the propagation distance of the LCR wave, set to L,
and the length in the y-direction is the diameter of the transducer, both of which are fixed
values, this paper assumes a uniform stress distribution in the y-direction to simplify the
model, so Equation (6) can be simplified to

σx−z1 =

∫ z1
0 (

L∫
0

σdx)dz

z · L (7)

By analogy, the average normal stress value in the x-direction at any depth zi can be
expressed as:

σx−zi =

∫ zi
0 (

L∫
0

σdx)dz

zi · L
(8)

3. The Dependency of LCR Wave Propagation Depth on Its Frequency

According to the research reported in Refs. [27,29], we concluded that the propagation
depth of the ultrasonic waves in steel increased as the frequency decreased; however, the
relationship was not linear. By changing the excitation frequency of the transducer, the
LCR waves propagating at different depths below the surface could be obtained. Then,
according to the influence of stress on the velocity of the LCR waves at different depths and
the correlation model of stress and wave velocity, the normal stress distribution at different
depths below the surface could finally be determined.

3.1. Finite Element Simulation of LCR Wave Propagation Depth

The propagation process of ultrasonic waves in elastic solids is very complicated.
Although numerous studies have analyzed various propagation modes, there has been
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a lack of an intuitive representation of how LCR waves are propagated. In this study, the
elastic wave module was selected for ultrasonic simulation research, and the velocity–strain
formula was used to solve the calculation:

ρ ∂2u
∂t2 −∇2 · u = Fv

∂εij
∂t −

1
2 (∇v− v∇) = 0

Skl = Cijkl : εij

(9)

where u is the displacement, Skl is the second-order stress tensor, εij is the second-order
strain tensor, Cijkl is the fourth-order elastic tensor, and Fv represents the body force exerted
on the element body.

Based on the actual situation of the experiment, the finite element simulation model
consists of a flat plate with a fixed thickness and a set of launch-receive wedge blocks.
Geometrically, this was represented by a rectangle and two right-angled trapezoids. The
propagation distance between the wedges on the two sides was set to 30 mm to ensure that
the same spacing was used between the wedges in the verification test, and the specific
model is shown in Figure 4.
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In this geometric finite element model, a section of the inclined end face of the left
wedge was used as the excitation zone of the ultrasonic signal, and the corresponding
section on the right wedge was used as the receiving zone of the ultrasonic signal. The
length of the entire rectangle was 60 mm and the height was 40 mm. To simulate the
excitation signal of the ultrasonic transducer, the length of the excitation zone of the signal
on the left was set to 5 mm, which was the same as the diameter of the wafer used in
the experiment, where the material of the plate consisted of 2A14 aluminum alloy. The
material for the transmitting and receiving wedges on both sides consisted of PMMA, and
the specific properties are shown in Table 2.

Table 2. Test material properties.

Material Elastic Modulus (Gpa) Poisson’s Ratio Density (kg/m3)

Aluminum alloy (2A14) 72 0.33 2750
PMMA 6.1 0.32 1160
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In the simulation software, a pulse signal was used as the excitation signal, and a
modulated pulse signal was used to act on the left plexiglass to simulate the ultrasonic
longitudinal wave transducer. The signal expression followed:

F(t) =

e
−( t−2T0

(T0/2) )
2

· sin(2π f0t) t ≤ T0

0 t > T0

(10)

The total displacement amplitude of the signal received by the right-hand side wedge
was used as the standard for assessing the energy intensity of the LCR wave signal using
the observed relative changes in the displacement amplitude.

3.2. Propagation Depth Experiment of the LCR Waves

Through the numerical simulation method, the propagation behavior of LCR waves
in grooves of different depths was simulated. To verify the correctness of the model and
determine the propagation depth of LCR waves of different frequencies, in this paper,
aluminum alloy groove test blocks with different depths were processed for verification.
The study [29] evaluated the ultrasonic propagation depth by simulating the TOF (time-of-
flight) difference of multi-frequency LCR waves with different groove depths but did not
consider the influence of the width and depth of the groove on the propagation time of LCR.

In the experiment, the material of the tested block was 2A14 aluminum alloy, and two
identical test blocks of the aluminum alloy were used as the test objects. Each rectangular test
block had a measured length of 300 mm, a width of 40 mm, and a height of 50 mm. The test
blocks were milled on the Taqun T-V850 machining center, and the surface of the test blocks
was machined as smoothly as possible in order not to be affected by surface roughness. On
one face of each test block, suitably spaced grooves of different depths were milled, where
the depths of the milled grooves on one block were 0.5, 1, 1.5, 2.0, 2.5, and 3 mm, while the
depths of the milled grooves on the other block were 3.5, 4, 4.5, 5, 6, and 10 mm. To eliminate
the effect of milling residual stresses on LCR wave propagation, the test blocks were annealed
at 260 ◦C and air-cooled for 4 h to room temperature after machining.

The experimental system was composed of an ultrasonic signal generator, a power
amplifier, and an oscilloscope. A pulse signal was emitted by a RIGOL-DG1022U ultrasonic
signal generator (RIGOL, Suzhou, China), and an ATA-4011 power-amplifier (Aigtek, Xi’an,
China)provided an output with 20 times gain and could meet the operating requirements
of the transducer. The transducers with different frequencies used in this paper were pro-
vided by the Shantou Institute of Ultrasound (Shantou, China), and the center frequencies
were 1, 2.5, 4, 5, and 7.5 MHz. In the verification experiment, the relative echo amplitude
received by the oscilloscope could be used as the standard for assessing the energy intensity
of the LCR wave signal at different frequencies and in different depth ranges, for evaluating
the feasibility of detecting the residual stress at different depth distributions. To avoid the
influence of temperature on the LCR wave, the experiments in this paper were all carried
out at room temperature of 26 ◦C.

3.3. Verification of Multi-Frequency Ultrasonic Testing of Stress Depth Distribution

To quickly obtain the normal stress distribution at different depths, in this paper, we
adopted the method of applying a moment to the cantilever beam to obtain the pre-stress.
The length of the cantilever beam was 300 mm, the width was 50 mm, and the thickness
was 10 mm. For a cantilever beam, when the other end was loaded, both the shear force
and bending moment were generated simultaneously. Thus, normal and tangential stresses
were generated inside the cantilever beam. In this study, we mainly focused on normal
stress in testing and verification.

By controlling the advance of the screw, different pressures were applied. At the same
time, a pressure sensor was placed between the head of the screw bolt and the cantilever
beam to monitor the applied pressure; thus, applying the force precisely. Compared to the
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pressure applied by tightening the screw bolt, the dead weight of the bolt, the pressure
sensor, and the cantilever could be ignored. Figure 5 shows the experimental system for
measuring the normal stress distribution at different depths of the cantilever beam.
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Figure 5. Schematic diagram of cantilever beam stress-loading and measurement.

The material of the cantilever beam consisted of 2A14 aluminum alloy, and the material
of the bracket was Q235 steel. In the simulation process, to simplify the model, the bolt-
loading force was equated to the uniform load on the aluminum alloy plate, and the
modulus of elasticity of Q235 steel is much larger than that of aluminum alloy 2A14, so it
could be set as a rigid body. The loading forces were set to 100, 200, 300, 400, 500, 600, 700,
and 800 N. After the simulation calculations, the x-direction normal stress distribution of
the cantilever beam along the thickness direction was read out, from which we obtained the
stress curve and the stress distribution along the thickness direction. The stress distribution
map of the cantilever beam for an applied load is shown in Figure 6.

As shown in Figure 6, the x-direction horizontal positive stress was not uniformly
distributed in both the depth direction and length direction of the plate. The horizontal
positive stress showed a linear distribution along the depth direction and was nonlinear
in the length direction, but the average normal stress could still be calculated according
to Equation (8). The stress was more concentrated near the fixed end, and the distance of
80 mm from the fixed end was chosen as the observation position to better measure the
horizontal normal stress at different depths.
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Figure 6. Horizontal normal stress distribution diagram of the cantilever beam.

4. Results and Discussion
4.1. Simulation Results of the Effective Propagation Depth of the LCR Waves

The ultrasonic wave propagation diagram at t = 5 µs is shown in Figure 7, where the
color shades in the diagram represent the amplitude. In the aluminum alloys, the LCR
wave had the fastest propagation speed, and the LCR wave reached the right wedge first.
The bulk longitudinal wave also had the same speed as the LCR wave, but the vibration
direction was perpendicular to the wavefront of the propagating wave and it propagated
to the bottom surface of the aluminum alloy before it was reflected. For the head wave,
its wavefront was approximately a straight line in two-dimensional space, and consisted
of a plane wave, with its corrugation tangent to the transverse wave. This was the same
as the propagation process of the LCR wave in steel described in Liu Y. [29], where the
only difference was that the longitudinal wave entered the material from the wedge with a
different incident angle.

Two PMMA wedges, one for sending and one for receiving, were set up on the two sides
of a flat plate. A pulse excitation signal was given to the left wedge, and a signal acquisition
point was set up on the right wedge. On the plate and mid-way between the two wedges,
a groove with a width twice the ultrasonic wavelength was milled into the plate to block
the conduction of the LCR wave signal. The displacement of the signal received by the right
wedge was analyzed while changing the width and depth of the milled groove to observe the
changes in signal displacement caused by the depth of the groove.

In the process of finite element simulations, ultrasonic waves of 1 MHz were selected,
and the depth of the milled groove varied from 1 to 7 mm. The x-direction displacement
and y-direction displacement of the simulated signal at the signal acquisition point were
analyzed, from which the displacement of the acquired signal was obtained. Displacements
in the x- and y-directions of the 1 MHz signal are shown in Figure 8.
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Figure 8 shows the displacement–time curves of the x- and y-components of the signal
acquired by the right wedge block for a transducer frequency of 1 MHz. Because the LCR
wave had the fastest propagation speed, the first wave in the figure was the received signal
of the LCR wave. When the depth of the milled groove increased from 1 to 5 mm, the
displacement amplitudes in the two directions were reduced slightly but not by very much.
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When the depth increased to 7 mm, the displacement amplitudes in both directions showed
a significant drop. This indicated that, when the depth reached 7 mm, the received LCR
wave signal was very weak and showed that the effective measurement depth of the LCR
wave at a frequency of 1 MHz was less than 7 mm.

4.2. Propagation Depth Behaviors of the LCR Waves

In the experiment, ultrasonic transducers with three different frequencies (1, 2.5, and
5 MHz) were used to test the two aluminum alloy blocks in turn. During the experiment,
detection probes consisting of transducers with center frequencies of 1, 2.5, and 5 MHz
were securely coupled in sequence to the surface of the test block, and the two transducers
of the detection probe were placed on the two sides of the milled groove on the test block.
The excitation signal and received signal were obtained with the oscilloscope. Figure 9
shows the waveform of the 2.5 MHz transducers.
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Figure 9. Experimental results with a 2.5 MHz center frequency detection transducer.

The experimental waveforms showed that, as the depth of the milled groove increased,
the received echo signals had a downward trend to varying degrees. To evaluate the
attenuation of the voltage signal intuitively and effectively, a drop of −6 dB in amplitude
was used as the reference standard. When the voltage amplitude was −6 dB less than the
signal amplitude corresponding to a groove depth of 0.5 mm, then the LCR waves were
regarded as ineffective for detecting residual stress at this depth. At a milled groove depth
of 3 mm, the intensity of the LCR wave signal received by the 2.5 MHz detection probe
showed a very pronounced drop. Thus, we concluded that the effective propagation depth
of the 2.5 MHz LCR wave did not exceed 3 mm.

As shown in Figure 10, the peak values of the LCR wave signals at different depths and
for different frequencies were quantified and compared to the simulated amplitude. For
each frequency, the amplitude of the LCR wave received by the detection probe showed a
cliff-like downward drop at a certain depth of the milled groove. For the 1 MHz transducer,
the peak value of the received signal decreased sharply when the groove depth was 10 mm.
Similarly, for the 2.5 and 5 MHz transducers, the peak values of the echo signals dropped
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sharply at groove depths of 2.5~3 mm and 1.5~2 mm, respectively. The simulation results
are consistent with the experimental results; for ultrasonic transducers with different
frequencies, there was a certain depth beyond which the effectiveness of detection of the
LCR wave became rather limited.
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4.3. Multi-Frequency LCR Waves Testing Results of Stress Distribution at Different Depths

We processed the calculation results for the different loading forces and obtained the
stress distribution curves under different applied loads. The results are shown in Figure 11.

As shown in Figure 11, as the load force increased, so did the stress generated inside
the cantilever beam. At a thickness of 5 mm, the stress at the neutral layer was almost zero,
which was consistent with the theory.

We conducted stress tests on the cantilever beam at different loads; the detection
position was the same as the stress extraction position in the finite element simulations.
During the experiment, the system was first used to perform zero-stress calibration at the
detection position before the screw bolt was tightened. The state before the force that was
applied to the cantilever beam was regarded as a state of zero stress. Advancing the screw
caused the head of the screw bolt to generate pressure on the cantilever and produced a
normal stress distribution in the depth direction of the cantilever. The system was then
used to measure the stress at the detection position. In this experiment, four groups of
detection probes with the commonly used frequencies of 1, 2.5, 5, and 7.5 MHz were used
to detect the normal stress in different depth ranges of the cantilever beam with applied
pressures in the range of 100 to 800 N.

Based on the experimental design, detection probes with the above four commonly
used frequencies were used to acquire the stress values at the detection position when
the loading forces were 100, 200, 300, 400, 500, 600, 700, and 800 N. Figure 12 shows the
obtained detection results.
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Figure 12. Test results of multi-frequency LCR wave cantilever beam stress loading.

Based on the stress distribution curve of the cantilever beam calculated from the
simulation results, we obtained the average stress values at different depths from the
surface and compared them to the measured stress values. The comparison results of the
two are shown in Table 3.
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Table 3. Comparison between the theoretical value of loading stress and the test value.

Frequency 1 MHz 2.5 MHz 5 MHz 7.5 MHz

Pressing Force (N) Simulation
Value (Mpa)

Experimental
Value (Mpa)

Simulation
Value (Mpa)

Experimental
Value (Mpa)

Simulation
Value (Mpa)

Experimental
Value (Mpa)

Simulation
Value (Mpa)

Experimental
Value (Mpa)

100 9.92 12.62 20.39 25.1 23.97 20.57 25.07 30.1
200 19.95 21.83 40.93 44.65 48.11 46.24 50.31 53.65
300 29.93 36.87 61.39 57.99 72.16 78.26 75.47 69.96
400 39.91 45.65 81.86 87.26 96.21 102.6 100.63 105.36
500 49.89 47.86 102.33 109.44 120.27 126.39 125.79 131.46
600 59.87 64.85 122.8 131.8 144.32 140.64 150.95 159.63
700 69.84 72.52 143.26 156.07 168.38 183.28 176.1 188.36
800 79.82 92.2 163.72 185.7 192.43 223.45 201.26 235.61

Corresponding depth 6.4 mm 2.66 mm 1.37 mm 0.93 mm

Based on the above stress value comparison table, a correlation curve between the
loading force and stress for the different detection frequencies was plotted. At the same
time, the theoretical values and detection results were compared, as displayed in Figure 13.
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Table 3 shows the values detected by the transducers of different frequencies and the
simulation results, which indicated that, when using transducers of different frequencies,
the detected values gradually increased with increasing loading force. The variation trend
of the detected value with the loading force was similar to the theoretical value, and both
showed an approximately positive linear correlation. The stress detection values were
very consistent with the simulation data; the maximum error was about 30 Mpa, and the
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minimum error was only 3 Mpa, which shows that the multi-frequency LCR waves could
achieve a relatively accurate degree of stress detection.

As shown in Figure 13, when the loading force was 100 N, there was a large relative
error between the theoretical value and the detected value, which was possibly caused by
an error in the ultrasonic detection of small stress. In addition, the result was sensitive
to the coupling force of the probe when the stress was small, which could lead to large
errors. Moreover, we did not consider the residual stress in the aluminum alloy plate in the
simulation, which could also cause the detected value to deviate from the theoretical value.

When the loading force was in the range of 200 N to 600 N, the ultrasonic waves at
2.5, 5, and 7.5 Mhz showed good detection accuracy, but the measurement results at 1Mhz
ultrasonic had a large error with the theoretical value. As a result, the received signal may
hav been a signal superimposed by the LCR waves and the reflected wave, which had an
impact on the detection result. Therefore, 1 Mhz can be selected for the stress evaluation of
thick plates, but thin plates will affect the detection accuracy.

For a loading force greater than 700 N, there was a large discrepancy between the
detected and theoretical values. This was because, when the loading force exceeded 700 N,
the cantilever beam started to show obvious bending and geometric deformation. This
prevented the probe wedge (flat wedge) from being perfectly coupled to the surface of
the cantilever beam, and as the coupling gap increased, the sound path increased, which
eventually led to a larger detection value.

The LCR waves of different frequencies were affected differently in different depths. We
also observed that the stress values obtained from the test corresponded to the average value
in different depths obtained from the simulation. Based on the comparative simulation and
experiment study, the effective depths of 1, 2.5, 5, and 7.5 MHz ultrasonic waves that could
detect internal stress were 6.4, 2.66, 1.37, and 0.93 mm, respectively. The coefficients in the
empirical formulas given in Ref. [27] have a corresponding relationship with the sound
speed of longitudinal waves in the material, but the coefficients have some deviations after
fitting. Because the designed test was a curvature test block, the ultrasonic propagation
behavior was more complicated than that of a flat test block, and it did not consider the
uneven stress distribution in the x-direction. The fitting results of aluminum alloy and
Q235 corresponding to the depths of different frequencies are shown in Figure 14.
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5. Conclusions

Based on the wave equation and acousto-elastic theory, the process of transmitting
ultrasonic waves from a piezoelectric element with a diameter of 5 mm on PMMA, to
the generation of LCR after refraction, and then to receiving ultrasonic signals after being
blocked by grooves of different depths was simulated. By studying the displacement
amplitude of the received signal, the different blocking effects of grooves with different
depths on LCR waves of different frequencies were characterized, and the corresponding
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relationship between the propagation depth and frequency of LCR waves was obtained.
The aluminum alloy groove test block was designed and processed to verify the LCR wave
data and compared with FEM to verify the accuracy of the LCR wave propagation depth
at different frequencies. Finally, according to the LCR stress detection model of different
depths, a simply-supported beam structure was proposed, and the normal stress was
generated at different depths. The finite element simulation results were compared with
the experimental detection, which verified the accuracy of the residual stress detected by
the LCR wave, and we obtained the theoretical formula of the corresponding stress depth
distribution of LCR at different frequencies in aluminum alloys. The method proposed in
this paper was used for the stress measurement of aluminum alloy milled and welded
components for aerospace, and this study can serve as a valuable theoretical and technical
reference for the measurement of residual stress at different depths in the machining of
aluminum alloy components and their subsequent assembly.
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