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Abstract: Bending control is one of the main methods of shape control for the hot rolled plate.
However, the existing bending force setting models based on traditional mathematical methods are
complex and have low control accuracy, which leads to poor strip exit shapes. Aiming at the problem
of complex bending force setting of the traditional algorithm, an improved whale swarm optimization
algorithm and twin support vector machine-based bending force model for hot rolled strip steel
(LWOA-TSVR) is proposed. Based on the hot rolling field production data of a steel plant, the research
group established the bending force prediction model by using the nonlinear approximation ability
of the twin support vector machine. The introduction of the Levy flight improvement algorithm
improves the generalization ability, prediction accuracy, and convergence speed of the whale swarm
optimization algorithm with the help of the convergence of coefficient vectors, solves the problem of
a random selection of the parameters of the traditional whale swarm optimization algorithm and
optimizes the ability of the whale swarm algorithm to jump out of the local optimum. Based on the
actual rolling database, the hit rate of the proposed method reaches 91% (from −5 to 5 KN), which
fully meets the requirements of the detection accuracy on the actual production line. The model is
not only able to overcome the local search to obtain the global optimal solution, but also has the
advantages of fast convergence and higher prediction accuracy. A comparison of the model with
twin support vector machines and traditional whale swarm algorithms shows that the prediction
accuracy is higher. The experimental results also show that this model has advantages over existing
bending force prediction models in terms of improving the accuracy of the strip shape control and
providing theoretical guidance for practical bending force settings.

Keywords: bending force; improved whale optimization algorithm; levy flight algorithm; plate shape
control; twin support vector machine

1. Introduction

The control of bending force is one of the main methods of hot rolled strip shape
control, which is based on the principle of applying hydraulic bending force to the work
roll and support roll neck to change the roll seam convexity and thus influence the roll
seam shape during rolling, prompting the strip to change along the width direction, com-
pensating for the poor plate shape caused by changing in other rolling process factors,
and thus ensuring the accuracy of the strip exit plate shape. The forecast accuracy of roll
bending force has an important impact on the flatness and profile control accuracy [1,2].

In the actual production process, the optimal setting value of bending force is not
easy to obtain, and it is usually obtained by calculation based on the influencing factors
such as temperature, thickness, width, rolling force, material, thermal expansion of rolls,
roll wear and flatness and convexity of strip steel. Generally, it is complex to obtain the
configuration model of hot rolling bending force because some rolling factors related to
the model are nonlinear and have strong coupling, as well as the very large detection error,
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which seriously affects the improvement of the accuracy of the bending force setting model.
The mathematical model established by the traditional theory has low control accuracy
in production practice [3–5]. Moreover, the development of the traditional bending force
setting theory research has not improved the deficiency of the machine model in the non-
stationary process, and this situation has seriously restricted the control accuracy and
product quality. In recent years, rich results have been achieved in related research on
bending force prediction, and the high-precision bending force prediction model plays
a very important role in the control of plate shape. Therefore, the correct investigation
of bending force prediction models is a very important but challenging job for strip steel
production and plate control. Researchers have started to think about the use of an artificial
intelligence approach to solving the above problems. The research on the hot rolled strip
model based on the intelligent method is the development trend of bending force prediction,
and a neural network is the main method to establish the bending force prediction model.
However, the traditional BP (back propagation, a multi-layer feed-forward neural network
trained according to an error back propagation algorithm, is one of the widely used
neural network models) neural network model has the local minimum value problem,
which leads to the non-uniqueness of model parameters and increases the difficulty of
modeling. Moreover, if the number of samples is too small, the modeling effect is difficult
to guarantee [6–8]. To solve the above problems and achieve a higher quality of plate shape,
it is necessary to improve the accuracy of model prediction and computational speed to
ensure the control effect of bending force, and to provide the theoretical basis for exploring
new model methods for bending force setting.

The group used the hybrid intelligent optimization algorithm of an improved whale
swarm optimization algorithm and a twin support vector machine (LWOA-TSVR). Com-
pared with the BP neural network algorithm, the algorithm model can not only overcome
the local optimization to obtain the global optimal solution but also has the advantages of
fast convergence speed and higher prediction accuracy, which can well solve the problem of
easy to fall into local minimum in the neural network algorithm [9–11]. As a new intelligent
algorithm, LWOA-TSVR can establish the final model of bending force setting based on
actual industrial production sample data and through correlation analysis between sample
data, which can solve the internal complex system modeling [12]. Firstly, the bending force
forecasting model is established based on the testing data on the hot rolling line of a steel
mill, using the initial information of the hot rolled strip and the raw material dosage, and
other information [13,14]. Secondly, the feedback value of the prediction model is used to
adjust the variables to be optimized for the target parameters, and SPSS is used to filter the
influencing factors of the bending force to obtain the correlation coefficients between the
influencing parameters and the bending force. Finally, the optimal value of the bending
force is set. Although the traditional twin support vector machine model greatly reduces
the difficulty of obtaining the bending force, the calculation speed and hit rate still need to
be improved. To address this problem, the TSVR algorithm is first improved by combining
the Levy flight algorithm to improve the modeling efficiency and generalization perfor-
mance of the algorithm, and finally, the LWOA-TSVR model is built using the improved
algorithm. To investigate the prediction effect of the LWOA-TSVR algorithm compared
with traditional algorithms, four algorithms (BP, TSVR, WOA-TSVR, and LWOA-TSVR) are
used to build the corresponding models and compared in the training set and testing set
respectively. The research shows that the proposed model is feasible and can be applied to
predict the bending force of hot rolled strips and provide a new research method for rolling
optimization [15–18].

The subject belongs to the latest application in the field of metallurgical intelligent
manufacturing, combining metallurgical technology with predictive technology in a fa-
vorable way. It is another new milestone in the development of metallurgical technology,
breaking the deficiencies of bending force control in the traditional process and transform-
ing what might otherwise be produced as unqualified products into qualified products
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by pre-adjusting the process parameters online and through the finishing rolling unit. It
reduces the scrap rate and reduces production costs at the same time.

2. Industrial Trials

During the process of industrial trials, the F7 mill is taken as the object of study, the
position of the bending roll is shown in Figure 1a. The relevant variable parameters are
collected as the input of the model. After the strip passes through the exit of the roughing
mill, the speed meter measures the entrance speed of the strip when it enters the finishing
mill. A set of the pyrometer is designed and installed in front of the entrance of the finishing
mill (using three pyrometers to measure at multiple points at the same time to take the
average value), and the pyrometer is used to measure the entrance temperature of the strip
at this time, and the thickness, width and temperature value measured at the roughing
exit are sent to the second model as the set value of the roll gap, rolling speed, strip width
and plate type of each stand when the strip is put through the finishing mill. When the
strip enters the finishing area, the rolling force in the corresponding stand is measured
using the nip mounted on the upper end of the finishing unit. The work roll traverse is
calculated by measuring the angle which the press-down motor shaft has turned using
magnetic tape. The strip exits the finishing area and the parameters such as exit thickness
and target convexity of the strip are measured using the thickness gauge and convexity
gauge installed at the rear of the F7 finishing mill stand, respectively. The finishing process
flow and the principle of F7 mill bending force during the industrial trials are shown in
Figures 1b and 2.
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Figure 1. Layout of finishing the mill line: (a) Bending roll of finishing mill; (b) Equipment layout of
hot continuous rolling mill line.



Metals 2022, 12, 1589 4 of 15Metals 2022, 12, 1589 4 of 15 
 

 

 

Figure 2. F7 mill hydraulic roll bending schematic. 

3. Establishment of LWOA-TSVR Model 

3.1. Static Control Model Based on LWOA and TSVR 

In this paper, a static component control model based on LWOA and TSVR is estab-

lished. The system block diagram of this control model is shown in Figure 3. The control 

model consists of a bending force prediction model, an input variable optimization model 

(LWOA), a parameter adjustment unit R1, a rolling area, and a plate control section. The 

prediction model of bending force is established. The input of the prediction model is the 

inlet temperature of strip steel, entry thickness, exit thickness, strip width, rolling force, 

rolling speed, work roll shifting, yield strength of strip steel, and target convexity. And 

the output is the bending force. 

 

Figure 3. Static component control model based on LWOA-TSVR algorithm. 

In the improved whale population optimization algorithm for pre-optimization of 

experimental data, the population size of the whale population is first initialized, then the 

fitness of each whale population is evaluated, and the fitness value of each whale popu-

lation is compared to find the individual optimal solution, then the individual optimal 

value is compared to the global optimal solution, the global optimal solution is found and 

the current position of the whale population is updated, finally the position of the whale 

population is updated if it is judged to be at the global optimal value at this point and the 

data is fed to the kernel function parameters and penalty factors in the TSVR algorithm. 
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3. Establishment of LWOA-TSVR Model
3.1. Static Control Model Based on LWOA and TSVR

In this paper, a static component control model based on LWOA and TSVR is estab-
lished. The system block diagram of this control model is shown in Figure 3. The control
model consists of a bending force prediction model, an input variable optimization model
(LWOA), a parameter adjustment unit R1, a rolling area, and a plate control section. The
prediction model of bending force is established. The input of the prediction model is the
inlet temperature of strip steel, entry thickness, exit thickness, strip width, rolling force,
rolling speed, work roll shifting, yield strength of strip steel, and target convexity. And the
output is the bending force.
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In the improved whale population optimization algorithm for pre-optimization of
experimental data, the population size of the whale population is first initialized, then
the fitness of each whale population is evaluated, and the fitness value of each whale
population is compared to find the individual optimal solution, then the individual optimal
value is compared to the global optimal solution, the global optimal solution is found and
the current position of the whale population is updated, finally the position of the whale
population is updated if it is judged to be at the global optimal value at this point and the
data is fed to the kernel function parameters and penalty factors in the TSVR algorithm.

In the adjustment unit R1, the model parameters are adjusted according to the principle
of minimizing the error between the predicted value of the bending force Fp and the
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practical value Fr. Finally, the testing samples are substituted into the trained model
to verify the relevant performance indicators. Once the system parameters have been
determined, the static control model is built, and the parameters of the system are stored in
the TSVR model. After the model has been built, a modified whale swarm optimization
algorithm is used to optimize the output value Fp of the bending force against the target
value Fg. The optimized results are then passed back to the rolling area. The rolling area
can control the plate shape according to the specific values of the influencing factors. The
initial information about the current mill and the desired predictions are fed into the static
control model, which will calculate the value of the bending forces required to achieve
optimum plate control. The final control of the bending force is achieved by executing the
plate control section to achieve the target desired plate shape.

3.2. Sample Data Processing

The data collected in this paper are actual production data of SPCC steel grades in a
steel mill. Because of the large variety of parameters influencing the bending force and
the fact that there is no firm basis for concluding the magnitude of the influence of these
factors on the bending force, SPSS (IBM SPSS Statistics 25, Norman H. Nie, C.Hadlai (Tex)
Hull and Dale H. Bent, Chicago, IL, USA) is used to carry out a correlation analysis to
measure the degree of correlation between the variables and the bending force and to filter
out the most important influencing parameters. The input variables with high correlation
are identified as: the inlet temperature of strip steel, entry thickness, exit thickness, strip
width, rolling force, rolling speed, work roll shifting, yield strength of strip steel, and target
convexity. The correlation result is obtained as shown in Table 1.

Table 1. Correlation statistical table of influencing factors.

Dependent Variable Independent Variable Correlation Coefficient

Bending force

Work roll shifting 0.001
Rolling force 0.011

Entry thickness 0.211
Rolling speed 0.163

The inlet temperature of strip steel 0.102
Target convexity 0.383

Yield strength of strip steel 0.074
Strip width 0.348

Exit thickness 0.544

3.3. Bending Force Optimization Model Based on LWOA-TSVR Hybrid Intelligent Algorithm

In the process of hot strip rolling, the bending state of the work roll is affected by
many rolling factors, such as elastic deformation between rolls, rolling speed, rolling
force, etc. Considering the complexity of bending force calculation, the improved whale
swarm optimization algorithm is integrated into the bending force prediction model of the
twin support vector machine. Finally, the bending force prediction model based on the
LWOA-TSVR algorithm is obtained, and the specific process is shown in Figure 4.

The penalty parameter C and kernel function parameter σ of TSVR are optimized by
the LWOA algorithm. The relational flow chart of the LWOA optimized TSVR is obtained
as shown in Figure 5. Firstly, the rolling data are extracted and normalized, the parameter-
seeking process of the twin support vector machine is optimized by the improved whale
swarm algorithm, and the corresponding kernel function is selected; secondly the regression
model is trained and tested by combining the optimal solution and the kernel function;
finally, the bending force model is obtained by inverse normalization of the regressed
rolling data.
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Using the input variables to the model and incorporating the principles of twin support
vector regression machines, the following modeling steps can be identified:

Step 1: Input the training data for LWOA optimization and pre-process the experimen-
tal data;

Step 2: Initialize or update model parameters C1, C2, ε1, ε2, σ;
Step 3: Initialize the number of optimized whale populations;
Step 4: Substitute 1500 groups of training samples into Equations (1) and (2), and solve

the optimization problem according to the optimization strategy of Equation (3) until the
maximum number of iterations is satisfied to obtain the optimal solution vector α and β;

Step 5: Substitute the optimal vector into the weight vector and the bias vector to
obtainω1, b1,ω2, b2, and obtain the vector [ω1, b1]T, [ω2, b2]T. Substitute the results into
fw(x) (bending force), that is, the bending force prediction model of the hot rolled strip
is obtained;



Metals 2022, 12, 1589 7 of 15

Step 6: Calculate the hit rate, if the index reaches the required model accuracy, the
model building is completed, otherwise repeat steps 2 to 6 until the index reaches the
set value.

min 1
2α

TH(HTH)−1HTα + fTH(HTH)−1HTα − fTα

0 ≤ α ≤ C1e
(1)

min 1
2β

TH(HTH)−1HTβ + hTH(HTH)−1HTβ − hTβ

0 ≤ β ≤ C2e
(2)

X(t + 1) =


{

X∗(t)− lH, if a < 1
Xrand(t)− lH, if a ≥ 1

, if n < 0.5

X∗(t) + τpeε·m· cos(2πm), if n ≥ 0.5
(3)

3.3.1. Improved Whale Optimization Algorithm

Compared with other optimization algorithms, the whale optimization algorithm has
a faster operation speed, simple adjustment parameters, and a certain ability to jump out
of the local optimum. However, since the algorithm itself only uses a random system for
exploration, and the excessive dependence on random limits the search speed of the WOA
algorithm, the convergence speed and convergence accuracy of the WOA algorithm are
further accelerated. In addition, due to the limitation of coefficient vector B, the WOA
algorithm will lose the ability to jump out of the local optimum when the number of
iterations reaches half of the maximum set number of iterations. Therefore, the WOA
algorithm has a certain risk of falling into the local optimum, resulting in inaccurate
prediction results of the algorithm. To solve the above defects of the WOA algorithm, this
paper proposes an improved whale optimization algorithm. Levy flight is used to improve
the whale optimization algorithm. The improved algorithm has a faster convergence speed
and higher convergence accuracy and has a better ability to jump out of the local optimum.
Levy flight is a search based on Levy distribution, which is a random way of small range
search and large range jump. Established using the following mathematical model for the
predatory strategy of humpback whales:

X(t + 1) = X∗(t)− BD1 (4)

where:
t, the current number of iterations;
B and M, coefficient vectors.

B = 2aLevy(λ)− a (5)

M = 2r2 (6)

The whale optimization algorithm is used to solve the optimization problem for
TSVR. The whale optimization strategy is shown in Equation (3). The whale optimization
algorithm is iterated iteratively to find the final solution.

where:
l, constant; update the magnitude of the distance;
H, vector of coefficients;
X*(t), the position vector of the current optimal solution;
X(t), the current position vector of the humpback whales;
Xrand(t), the random position vector of the whale population;
τp, the distance between the whale population and the prey;
a, the variable that decreases from 2 to 0;
ε, describes the shape of the spiral motion;
m, a random vector in the interval [–1, 1];
n, probability variable.
In the established model process, the industrial trial data are quickly used and normal-

ized. Then the input variables are determined, and nine input variables are optimized by
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the LWOA optimization algorithm. The search range of variables is [–1, 1], the number of
populations is 30, and the number of iterations is 500. The first iteration randomly generates
30 groups of initial solutions, calculates the fitness of each group of solutions, and saves the
group of solutions with the smallest fitness as the current optimal solution to complete this
iteration. When entering the next iteration, according to the whale optimization strategy,
the positions of 30 solutions are updated, and a group of solutions with the smallest fitness
are compared with the current optimal solution to save the group of solutions with smaller
fitness. After 500 iterations, the group of solutions with the smallest fitness is the global
optimal solution, and then the optimization value of the input variable is obtained by
inverse normalization processing, and the optimization process is completed.

3.3.2. LWOA-TSVR Algorithm

Firstly, the testing data (total 2000 groups) processed by the LWOA algorithm are
selected, secondly 1500 groups of them are selected as training data, and the remaining
500 groups are used as testing data, finally, the training set is selected to train the model,
and the model is continuously adjusted according to the parameters, and the best model is
recorded for each parameter setting, and then the accuracy of the final model is evaluated
with the testing set. Because of the large number and complexity of the original data, large
forecasting errors caused by order-of-magnitude differences in the different dimensions
of the data are eliminated. Therefore, the input and output of the established model need
to be normalized, and the input and output data are mapped to the [–1, 1] interval data
normalization using the following equation:

y
′
i =

yi−min(yi)
max(yi)−min(yi)

, i = 1, 2, 3, · · · , m (7)

where:
min(yi), the minimum value of the model input or output raw data;
max(yi), the maximum value of the model input or output raw data;
yi, the raw data of the model input or output.
TSVR obtains the objective function by solving two quadratic programming problems

to obtain two regression functions. Assuming that the training sample population is an n-
dimensional vector, it can be expressed as (x1, y1), ... , (xp, yp), and the number of training
samples is p.

A =
[
x1, . . . , xp

]T ∈ Rp∗n (8)

Y =
[
y1, . . . , yp

]T
∈ Rp∗n (9)

e = [1, · · · , 1]T (10)

where:
A, input training sample;
Y, output training samples;
e, unit vector of appropriate dimensionality.
The hot rolled bending control is a multi-input single-output nonlinear system. The

kernel function needs to be introduced:

K(xT, AT) = exp
(
−||x

T− xT
i ||2

2σ2

)
σ > 0 (11)

The sample is mapped to a high-dimensional space, and then linear regression is
performed through the high-dimensional feature space to obtain the regression function.

fw1(x) = K(xT, AT)ω1 + b1 (12)

fw2(x) = K(xT, AT)ω2 + b2 (13)
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By introducing Lagrange multipliers α and β vectors combined with KTT conditions,
the pairwise problem of the objective function can be obtained as shown in Equations (1),
and (2) above.

where:
C1, C2 > 0, adjust the parameters.

H = [K(xT, AT)e] (14)

f = Y− eε1 (15)

h = Y− eε2 (16)

where:
ε1, ε2 ≥ 0, adjusting the parameters.
Using the optimal solution, the weight vector and the bias vector are obtained as

follows:
[ω1, b1]

T = (HTH + γI)−1HT(f − α) (17)

[ω2, b2]
T = (HTH + γI)−1HT(h + β) (18)

where:
γ, the normal number;
I, unit matrix of appropriate dimensions.
The value of the weight vector and bias are brought into the regression functions fw1(x)

and fw2(x). Using these two objective regressions forecasting functions, the bending force
forecasting model can be determined according to the principle of the TSVR algorithm, and
the objective function of the bending force forecasting model is finally derived as:

fw(x) = K(xT, AT) (ω1+ ω2)
2 + (b1+ b2)

2 (19)

Through the analysis of the above optimization process, the parameters with the
greatest influence on the model are σ (kernel function parameter) and C (penalty parameter).
To obtain the optimal σ and C, this paper proposes to use an improved whale optimization
algorithm to find the optimal solution, combining the optimization strategy in Equation (3),
while adjusting these 25 variables, each iteration substitutes the adjusted variables into
the bending force forecasting model to obtain the corresponding bending. The group of
variables with the smallest error between the forecast value and the target value after
completing the specified number of iterations is the optimal value of the bending force, and
the whole optimization process can be summarized as the expression of the fitness function
for solving the following optimization problem is:

min
x

(fw(x)− Desiredvaluew)
2

−1e ≤ x ≤ 1e
(20)

where:
x, consisting of 25 normalized variables;
fw(x), the forecast value of the bending force forecasting model;
Desiredvaluew, the target value of the endpoint bending force.
The specific optimization process can be described as follows:
Step 1: Read the hot rolled strip steel production data to be optimized and normalize

the data;
Step 2: Initialize the model parameters, such as the number of variables, the upper

and lower bounds of the variables to be optimized, the number of populations, and the
number of iterations;

Step 3: Randomly generate initial solutions for the number of populations, and merge
each set of solutions with the input variables in Table 1 as input data to be substituted into
the bending force forecasting model to obtain the forecast value of bending force;
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Step 4: Calculate the fitness of each group of solutions according to the fitness function
ffit(x), and save the optimal solution with the smallest current fitness;

Step 5: If the current number of iterations is less than the maximum number of
iterations, update a, r, P, v, p to determine the solution required for the next iteration using
Equation (4), detect whether there is a solution that exceeds the search space if so, map it
to a random position in the feasible domain, and repeat steps 4–5. otherwise, return the
optimal solution to complete the optimization of the bending force influencing factors.

Through the above steps, the predicted result of the LWOA-TSVR algorithm is finally
compared with the actual data, as shown in Figure 6.
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3.3.3. Results and Discussion

To describe the prediction effect of the LWOA-TSVR model, the SSR/SST value and
the SSE/SST value are used. The closer the SSR/SST value is to 1, the closer the model
prediction is to the same degree of oscillation as the practical value. The smaller the
SSE/SST value is, the better the fitting degree between the predicted value and the practical
value of the model is. The formulas for the corresponding judging indicators are shown in
Equations (21) and (22).

SSE/SST =
∑n

i=1

(
yi−

ˆ
y i

)2

∑n
i=1

(
yi−

_
y i

)2 (21)

SSR/SST =
∑n

i=1

(
ˆ
y i
− _

y i

)2

∑n
i=1

(
yi−

_
y i

)2 (22)

The calculated SSR/SST value of the LWOA-TSVR model is 0.9582, which is close
to 1, so the predicted value of the LWOA-TSVR bending force model is very close to the
oscillation degree of the practical value. The SSE/SST value is 0.0418, which indicates
that the fitting degree of the model is good. In summary, it can be concluded that the
LWOA-TSVR prediction effect is good and can meet the process requirements.

3.3.4. Comparative Analysis of The Models

To investigate the prediction effect of the LWOA-TSVR algorithm compared with
traditional algorithms, four algorithms (BP, TSVR, WOA-TSVR, and LWOA-TSVR) were
used to build the corresponding models and were compared in the training set and testing
set respectively. Firstly, the SSE/SST and SSR/SST value is used to judge the fitting effect
of the models, secondly the MAE (mean absolute error), RMSE (root mean square error),
and relative errors are used to evaluate the prediction accuracy of the model, finally, the
HR (hit rate) is used to examine the degree to which the models met the standards. The
parameters of the BP algorithm are set as follows: the input quantity, output quantity, and



Metals 2022, 12, 1589 11 of 15

the number of nodes in the hidden layer: 9, 1, 8 respectively. The predicted values of the
four algorithms are compared with the actual production data and the results are shown in
Figure 7.
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As can be seen from Figure 7, the deviations from the actual production data of the
four models are in the order of small to large: LWOA-TSVR, WOA-TSVR, TSVR, and
BP. According to the SSE/SST value and SSR/SST value of the four models in Table 2,
compared with the other three algorithms, the LWOA-TSVR model has the lowest SSE/SST
value and the best fit obtained by the model; The SSR/SST value is closer to 1, the oscillation
between the predicted and practical value is closer.

Table 2. Comparison of the regression effects of the four models.

Evaluating Indicator
Training Testing

Rolling Force Rolling Force

SSE/SST

BP 0.1201 0.2021
TSVR 0.1014 0.1304

WOA-TSVR 0.0693 0.0933
LWOA-TSVR 0.0418 0.1235

SSR/SST

BP 0.8799 0.7979
TSVR 0.8986 0.8696

WOA-TSVR 0.9307 0.9067
LWOA-TSVR 0.9582 0.8765
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To investigate the prediction accuracy of these models, MAE (mean absolute error),
RMSE (root mean square error), and relative errors are used to analyze the models. The
smaller the value of MAE, RMSE, and relative errors, the higher the prediction accuracy of
the model. The calculation equations are Equations (23)–(25), and the calculation results
are shown in Figures 8 and 9.

MAE =
∑n

i=1

∣∣∣yi−
ˆ
y i

∣∣∣
n

(23)

RMSE =

√
∑n

i=1 (yi−
ˆ
y i
)

2

n
(24)

δ =

∣∣∣ ˆ
y i
− yi

∣∣∣
yi

(25)

where:
n, the number of testing sample;
yi, the practical output of the testing sample;
ˆ
y i

, the forecast value of the model;
δ, relative error.
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From Figures 8 and 9 we can see that the MAE values of BP, TSVR, WOA-TSVR, and
LWOA-TSVR in the training set tests are: 17.1872, 15.7865, 12.8261, and 6.9997, respectively,
and the corresponding RMSE values are: 12.6811, 11.8907, 10.7386 and 8.8761, respectively.
δ (relative error) values are:0.83, 0.41, 0.35, and 0.11. Relative error values are: 0.83, 0.41,
0.35, and 0.11, respectively. In the testing set tests, the MAEs of BP, TSVR, WOA-TSVR, and
LWOA-TSVR are: 19.9876, 16.7882, 13.8766, and 8.5322, respectively, and the corresponding
RMSEs are 14.5292, 13.9881, 12.6782 and 10.9882, respectively. The values of δ (relative
error) are: 0.65, 0.31, 0.30, and 0.01, respectively.

To investigate the degree of compliance of the model, the HR (hit rate) performance
index is used for analysis, and during the analysis process, the bending force is considered
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as a hit when it satisfies Equation (26), and the corresponding hit rate calculation equation
is shown in Equation (27). As can be seen from Table 3, the LWOA-TSVR bending force has
the highest hit rate under the same conditions, which shows that the prediction accuracy of
this method is better than that of other algorithms.

CS ∗ (100%− k) < Cy < CS ∗ (100% + k) (26)

where:
CS, the measured result of the bending force;
Cy, bending force forecast results;
k, hitting accuracy.

HR =

(∣∣∣yi−
ˆ
y i

∣∣∣ ≤ ne

)
n ∗ 100% (27)

Table 3. Hit rate of bending force.

Error Scope Model
BP TSVR WOA-TSVR LWOA-TSVR

From −5 to 5 KN 69% 76% 85% 91%
From −10 to 10 KN 78% 80% 87% 95%

In summary, through the comparison of SSE/SST, SSR/SST, MAE, RMSE, relative
errors, and HR, the LWOA-TSVR model has the best performance evaluation index, which
shows that the LWOA-TSVR algorithm has higher approximation precision. Therefore, the
LWOA-TSVR prediction model has higher prediction performance.

4. Application and Validation

To verify the practical application of the established LWOA-TSVR bending force
prediction model, the model is applied to the actual production line of a hot strip mill
for testing (200 slabs in total). The main rolling process parameters are shown in Table 4,
and the final hit rate is 91% for bending force within −100 KN ± 5 KN and 95% for
−100 KN ± 10 KN. Compared with the conventional bending force control function, the
intelligent control capability of this model is significantly more effective. The results of the
bending force model forecast, and practical values are shown in Figure 10. The validity
of the bending force model is verified by randomly selecting the rolling data of the same
rolled strip. The results show that the bending force is highly consistent with the trend of
bending force in the field, which verifies the good forecasting performance of the bending
force model and improves the accuracy of plate shape control.

Table 4. Configuration parameters for rolling mill equipment.

Parameter Value

Clearance between rolls 11.78 mm
String speed 3.15 m/s

Power of rolling mill 2595.23 KW
Looper tension 10.06 MPa
Work roll size Φ1 110/1210 × 5300 mm

Support roller size Φ2 100/2300 × 4950 mm
Maximum rolling force 120,000 KN

Rated torque 20,000 KN·m
Loop angle 26.00 deg

The initial thickness of the strip 5.7 mm
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5. Conclusions

In this paper, a forecasting model based on twin support vector machines is proposed
and an improved whale swarm optimization algorithm is used for data analysis. Through
analysis of field-testing data, the main factors affecting the magnitude of the bending force
are obtained as follows: the inlet temperature of strip steel, entry thickness, exit thickness,
strip width, rolling force, rolling speed, work roll shifting, yield strength of strip steel, and
target convexity.

(1) The experimental study shows that the LWOA-TSVR model can accurately predict
the bending force, compensate for the defects of slow convergence speed and low conver-
gence accuracy of traditional modeling, improve the generalization ability, accuracy and
implementation efficiency of the model and the model is simple in structure and can handle
complex problems such as non-linearity and strong coupling.

(2) The model is tested by field application. The results show that within the tolerance
range: the hit rate of bending force within −100 ± 5 KN is 91%, and the hit rate within
−100 ± 10 KN is 95%. This is higher than the current advanced method.

(3) The proposed bending force prediction model is compared with four prediction
methods for verification. The results show that the LWOA-TSVR model has the smallest
optimal relative error and the best following effect in the evaluation of MAE and RMSE
indicators, thus verifying the good generalization ability of the LWOA-TSVR forecasting
model. The model provides theoretical guidance and an experimental basis for the practical
bending force setting method in the hot rolling production process.
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