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Abstract: In this work, duplex stainless steel/low-alloy steel-clad rebars were fabricated using metal 

deposition and hot rolling. The interfacial characteristics of the rebar, such as element diffusion and 

phase composition, were investigated using an optical microscope and a scanning electron micro-

scope with an energy-dispersive spectrometer. The mechanical properties of the rebar were evalu-

ated by tensile and bending tests. The results show that the rebar interface is composed of a carbu-

rized layer on the duplex stainless steel side and a decarburized layer on the low-alloy steel side; 

they also show that the rebar exhibits good mechanical properties, with 435 MPa of yield strength, 

630 MPa of tensile strength, and a 24.8% percentage elongation. The reduction in the cladding thick-

ness at the rebar’s transverse rib root was studied using the ABAQUS software. The results show 

that the cladding thickness is reduced due to the effect of the groove shape during the rolling pro-

cess. The rebar’s transverse rib root cracked after bending due to the thinning of the cladding and 

brittle fractures in the interfacial martensite layer. 
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1. Introduction 

As early as the Song Dynasty (1270 A.D.), bimetallic composites were used to make 

weapons in China. In those days, a high carbon blade was sandwiched in a wrought iron 

knife body to obtain good levels of hardness and toughness. Nowadays, with the devel-

opment of science, the challenge of optimizing novel bulk materials has gradually 

changed to that of synthesizing compounds that contain metallurgical joints [1]. Stainless 

steel cladding materials, which have the advantage of combining the excellent formabil-

ity, weldability, and thermal conductivity of carbon steel with the high corrosion re-

sistance, abrasion resistance, and heat resistance of stainless steel, are widely used in the 

field of nuclear power equipment, the petrochemical industry, the automobile industry, 

and so on [2,3]. So far, various techniques have already been used to produce cladding 

materials, such as explosive welding, vacuum hot rolling, extrusion compounding, hori-

zontal twin-roll casting, spray deposition, etc. 

A vessel steel/duplex stainless steel cladding plate was fabricated by explosive weld-

ing; it had higher impact toughness and corrosion properties than the base material due 

to the cladding material of duplex stainless steel [4]. Lee et al. [5] investigated the influ-

ence of processing conditions on the homogeneity and thickness of the interface layer and 

the overall strength of the Zr/Cu rod fabricated by co-extrusion. In 2016, Chen et al. [6] 

produced a stainless steel/aluminium clad plate by horizontal twin-roll casting and inves-

tigated the interface morphology of the clad plate after different annealing and cold roll-

ing processes. Zhao et al. [7] designed a cold spray additive to fabricate titanium/steel-
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clad plates. However, these methods have various shortcomings. For instance, explosive 

welding can easily cause interface instability, resulting in poor interfacial bonding [8]. Ex-

trusion compounding is generally used to prepare small-format products due to the die’s 

scale limitations. Horizontal twin-roll casting is suitable for compounding metals with 

low and high melting points, but not for refractory metals. Although roll bonding is a 

common method, it results in the formation of oxides and voids at the interface [7]. In 

order to solve this problem, researchers have used vacuum rolling to prepare cladding 

materials [9–14], which increases production costs. 

In recent years, the cladding plate has been extensively studied; meanwhile, research 

into clad rebars, an important part of infrastructure projects, is rarely reported. In addi-

tion, the cladding structures of a plate and rebar are obviously different. In general, the 

upper and lower surfaces of the plate are cladded with dissimilar metals, while the bar 

needs to be cladded with dissimilar metals on all surfaces except the end face. Therefore, 

the clad bar is usually prepared by perforation and hot extrusion; using this method, 

Gutiérrez et al. [15] prepared a seamless clad tube in the 1990s. However, the sealing pro-

cedures of such assemblies are relatively complex. In this paper, metal deposition and hot 

rolling were used to fabricate a duplex stainless steel/low-alloy steel-(DSS/LAS) clad rebar 

to simplify the sealing procedures of these assemblies. In addition, the effect of the reduc-

tion ratio on the thickness and element diffusion of the martensite layer is further ana-

lyzed in this work. Compared with ordinary stainless steel, the DSS has not only excellent 

toughness and high strength but also excellent chloride corrosion resistance. Therefore, 

the DSS/LAS-clad rebar has the potential to be applied widely in marine engineering. The 

present work aims to investigate the interfacial characteristics and mechanical properties 

of the DSS/LAS-clad rebar to provide a theoretical and technological foundation for fabri-

cating the DSS/LAS-clad rebar by metal deposition and hot rolling. 

2. Experimental 

2.1. Materials and Method 

The DSS/LAS-clad rebars were successfully fabricated by cladding the DSS with cor-

rosion resistance and oxidation resistance on the LAS with good mechanical properties 

and impact resistance. The chemical compositions of these components are presented in 

Table 1. 

Table 1. The chemical composition of the constituent materials (mass%). 

 C Si Mn P S N Cr Ni Mo Fe 

LAS 0.246 0.496 1.24 0.011 0.027 - 0.20 0.07 - Bal. 

DSS 0.026 0.405 1.22 0.022 0.001 0.166 23.1 4.84 3.28 Bal. 

The dimensions of the LAS billet are 150 mm × 150 mm × 6000 mm, and a 5 mm-thick 

layer of stainless steel was deposited on its four surfaces. The cladded surfaces were care-

fully cleaned using a wire brush and an angle grinder before depositing, because a clean 

interface ensures the consistent quality of cladding materials [12]. The deposition metal 

was melted by the current system and then deposited on the LAS billet. During pro-

cessing, flux ensures bonding strength at the interface and avoids oxidation. Carbides in 

duplex stainless steel precipitate in the temperature range of 773 K to 1273 K, affecting the 

steel’s corrosion resistance. Therefore, the DSS/LAS billet was soaked at 1453 K for 3 h 

after depositing. At the same time, this also ensured the initial and final rolling tempera-

tures, in order to inhibit the precipitation of carbides in the DSS. Then, hot rolling was 

carried out through 15 passes, and the DSS/LAS billet was reduced from a rectangular 

section (160 mm × 160 mm) down to a circular section (Φ20 mm). The reduction ratio was 

98.8%. The initial and the final rolling temperatures were 1403 K and 1373 K, respectively. 

Finally, the DSS/LAS-clad rebar was cooled in the air. The DSS/LAS-clad rebar production 

process is shown in Figure 1. 
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Figure 1. Simplified diagrams of the DSS/LAS-clad rebar production process. (a) The manufacturing 

of the DSS/LAS billet, which used metal deposition, (b) the DSS/LAS billet soaking in a furnace, (c) 

hot rolling, (d) macro-scale external and cross-sectional views. 

2.2. Microstructure Observations 

Microstructures were observed using the optical microscope (OM) (OLYMPUS, To-

kyo, Japan). Metallographic samples were cut from the DSS/LAS billet and rebar, and then 

these samples were ground, polished, and etched. The side of the DSS was electrolyzed 

using a 10% chromic acid with a constant potential voltage of 5 V for 20 s, and the side of 

the LAS was etched by soaking it in a 4% ethanol solution of nitric acid for 10 s. The dif-

fusion phenomenon of elements was analyzed using a Quant 650-FEG scanning electron 

microscope (SEM) (FEI Corp., Hillsborough, OR, USA) with an energy-dispersive spec-

trometer (EDS) to research the effect of elemental diffusion on microstructure evolution. 

2.3. Testing of Mechanical Properties  

In order to further study the microstructural characteristics of the DSS/LAS billet and 

rebar, Vickers microhardness was measured using an FM-300 Vickers hardness tester (FU-

TURE-TECH Corp., Tokyo, Japan) under a 200 g load for 10 s. The strength and ductility 

of the DSS/LAS-clad rebar were measured using a WAW-500 universal testing machine 

(hensgrand, Shandong, China) with an average loading rate of 10.37 kN/s at room tem-

perature. Mean values were calculated from five individual tensile tests. The length of the 

tensile samples was 500 mm; to avoid losing the cladding layer, they were not machined 

into dumbbell samples. Fracture morphology was observed using SEM after the tensile 

specimens were fractured. Bending experiments were performed at room temperature to 

investigate the formability of the DSS/LAS-clad rebar according to Chinese national stand-

ard GB/T 1499.2-2018, in which the samples are bent 180° by an indenter with a diameter 

of 80 mm. The specimens were cut along the axial direction after bending, and then lon-

gitudinal sections were ground, polished, and etched to observe the interface bonding 

between the DSS and LAS during bending. 

3. Results and discussion 

3.1. Effect of Element Diffusion on the Evolution of the Microstructure 
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Figure 2 shows the microstructure of the DSS/LAS-clad rebar before and after rolling. 

We can clearly observe the two-phase structure of ferrite (F, dark black) and austenite (A, 

light grey) in the DSS, and the Widmanstӓtten (W) structure in the as-deposited LAS, as 

shown in Figure 2a. After the deposition, proeutectoid ferrite near the interface precipi-

tated before eutectoid transformation. Subsequently, the Widmanstӓtten structure formed 

on the LAS side because of the high austenitizing temperature and relatively high cooling 

rate [16]. Compared with the as-deposited, the microstructure of the DSS was significantly 

refined due to a higher reduction ratio, and Widmanstӓtten was transformed into ferrite 

(light grey) plus pearlite (dark black) on the LAS side, as presented in Figure 2b. In addi-

tion, a carburized layer with a thickness of ~51.7 μm and a decarburized layer with a 

thickness of ~43.3 μm are located at the interface zone, which can be attributed to the dif-

fusion of C atoms [17]. The thickness of the carburized layer is thicker than that of the 

decarburized layer, resulting from the long-range diffusion of C atoms. Meanwhile, a sin-

gle-phase austenite region formed in the carburized layer, as shown in Figure 2d, because 

C promotes austenite formation. This is in agreement with the research conducted by M. 

Yan et al. [18]. Moreover, we observe remarkable gradient grain distribution on the LAS 

side: that is, coarse ferrite in a decarburized layer near the interface and fine pearlite (P) 

far away from the interface, as shown in Figure 2d. This is because pearlite can stimulate 

ferrite nucleation during the cooling process [11]. An interface with a needle-like strip 

structure is shown in Figure 2c; this is most likely to be martensite, according to F. Mas et 

al. [19]. Additionally, the interface changes a 14.1 μm-thick strip into a line after rolling, 

as shown in Figure 2d; according to S. Wang et al., this is mainly due to the rolling reduc-

tion ratio [11]. 

 

Figure 2. Microstructure of the DSS/LAS-clad rebar before and after rolling: (a,c) DSS/LAS billet as 

deposited, (b,d) rolled DSS/LAS clad rebar. 
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It is interesting to note that, as shown in Figure 3, few carbides precipitate along the 

ferrite/austenite grain boundaries in the side of the DSS near the interface in the as-depos-

ited metal, compared with the rolled metal. Figure 3a shows that dispersed carbides dis-

tribute on the DSS side near the interface in as-deposited, and these carbides are mainly 

M23C6 and MC [3] according to the result of EDS. However, Figure 3b shows that carbides 

are mainly distributed along austenite grain boundaries, which are also identified as 

M23C6 and MC. Compared with Ni, a large number of Cr and Mo atoms present in austen-

ite grain boundaries are observed, as shown in Figure 4. The main reason for this is that 

strong carbide elements, such as Cr and Mo, have a strong binding ability with C atoms. 

That is to say, the mechanism of carbide precipitation is different in the as-deposited and 

rolled materials. Carbides are mainly precipitated from the austenite grain interior after 

deposition. The main reason for this is that the diffusion of carbon atoms is greatly limited 

by such a short diffusion time during the cooling process, meaning that it is difficult for a 

significant number of carbon atoms to diffuse into the DSS side from the LAS side. On the 

other hand, the coexisting ferrite and austenite interweave with each other in the DSS, 

which can also reduce the diffusion of C [20]. Moreover, a few carbon atoms with a short-

range that diffuse into the DSS side can also possibly be dissolved. However, intergranu-

lar carbides precipitate after rolling because of the long-range diffusion of carbon atoms 

in the rolling process. Since the grain boundaries are the main diffusion channel and Cr is 

an element that forms strong carbides, a large number of carbides will precipitate at the 

grain boundaries. With the segregation of Cr at the grain boundaries, the intergranular 

sensitization of stainless steel emerges easily. This is why all the results for EDS show 

extremely high Fe content. Carbide precipitation leads to a poor Cr zone, which suffers 

from corrosion because of the depletion of Cr [21]. The forming of the corrosion ditch 

exposes the Fe matrix, marked with an “A” in Figure 3a and with a “B” in Figure 3b. In 

addition, pits formed due to carbide dropping are observed, as marked by a “C” in Figure 

3b. 
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Figure 3. SEM images and EDS analysis of samples: (a) EDS results of points 1 and 2 in as-deposited 

materials, (b) EDS results of points 3 and 4 in rolled materials. 

 
Figure 4. SEM image and EDS analysis of the selected area in the rolled material. 

Unfortunately, there is a larger error in the carbon detection results using the EDS 

because carbon is a lightweight element [22]. The diffusion of carbon elements is not ap-

parent in Figure 5, which exhibits the EDS linear scan analysis of C, Fe, Cr, and Ni across 

the interface between the DSS and LAS. However, it can be observed that the peak of the 

carbon content in the DSS side is lower than that of the LAS side. Furthermore, an appar-

ent interdiffusion can be observed in both the as-deposited and rolled materials. There is 

a marked decrease in the content of the elements Cr, Ni, and Mo from the DSS side to the 

LAS side, while the content of the element Fe increases significantly. Notably, the diffu-

sion distance (~25 μm) of Cr in the rolled metal is clearly smaller than that (~40 μm) in the 

as-deposited metal. Although the rolling process is more conducive to the diffusion of 

elements, the formation of chromium carbides inhibits the diffusion of Cr from the DSS 

side to the LAS side [18]. A large amount of austenite, rather than ferrite, appears on the 

DSS side near the interface, even though the diffusion of Cr, which promotes ferrite for-

mation, is inhibited, and Ni, which promotes austenite formation, further diffuses from 

the DSS side to the LAS side. The main reasons for this are that (i) compared with the 
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lower Ni content (4.84%), the diffusion of Cr (23.1%) from the DSS side to the LAS side 

inhibits the formation of ferrite, and (ii) the long-range diffusion of C from the LAS side 

to the DSS side promotes the formation of austenite. 

 

Figure 5. EDS linear scan analysis across the interface: (a) as-deposited, (b) as-rolled. 

Figure 6 shows the hardness variation across the interface of the as-deposited and as-

rolled metals. It is clearly observed that the hardness at the interface decreases signifi-

cantly from 516.4 HV0.2 in the as-deposited metal to 225.6 HV0.2 in the rolled metal. In 

addition, regardless of rolling, the hardness decreases remarkably and then rises slowly 

from the interface to the LAS side, but the hardness in the as-deposited material is slightly 

higher than in the rolled material. The reason for this is that the thin proeutectoid ferrite 

near the interface transforms into a decarburized layer, and the Widmanstӓtten with high 

carbon content away from the interface transforms into pearlite plus ferrite. Interestingly, 

the hardness variation on the DSS side is different from that of the LAS side. The hardness 

in the rolled metal rises slowly from the interface to the DSS side due to the disappearance 

of the interfacial phase with high hardness. Meanwhile, in the as-deposited material, hard-

ness decreases observably and then decreases slowly from the interface to the DSS side 

because carbides are precipitated. A few carbon atoms diffusing into the DSS from the 

LAS side are dissolved in austenite near the interface. 
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Figure 6. Variation in hardness across the interface of the fabricated samples. 

Therefore, the presence of martensite at the interface may be the main reason for the 

increase in hardness. To further study the phase composition of the interface, interfacial 

SEM images and EDS analysis of the as-deposited and as-rolled materials are presented 

in Figure 7a and Figure 7b, respectively. The interface with the needle-like structure in the 

as-deposited material is observed to be the same as in Figure 2c. EDS was used to deter-

mine the content of alloying elements at points 1 and 2 on the interface to determine the 

equivalent for Cr and Ni elements, respectively. According to the Schaeffler diagram in 

Figure 7c, the results show that the value range of point 1 varies from point a to b and the 

value range of point 2 from point c to d when the C element changes from 0.026% to 

0.246% (mass%). Two points are in the martensite region of the Schaeffler diagram, which 

indicates the interface is composed of martensite, as stated above. As shown in Figure 6, 

although the disappearance of martensite at the interface in the as-rolled material makes 

the hardness decrease, there is still a small amount of martensite at the interface in local 

areas, as shown in Figure 7b. According to the EDS results for point 3, the phase compo-

sition at the interface corresponds to the martensite region from point e to point f in the 

Schaeffler diagram. The formation and disappearance of the martensite layer are closely 

related to the diffusion of elements. The diffusion and gradient distribution of Cr and Ni 

elements near the fusion boundary would bring about the movement of the CCT curve 

towards the right side, thus reducing the critical cooling rate of the martensite formation 

during the subsequent cooling of the deposition process [13,19]. With the increase in the 

hot rolling reduction ratio and mutual diffusion, the thickness of the martensite layer is 

gradually decreased [11]. 
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Figure 7. SEM image and Schaeffler diagram: (a) as deposited, (b) as rolled, (c) Schaeffler diagram 

relating to the equivalents of Cr and Ni. 

3.2. Effect of DSS Cladding on Tensile Properties 

Figure 8 shows the tensile properties of the LAS rebar and the DSS/LAS-clad rebar. 

The results show that the mechanical properties of the DSS/LAS-clad rebar are better than 

those of the LAS rebar. Compared with the LAS rebar, the DSS/LAS-clad rebar has 435 

MPa of yield strength, slightly below the 440 MPa of the LAS rebar, while the tensile 

strength increases from 600 MPa to 630 MPa and the percentage elongation slightly in-

creases from 20.7% to 24.8%. In other words, DSS cladding is beneficial for improving the 

mechanical properties of the LAS rebar. Khodadad et al. [23] evaluated the effects of the 

thickness of the cladding on the stress–strain curves by defining relative thickness: β = d 

(clad)/d (substrate). Similarly, Dhib et al. [24] obtained the result that the stress–strain 

curve of a bi-material-clad plate is between the tensile curves of the pure clad layer and 

the pure substrate metal when β = 1. In our study, although the thickness of the DSS clad-

ding is far less than that of the LAS, the tensile properties of the DSS/LAS-clad rebar were 

also found to be between the tensile properties of the LAS and DSS. The possible reasons 

for the increase in tensile strength are that (i) the strength and plasticity of the DSS are 

higher than those of the LAS, and (ii) the channel cracks formed by the growth and prop-

agation of microcracks in the carburized layer are effectively suppressed by the plastic 
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deformation zone of the cladding layer, thereby strengthening the matrix [3]. In addition 

to the DSS’s high plasticity, the percentage elongation increase depends on the interfacial 

bonding strength, especially when the LAS core is completely cladded by DSS. Nambu et 

al. [25] found that the delamination cracks make the deformation of each component layer 

of metal composites uncoordinated, so the whole plastic deformation ability decreases 

during the tensile process. 

 

Figure 8. Tensile properties of the LAS rebar and the DSS/LAS-clad rebar. 

Fractography observations were undertaken for the fracture surface of the DSS/LAS-

clad rebar to study the fracture behavior of the DSS cladding and the LAS core. The frac-

ture morphology of the DSS/LAS-clad rebar is shown in Figure 9. Figure 9a shows the 

typical characteristic features of ductile fractures in the DSS cladding, which include a 

large number of refined dimples. Compared with the DSS cladding, the LAS core fractures 

in mixed mode with ductile and cleavage features, as shown in Figure 9b. It is clear that 

ferrite with many coarse dimples surrounds pearlites with cleavage planes. The fracture 

morphology at the interface shows laminated gradient distribution characteristics, as pre-

sented in Figure 9c,d, including ductile fractures of the DSS cladding, intergranular frac-

tures of the carburized layer, and cleavage fractures of the decarburized layer. The cleav-

age feature can be attributed to the ferrite phase, which is particularly susceptible to brittle 

fractures following a transgranular path along the (1 0 0) planes [26]. It is noteworthy that 

a few cleavage planes exist in the DSS cladding near the carburized layer; their presence 

is related to the propagation of intergranular cracks in the carburized layer and to the 

ferrite that exists in the DSS cladding. Wang et al. [11] indicated that thick intergranular 

tunnel cracks seriously affect the tensile properties of clad plates, while thin intergranular 

tunnel cracks cannot worsen tensile ductility. Figure 9c shows that, in our study, inter-

granular fractures exist only in the carburized layer, which indicates that DSS cladding 

can effectively prevent the propagation of cracks in the early stages. With the increase in 

stress, thick intergranular cracks converged by thin intergranular cracks pass through the 

DSS cladding near the carburized layer, resulting in local cleavage fractures. The LAS core 

and DSS cladding are always a whole from the beginning of the tensile load to the fracture, 

due to the strong interface bonding. According to Yanagimoto et al., the elongation of the 

brittle layer and the ductile layer should be identical if the multilayer sheet is subjected to 

pure tensile deformation [26]. In this work, pure LAS and pure DSS have different elon-

gations. However, a pair of external stresses on the LAS and DSS suppress premature 

necking, thus achieving a consistent elongation [26,27]. In other words, the elongation of 

the LAS core and the DSS cladding is the same when the DSS/LAS-clad rebar is subjected 
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to the tensile load. With the increase in load, the necking is initiated in the LAS core first. 

If the bonding strength between the core and cladding is sufficient, the cladding will re-

strain the reduction in the section area of the LAS core, and enhance the mechanical prop-

erties of the clad rebar. Based on the iso-strain conditions in the metal-laminated structural 

composites, the Voigt model [28] proposed the expressions of modulus E and yield 

strength σ: 

E = Eafa + Ebfb  (1)

σ = σafa + σbfb  (2)

where fa and fb are the volume fraction of the two components, respectively; Ea and Eb are 

the moduli of the two components; and σa and σb are the yield strengths of the two com-

ponents. 

 

Figure 9. Fracture morphology of the DSS/LAS-clad rebar: (a) DSS cladding, (b) LAS core, (c,d) in-

terface zone. 

Compared with the LAS rebar, however, the change in yield strength of the DSS/LAS 

rebar is not significant, and the elongation increases slightly, as shown in Figure 8. The 

main reason for this is that, as mentioned above, the thickness of the DSS cladding is far 

less than that of the LAS core, indicating that the main contribution of mechanical prop-

erties comes from the LAS core itself. 

3.3. Effect of Cladding Thickness on Bending Properties 

Some DSS/LAS-clad rebars crack at the root of the transverse rib after bending, as 

presented in Figure 10a. Interestingly, these cracks are located on the same side of the 

transverse rib’s root, where the DSS’s thickness cladding is at its thinnest. In addition, 

there are no obvious cracks on the bending compressive stress side compared with the 

bending tensile stress side, as shown in Figure 10b. That is to say, the thickness of the 
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cladding and the bending tensile stress are the main causes of cracking. In particular, a 

thinner cladding may cause exposure of the LAS core, which not only results in bending 

and cracking but also seriously affects the corrosion resistance of materials. Figure 10c 

reveals that obvious necking is located on the cladding surface, and a brittle fracture oc-

curs in the middle of the cladding. In addition, the crack propagates to the left and right 

as the bending degree increases. As shown in Figure 7b, although the thickness of the 

interfacial martensite layer decreases after rolling, it does not disappear completely. It is 

equivalent to increasing the amount of martensite per unit of cladding thickness when the 

cladding thickness is reduced. Therefore, in the bending process, martensite cracking 

leads to the propagation of cracks on the surface and in the center. When the crack prop-

agates to the interface, it is hindered by the interface with higher bonding strength, so it 

turns to the decarburized layer with lower strength and continues to propagate, which is 

consistent with the crack propagation seen along the decarburized layer in Figure 10d. 

 

Figure 10. Results of the bending test of the DSS/LAS-clad rebar: (a) DSS/LAS-clad rebar after bend-

ing, (b) longitudinal section of the DSS/LAS-clad rebar after bending, (c,d) metallographic diagram 

of the crack. 

In order to further study the reduction in cladding thickness, the finite element 

method (FEM) was performed using ABAQUS software. The rollers are set as rigid bodies 

and the workpiece is set as a deformable body. The element type is C3D8RT, with a total 

of 369,840 elements, of which the cladding element size is 0.39 mm. The dense mesh set-

ting is useful for accurately studying the deformation behavior of the cladding. It is worth 

noting that a common node mesh is used during the simulation to avoid the relative slid-

ing of the LAS core and DSS cladding. Figure 11a shows the interface in the DSS/LAS-clad 

rear section. There are obvious differences in the thickness of the cladding on both sides 

of the transverse rib root, as shown in marks A and B in Figure 11a. Figure 11b,c show the 

results of the FEM simulation in the last rolling pass. The transverse rib root has a larger 

equivalent plastic strain value (marked in green) during rolling, as presented in Figure 
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11b, which shows that the transverse rib root undergoes severe plastic deformation com-

pared with other parts of the DSS/LAS-clad rebar. Figure 11c shows that the workpiece 

presents a much larger deformation on the side of the inverse rolling direction (IRD, 

marked D) than on the side of the rolling direction (RD, marked C). Specifically, the equiv-

alent plastic strain on the IRD is ~2.0, while the equivalent plastic strain on the RD is only 

~0.34. In addition, it is also can be seen that the groove is not completely filled with the 

workpiece, which means that an interspace appears between the workpiece and the 

groove. After the workpiece enters the groove, the forming of the transverse rib undergoes 

the following stages: (i) the metal restricted by the groove flows freely in the transverse 

direction after the workpiece comes into contact with the front end of the groove (marked 

C in Figure 11c); (ii) the metal is restricted by the back end of the groove (marked D in 

Figure 11c), and then flows towards the side wall of the groove (red arrow). Therefore, 

there is a thin cladding with larger plastic deformation at the root of the transverse rib 

because the deformation of the DSS is significantly larger than that of the LAS. The result 

of the numerical simulation shown in Figure 11d agrees with the actual results. In order 

to determine how to effectively suppress the cladding thickness reduction and completely 

eliminate the interfacial martensite after rolling, it is necessary to further study the groove 

design and rolling temperature. 

 

Figure 11. DSS/LAS-clad rebar and FEM simulation: (a) longitudinal section of the DSS/LAS-clad 

rear, (b) result of the FEM simulation based on ABAQUS, (c) deformation of transverse ribs, (d) 

variation in DSS cladding thickness. 

4. Conclusions 

The interfacial characteristics and mechanical properties of the DSS/LAS-clad rebar 

were investigated in this study. The main conclusions of this research are as follows: 

1. Due to the effects of element diffusion and rolling reduction, the decarburization 

layer and the carburized layer form on the LAS side and the DSS side, respectively, 

and the thickness of the martensite layer at the interface decreases gradually. The 
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microhardness at the interface reduces from 516.4 HV0.2 in the as-deposited material 

to 225.6 HV0.2 in the rolled material. 

2. Compared with the LAS rebar, the DSS/LAS-clad rebar has good mechanical proper-

ties, including 435 MPa of yield strength, 630 MPa of tensile strength and a 24.8% 

percentage elongation, which benefits from the dispersion strengthening that exists 

in the LAS side and the inhibition of premature necking by the DSS cladding. 

3. The shape of the groove causes a reduction in the cladding thickness at the transverse 

rib root of the DSS/LAS-clad rebar during the rolling process. The thinning of the 

cladding and the brittleness of the martensite layer leads to the cracking of the rebar’s 

transverse rib root. In particular, if the LAS at the transverse rib root is exposed due 

to a lack of DSS cladding, the decarburized layer with low strength will directly cause 

the root to crack after bending. 
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