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Abstract: Fe-Mn-Al-C lightweight steels have been investigated intensely in the last a few years. There
are basically four types of Fe-Mn-Al-C steels, ferritic, ferrite-based duplex/triplex (ferrite + austenite,
ferrite + austenite + martensite), austenite-based duplex (ferrite + austenite), and single-austenitic.
Among these steels, austenite-based lightweight steels generally exhibit high strength, good ductility,
and outstanding weight reduction effects. Due to the addition of Al and high C content, κ’-carbide
and κ-carbide are prone to form in the austenite grain interior and at grain boundaries of lightweight
steels, respectively, and play critical roles in controlling the microstructures and mechanical properties
of the steels. The microstructural evolution, strengthening mechanisms, and deformation behaviors of
these lightweight steels are quite different from those of the mild conventional steels and TRIP/TWIP
steels due to their high stacking fault energies. The relationship between the microstructures and
mechanical properties has been widely investigated, and several deformation mechanisms have also
been proposed for austenite-based lightweight steels. In this paper, the current research works are
reviewed and the prospectives of the austenite-based Fe-Mn-Al-C lightweight steels are discussed.

Keywords: Fe-Mn-Al-C lightweight steel; κ’/κ-carbide; microstructure; mechanical property; defor-
mation mechanism

1. Introduction

Fe-Mn-Al-C lightweight steels, also known as low-density steels, first developed in
the 1950s as substitutes of Fe-Cr-Ni stainless steels, have drawn research interests for their
good comprehensive mechanical properties and lightweight effect as structural materials
in the last a few years [1]. Fe-Mn-Al-C lightweight steels possess a variety of mechanical
properties ranging by tailoring their microstructures, e.g., yield strength of 300–1200 MPa,
ultimate tensile strength of 600–1500 MPa and total elongation of 30–100% [1]. In addi-
tion, these alloys have been reported to possess good service properties such as fatigue
properties [2–7] and oxidation resistance at elevated temperatures [8–12]. These promising
properties of Fe-Mn-Al-C steels have attracted considerable interests in several fields, such
as transportation, especially in automobile vehicles and power trains as well as military
use [1].

Based on the phase constituents of the materials, several types of Fe-Mn-Al-C steels
have been investigated, such as ferritic, ferrite-based duplex/triplex (ferrite + austenite,
ferrite + austenite + martensite), austenite-based duplex (ferrite + austenite), and austenitic
ones.

Fe-Al lightweight steels alloyed with Mn lower than 5% and a very low C content
possess a fully ferritic microstructure, which may contain A2-disordered FeAl, B2-ordered
FeAl (Figure 1a) and DO3-ordered Fe3Al (Figure 1b) at room temperature depending on
Al content [1,13–20]. The Fe-Al alloys based on FeAl or Fe3Al intermetallic compounds
always show promising properties for high temperature structural applications due to
their resistance to oxidation, sulfidation and carburizing, good resistance to corrosion
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in sea water, high resistance to wear, erosion, or cavitation, and high strength-to-weight
ratios [19,20].
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Figure 1. Schematic visualization [18] of the supercell of (a) B2, (b) D03, (c) κ’-carbide. (Reproduced
with permission from [18]. Copyright 2013 Elsevier).

Ferrite-based duplex and triplex Fe-Mn-Al-C steels with moderate Mn (Mn: 2–12%)
and C contents (C: 0.05–0.5%) possess the microstructures consisting of austenite + δ/α-
ferrite and austenite + δ/α-ferrite + martensite, respectively, in which the fraction of ferrite
is higher than 50% [21–37]. In this kind of steels, the transformation-induced plasticity
(TRIP) effect is a very important mechanism in enhancing the strength and ductility of the
materials.

Austenite-based duplex Fe-Mn-Al-C steels containing a higher Mn content, typically
between 8 and 32%, Al up to 12%, and C between 0.3 and 1.2% are characterized by
austenite + δ/α-ferrite or austenite + α-ferrite [18,38–84]. Different from the ferrite-duplex
one, the fraction of austenite is more than half in the austenite-based duplex steels, and the
stability of austenite is quite high due to the high alloying elements.

Full austenite structure at room temperature can be obtained in Fe-Mn-Al-C steels with
high Mn and high C contents, which are in the range of 13–40% and 0.6–2.0%, respectively,
in spite of the high-Al content [63,64,85–130]. Meanwhile, the fully austenitic microstructure
has been also obtained in the medium-Mn Fe-Mn-Al-C steels [46].

The increase in Al content in steels exhibits good lightweight effects but also easily
gives a rise to cause the formation of brittle intermetallic compounds, eventually leading
to poor ductility [131]. Among these four types of lightweight steels mentioned above,
the austenite-based Fe-Mn-Al-C steels show superior weight reduction effect via alloying
more Al and possess both high strength and ductility, which are closely associated with
their unique microstructure features and deformation mechanisms. The microstructural
evolution of austenite-based Fe-Mn-Al-C steels is different from the conventional steels,
and they also show distinguished features from TRIP and TWIP steels due to the additions
of relatively high alloying elements. The physical metallurgy is quite complex and there are
still some theoretical aspects which needs to be clarified in the austenite-based Fe-Mn-Al-C
lightweight steels. Furthermore, the detailed research work needs to be carried out for
practical applications. In this paper, the recent developments of austenite-based single and
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duplex Fe-Mn-Al-C lightweight steels are reviewed and future directions for the research
in Fe-Mn-Al-C steels are proposed.

2. Phase Constituents in the Austenite-Based Fe-Mn-Al-C Lightweight Steels

The medium-Mn (5% ≤Mn ≤ 12%) and high-Mn (Mn > 12%) lightweight steels are
characterized by single austenite and austenite-based duplex (austenite + ferrite) matrix due
to their high content of austenite stabilizer elements of Mn and C [129]. When the content
of ferrite stabilizer element, i.e., Al, is high and the associated Nieq/Creq is relatively low,
a considerable amount of banded coarse δ-ferrite forms during solidification and became
inherited during subsequent hot rolling, cold rolling and annealing [44,80,81,129,132–134].
Meanwhile, some fine α-ferrite grains could form during hot deformation or annealing
in the intercritical temperature (γ→α), which is propitious to the microstructure refine-
ment [46,81,111].

Regarding precipitation, the formation of κ’-carbide precipitates depends on heat
treatment conditions. The phase has a perovskite crystal structure designated as L’12,
and its ideal stoichiometry is (Fe, Mn)3AlC [1,135]. The crystal structure of the phase is
illustrated in Figure 1c. A metastable (Fe, Mn)3AlCx (x < 1) phase has the same crystal
structure as the phase but with an uncompleted occupation of the C atoms [136]. The
off-stoichiometric concentration of Al was explained by mismatch-induced strain, which
facilities the occupation of Al sites in the κ’-carbide by Mn atoms [123,125,136].

When the high-Mn austenitic lightweight steels were quenched from high temper-
ature or aged at 450–650 ◦C, nano-sized κ’-carbide particles formed within austenite
grains [90,91,116,125]. This intra-granular κ’-carbide is a metastable (Fe,Mn)3AlCx phase
which is coherent to the matrix. The steel matrix (austenite) and κ’ phase have the cube-on-
cube crystallographic orientation relationship from these selected area diffraction patterns
(SADPs), i.e., [100]κ//[100]γ, (100)κ//(100)γ [114]. It has been long believed that the forma-
tion of intra-granular κ’-carbide is through spinodal decomposition and following ordering
reaction [137,138]. Transmission electron microscopy and X-ray diffraction were generally
used to provide experimental evidence supporting the spinodal decomposition-ordering
mechanism by observing the modulated structure [139], diffuse satellites around the (200)
diffraction spots in electron diffraction patterns, and XRD side band peaks around the
(200) reflections [138,140]. However, some recent transmission electron microscopy (TEM,
FEI Titan Themis, Hillsboro, OR, USA) and atomic probe tomography (APT, FEI Helios
Nano-Lab 600i, Hillsboro, OR, USA) results obtained in an Fe-30Mn-9Al-1.2C lightweight
steel indicated that the formation of an ordered structure was earlier than chemical par-
titioning of any solute elements during the early stage of κ’-carbide precipitation [141].
Near-atomic scale characterization of an austenite-based Fe-20Mn-9Al-3Cr-1.2C steel, using
high-resolution scanning TEM (HRSTEM, FEI Tecnai G2-20, Hillsboro, OR, USA) and APT
also revealed that the initially-formed κ’-carbide (2–3 nm in particle size) are characterized
by an ordered L’12 structure but without detectable chemical partitioning [114]. However,
the increasing Mn content could delay the formation of intra-granular κ’-carbide via sup-
pressing the C occupation of the vacancy at the body-centered site of L12, which is related
to the C ordering process [123,125,136]. Thus, the intra-granular κ’-carbide is more prone
to precipitate in medium-Mn lightweight steels.

Meanwhile, the extended aging and relative-low-temperature annealing caused the
precipitation of perovskite-structured (Fe, Mn)3AlCx carbide at the grain boundaries of
austenite [40–42,45,57,58,62,90,91,99,119]. Hereafter, we distinguish the ordered grain
boundary L’12 phase from the intra-granular κ’ phase of the same structure by naming the
former as κ-carbide. Such inter-granular κ-carbide grew into the austenite grains in the
form of a lamellar structure together with α-ferrite through the following dominant route:
the eutectoid reaction γ→κ + α [40]. The cellular transformation is a form of continuous re-
action which occurs during the transformation of high-temperature austenite into lamellae
of austenite, α-ferrite, and κ-carbide [62]. The formation of coarse second-phase particles
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which have a lamellar morphology was also observed after aging for a longer period of
time in a solution treated Fe-(11–30)Mn-(7.8–10)Al-(0.8–2.0)C alloys [45,58,90,91,99,119].

In the Fe-27Mn-12Al-0.8C duplex lightweight steel [18], various ordered phases such as
DO3, B2 and κ’-carbide were formed in the duplex microstructure upon quenching in water
after intercritical annealing. Fine DO3 were evenly distributed through both B2 domains
and disordered ferrite matrix. Meanwhile, nano-sized κ’-carbides precipitated in austenite.
Similar results were also attained in the Fe-11Mn-10Al-0.9/1.2C, Fe-15Mn-10Al-1.0C and
Fe-18Mn-10Al-1.2C steels alloyed with lower Mn contents [46,59,63].

Since there are variations of phase constituents in Fe-Mn-Al-C steels which are con-
trolled by compositions and processing schedules, the mechanical behavior could be
tailored in a wide range for these kinds of steels.

3. Mechanical Properties

The mechanical properties of the representative medium-Mn [38,40–42,45,46,50,51,53–
55,84] and high-Mn [3,18,57,58,63,67,69,78,79,83,85,91,100,103,107,109–111,113,116,122,124,
127,129,141–159] lightweight steels are shown in Figure 2a,b. It is clearly indicated that both
the medium-Mn and high-Mn steels possess good mechanical properties and show large
space to be regulated, yield strength: 375–1850 MPa, ultimate tensile strength: 765–1978
MPa, and total elongation: 1–80%. Generally, both intra-granular κ’-carbide and inter-
granular one can effectively improve the yield strength of lightweight steels, regardless of
Mn content [40–42,45,46,57,58,84,85,91,122]. However, the coarse inter-granular κ-carbide
results in an abrupt loss of elongation, while the fine intra-granular κ’-carbide enhance
the strengths of lightweight steels without significantly sacrificing ductility but brings out
a relatively high yield ratio (>0.9) [40–42,45,46,91]. Moreover, although the relationship
between strength and ductility of duplex and single-austenitic lightweight steels follow
the “banana” curve, the mechanical properties of single-austenitic steels with high-Mn
content seems to be superior to those of duplex ones. For instance, the austenitic steel (Fe-
28Mn-9Al-1.8C) demonstrates ultrahigh strength (yield strength of 1383 MPa and ultimate
tensile strength of 1487 MPa) with good elongation of ~32.5% [91]. The increase in Mn
content seems to bring more room for improving the strength and ductility of steels, but it
also increases the difficulty in fabrication, not to mention the sharp increment in material
cost [160]. Achieving high performance lightweight steel and maintaining its economy is
also an important subject during its development process.
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Mn [10,38,40–42,45,46,50,51,53–55,84] and (b) high-Mn [3,18,57,58,63,67,69,78,79,83,85,91,100,103,107,
109–111,113,116,122,124,127,129,141,143–159] lightweight steels.

4. Strengthening Mechanisms

Solid solution hardening plays a role in the strengthening of Fe-Mn-Al-C steels due
to the high amount of alloying elements C, Al, and Mn in these steels and grain refine-
ment is another strengthening mechanism [46,74,125,141]. The austenite grain size can be
refined by thermomechanical processing (TMP) combined with cold working and anneal-
ing [42,111,155]. The existence of ferrite can also make the austenite size decrease owing
to the prohibition of growth of austenite in both medium-Mn and high-Mn lightweight
steels [46,111].

It was reported that the yield strength of these steels increases as the Al concentra-
tion increases [74]. The high yield strength of 12Al steel, 952 MPa, is due to fine grain
strengthening, precipitation strengthening, the existence of ferrite, and Al solution strength-
ening. Quantitative investigations in Fe-26Mn-Al-1C indicated that the effect of Al on
yield strength of the alloys is not quite significant in the Al range of 3 to 10%. Precipita-
tion hardening is the most significant strengthening mechanism in the alloys containing
homogeneously distributed nano-sized κ’-carbides.

Dislocations moving through an austenitic matrix containing intra-granular κ’-carbide
can either shear the precipitates or bypass them and consequently result in alloy strength-
ening [116]. In Fe-Mn-Al-C lightweight steels, it is believed that the operative mechanism
(shearing mechanism or Orowan bypassing mechanism) and the corresponding strengthen-
ing effect are closely associated with the size of κ’-carbide [116,125]. For a given volume
fraction (~20%), Yao et al. calculated the shearing strengthening effect of the Fe-30.4Mn-
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8Al-1.2C steel aged at 600 ◦C for 24 h based on the antiphase boundary (APB) energy,
which is about 500 MPa [116]. As the size of κ’-carbide is beyond the critical radius (~6.8
to 13.5 nm), the Orowan looping can in principle be activated [116]. Since the lower
Mn content facilitates the formation of intra-granular κ’-carbide [123,125,136], the precip-
itation hardening is expected to reach the higher value in the medium-Mn steels. Liu
et al. studied the strengthening mechanisms of the cold-rolled Fe-11Mn-xAl-yC (x = 7/11,
y = 0.6/0.9/1.2) medium-Mn lightweight steels annealed at 700–1100 ◦C; see Figure 3 [46].
It is clearly observed that the maximum of the κ’-carbide precipitation strengthening effect
of the 1000 ◦C-annealed Fe-11Mn-10Al-1.2C steel is estimated as 679 MPa. Meanwhile, the
existence of high density dislocations in the partially-recrystallized hetero-structured Fe-11Mn-
7Al-0.6C steels also results in a considerable increment in yield strength of the materials.
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(a) Fe-11Mn-7Al-0.6C steel and (b) Fe-11Mn-10Al-0.9/1.2C steels under various annealing tempera-
tures [46]. (Reprinted with permission from [46]. Copyright 2022 Elsevier).

5. Strain Hardening Behaviors and Deformation Mechanisms

Several researchers investigated the strain hardening behaviors of Fe-Mn-Al-C steels.
The results in the investigation of tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel [67]
revealed that strain hardening in both austenite and ferrite was monotonic during tensile
deformation, but the strain hardening exponent of austenite was higher than that of ferrite,
indicating the better strain hardenability of austenite. Three low-density Fe-18Mn-10Al-xC
steels containing 0.5, 0.8 and 1.2 C (wt%) were utilized to investigate effects of C contents on
the microstructural evolution and the corresponding mechanical behaviors during plastic de-
formation [63]. The differential Crussard–Jaoul (C-J) analysis demonstrated a two-stage strain
hardening behavior in both 0.5C and 0.8C steels and a three-stage one in the 1.2C steel. This
difference in strain hardening behavior was further understood in terms of microstructural
analysis at the different stages of plastic deformation.

The strain hardening behavior in relation with the evolving dislocation substructures
during uniaxial tensile deformation for an austenite-ferrite Fe-18.1Mn-9.6Al-0.65C steel
was investigated [77]. The steel consisted of austenite and ferrite and possessed a good
combination in mechanical properties. The deformation mode of austenite is dominated
by planar glide and Taylor lattices and microbands formed as the deformation proceeded,
whereas dislocation nodes, dislocation cells, and cell blocks formed due to the occurrence
of wavy glide in ferrite, as shown in Figure 4 [77]. Three-stage strain hardening behavior
was revealed in this steel, which is similar to the aforementioned steel. Since the increase of
Al content in the steels increases the volume fraction of shearable κ’-carbide precipitates, an
increased strain softening is activated in glide plane, which results in a decreased density of
slip bands and significant decrease of the strain hardening rate [107]. Generally, the Fe-Mn-
Al-C steels containing intra-granular κ’-carbides show low strain hardening rate because
the nanocrystalline coherent precipitates are easily sheared by gliding dislocations [131].
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The deformation mechanisms of austenite can be predicted basing on the thermody-
namic calculation of stacking fault energy (SFE) [51,54,64,86,94]. It was reported that TRIP
effect appears when the SFE is lower than ≤18 mJ/m2, and TWIP effect is dominant when
the SFE is between 18–35 mJ/m2. When the SFE is higher than 60 mJ/m2, neither TRIP
nor TWIP effect appears [161]. Mn, C and Al all increase the SFEs of Fe-Mn-Al-C steels.
Generally, for FCC materials, it is difficult for extended partials to form when the material
possesses high SFE. Therefore, cross slip of screw dislocations of the extended partials is
easy and wavy slip would be dominant, forming cellular structure. However, planar slip
features have been found in the FCC materials with high solute element concentrations. In
this case, SFE is not the dominant factor influencing the deformation mode.

There are basically three deformation mechanisms reported in high SFE Fe-Mn-Al-C
steels, shear band–induced plasticity (SIP) [75], microband-induced plasticity (MBIP) [87,89],
and dynamic slip band refinement [97]; see Figure 5. For the SIP mechanism, it was
suggested that the enhanced ductility is closely associated with the formation of the
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homogeneous shear band accompanied by the dislocation glide sustained by the uniform
arrangement of nano-size κ’-carbides coherent to the austenite matrix with defined inter-
particle spacing. For the MBIP mechanism, planar slip occurs in austenite when the strain
is low, Taylor lattice appear as the deformation proceeds and microbands form afterwards,
increasing the strain hardening capacity of the steels. Strain hardening by dynamic slip
band refinement in a Fe-30.4Mn-8Al-1.2C high-Mn lightweight steel was investigated,
and it was characterized that material deforms mainly by planar dislocation slip causing
the formation of slip bands [97]. The deformation mechanism was therefore regarded as
dynamic slip band refinement. This slip band refinement-induced plasticity (SRIP) was
also verified in Fe-29.8Mn-7.65Al-1.11C steel [122].
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Figure 5. Three deformation mechanisms reported in high SFE Fe-Mn-Al-C steels. (a) shear band–
induced plasticity: uniformly arranged shear bands on {111} planes within the austenitic matrix
of a deformed high-Mn steel [75] (Reproduced with permission from [75]. Copyright 2016 Wi-
ley.); (b) microband-induced plasticity: (b1) and (b2) well-developed microbands having distinct
boundaries in austenite of the medium-Mn duplex lightweight steel at the true strain of 0.15 [51]
(Reproduced with permission from [51]. Copyright 2015 Elsevier). (c) schematic illustration of
dynamic slip band refinement: (c–1) activation of sources, (c–2) slip planes filled up with dislocations.
(c–3) exhausted sources due to back stresses and fully developed slip bands, (c–4) activation of new
sources, (c-5) and (c-6) newly activated sources undergone the same evolution as the previous sources
leading to a refinement of the slip band substructure [97] (Reproduced with permission from [97].
Copyright 2016 Elsevier).

Tensile deformation of Fe-27Mn-12Al-0.8C duplex steel was studied in association
with ordered phases [18]. In austenite, a single-planar dislocation glide is a dominant
mechanism at low strains and multiple planar slip occurs at high strains, whereas short,
straight segments of paired dislocations with narrow mechanical antiphase boundaries
were formed in ferrite. It was reported that strain hardening of the duplex steel is associated
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with the combined effect of the shearing of nano-sized ordered phase by superdislocations
in ferrite and planar gliding dislocations in austenite.

6. Effect of Trace Alloying Elements

Kim et al. investigated the effect of another lightweight element, Si, on deformation
mechanisms in light weight steels by atomic-scale analysis [120]. It was found that the
addition of Si accelerated the formation kinetics of the κ’ precipitates and increased the
partitioning coefficient of carbon from 2.4 to 5.3. C-rich κ’-carbides are more resistant
to shearing by dislocations due to a higher coherency strain and the formation of Al–C
bonding which makes dislocation motion energetically more difficult. Therefore, the energy
required for dislocation shearing κ’-carbides in the aged 1% Si steel was higher than the
one in the aged Si-free steel.

The effect of Mo addition on the precipitation behavior the κ’-carbide in the austenitic
Fe-Mn-Al-C lightweight steels was investigated [162]. First-principle calculations indicated
that the substitution of Fe or Mn by Mo in κ’-carbide is energetically unfavorable with
respect to the formation energy and it increases strain energy contribution to interfacial
energy between austenite matrix and κ’-carbide. TEM observation and nano-indetation
experiments showed that Mo delayed the kinetics of κ’-carbide formation and changed the
age hardening behavior. This calculation was also verified by APT analysis, showing both
are in a good agreement.

Sutou et al. reported the addition of Cr could improve the strength, hardness and
cold-workability of Fe-20Mn-Al-C steels with higher C and Al contents [69]. The addition of
Cr, which is a ferrite stabilizer, suppresses the formation of coarse inter-granular κ-carbides,
and consequently, austenite retains more stability due to an increase in the amount of carbon
inside austenite [163]. The increasing content of Cr in the Fe-20Mn-9Al-1.2C lightweight
steel increased the volume fraction of ferrite but decreased the volume fraction of intra-
granular κ’-carbide. Meanwhile, the increased Cr content also significantly slowed down
the growth rate of κ’-carbides during isothermal aging treatment at 600 ◦C, as shown in
Figure 6 [164].
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Figure 6. Electron backscattered diffraction (EBSD) phase maps of the as-cast Fe-20Mn-9Al-1.2C
steels with different Cr content [164]: (a) 0Cr; (b) 3Cr; (c) 6Cr; and (d) 9Cr (red and gray contrasts
indicate δ-ferrite and γ-austenite phases, respectively). TEM DF images of κ’-carbides of the aged
steels with (e) 0Cr and (f) 3Cr contents and (g) the thermodynamic calculation showing the variation
in the mass fraction of κ’-carbides different Cr content. (Reproduced with permission from [164].
Copyright 2022 Elsevier).
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V has been added in the austenite-based lightweight steel so as to improve the strength
and strain hardening rate through dual-precipitation of V-carbides and κ’-carbide and the al-
loying element V could exert an impact on the precipitation behavior of κ’-carbide [152,156].
First principle analysis showed that the addition of V would increase the nucleation barrier
energy of κ’-carbide due to the segregation of V [156], and the precipitated V-carbides could
induce the subsequent precipitation of κ’-carbides in the form of band distribution [156].

Adding individual Nb/Ti, and adding compound Nb and Ti in lightweight steels
can both refine grains through the precipitation of carbides, and thus enhance the yield
strength of materials [1–3]. Wang et al. studied the effect of Ti addition on the mechanical
properties and microstructures of Fe-30Mn-10Al-1.57C-2.3Cr-0.3Si-xTi (x = 0, 0.3, 0.6, and
0.9 wt%), and it was revealed that grain refinement effect become extremely obvious with
increasing Ti content [100]. However, there is continuing debate as to the effect of trace
element addition on the precipitation of κ’-carbides [142]. Li et al. found κ’-carbides
densely distributed at the (Ti,Mo,Nb)C/γ interface, which could act as the nucleation site
of the κ’-carbide [143], whereas Park et al. reported Nb addition caused the consumption
of C solute atoms to form the primary and secondary NbC carbides, thus lowering the
precipitation rates of κ’-carbide [144].

Recently, Cu addition was proposed as a promising method to achieve the high yield
strengths of medium-Mn and high-Mn lightweight steels by the co-precipitation of nano-
scale Cu-rich and κ’/κ-carbide particles [53,165]. Cu, as an austenite stabilizer, not only
increases the volume fraction of austenite but also hinders the recrystallization due to the
solute drag effect, and it promotes the formation of Cu-rich B2 particles and Cu-segregated
interfacial layers [53]. Since the Cu-rich particles promoted the precipitation of nanosized
κ’-carbide particles, the yield strength of particle-strengthened Fe-28Mn-9Al-0.8C-5Cu
austenitic lightweight steel reaches 808 MPa with total elongation of more than 20% [165].

Sang-Heon Kim, Hansoo Kim, and Nack-J Kim reported a Ni-doped austenitic lightweight
steel (Fe-16Mn-10Al-0.86C-5Ni) which possesses ultrahigh specific strength, good ductility
and phenomenally high strain hardening owing to the unique duplex microstructure
consisting of γ-matrix and evenly dispersed fine B2-intermetallic second phase [131]. The
addition of Ni into the Fe-15Mn-10Al-0.8C lightweight steel led to the ordering of α-
ferrite and its transformation to stronger B2 compounds and prevented the formation of
lamellar structure of α + κ [166], and the interplay between B2 and κ-carbide precipitation
was utilized to control the morphology and distribution of these precipitates. The initial
formation of intra-/inter-granular κ’/κ-carbide particles within the hot-rolled Fe-21Mn-
10Al-1C-5Ni steel is expected to increase the chemical driving force and correspondingly
reduce the critical energy barrier for B2 nucleation, consequently facilitating the formation
of a large fraction of B2 nanoparticles with size of 20–500 nm within austenite grains [149].
The investigation on the Fe-30Mn-10Al-0.9C-0.5Si-1.5Mo-1.5/3Ni steels demonstrates the
reverse partitioning of Al from κ’-carbide to the γ-matrix through Ni addition, indicating
that the affinity of Ni-Al is higher than that of C-Al [148].

7. Fabrication of Fe-Mn-Al-C Lightweight Steels
7.1. Fabrication Methods

Adding Al to steels could effectively reduce their mass density [75,167]. However, the
excessive Al content can produce massive Al2O3 and AlN inclusions which cause severe
nozzle clogging and surface cracks in the continuous casting of slabs, which are great chal-
lenges for industrial production of lightweight steels [168–171]. Recently, a near-net shape
approach to fabricate the lightweight steels by a near-rapid solidification process was pro-
posed, which was conducted by the centrifugal casting (Figure 7) [50,70,84,143,165,172,173].
It was reported that such route could reduce the energy consumption during the rolling
deformation and promote the near-rapidly solidified material possessed features of ultra-
fine microstructure, low segregation, high solid solution, and possibly non-equilibrium or
metastable phases [50,174]. It was revealed that near-rapidly solidified lightweight steels
showed satisfactory mechanical properties.
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7.2. Hot Deformation Behavior

As the TMP is a devoted part of steel production, hot deformation behaviors of
high-Mn and medium-Mn Fe-Mn-Al-C lightweight steels have been investigated by sev-
eral researchers [39,175–183]. The hot deformation and dynamic recrystallization (DRX)
behavior of Fe-27Mn-11.5Al-0.95C steel was investigated by compressive testing in the
temperature range of 900–1150 ◦C and strain rate of 0.01–10 s−1. Typical DRX behavior was
observed and a DRX kinetics model of the steel was established [175].

The high temperature behavior of the duplex low-density Fe-18Mn-8Al-0.8C steel was
investigated in the temperature range of 600–1000 ◦C, and a 3D processing map was devel-
oped considering the effect of strain [176]. The dynamic transformation from austenite to
ferrite was found to occur in the safe efficiency domain. Therefore, the microstructure factor
must be considered in the high-Mn, high-Al alloys with relatively lower Mn concentrations.
Continuous dynamic recrystallization of Fe-17.5Mn-8.3Al-0.74C-0.14Si steel with a duplex
microstructure was investigated [177]. The formation of progressive sub-boundaries and
its effect on the materials’ ductility were explored.

The hot deformation behaviors of the Fe-26Mn-8/10Al-1C steels were investigated
by the 3D processing map at temperatures of 850–1050 ◦C and strain rates of 0.001–10 s−1

and the effect of Al was considered [178]. The constitutive equations of the steels were
established. The steel alloyed with more Al (i.e., 10Al steel) has a higher flow stress and
a higher Z value (i.e., Zener–Hollomon parameter), indicating the increasing Al content
suppressing the nucleation and growth of DRX. The number of unstable zone extends from
one to two with increasing Al content and the instability region at each strain rate also
increased.

As the increasing amount of C and Al together with the decreasing Mn content could
facilitate the precipitation of both intra-/inter-granular κ’/κ-carbides, the medium-Mn
lightweight steels usually undergo hot working in the ferrite + austenite + κ phase region,
thus resulting in complicated flow behaviors [39,43,44,180–183]. The study on the hot
deformation behavior of Fe-11Mn-10Al-0.9C steel reveals the occurrence of dynamic precip-
itation of intra-/inter-granular κ’/κ-carbides as well as discontinuous/continuous dynamic
recrystallization (DDRX/CDRX) of austenite and ferrite, and a significant softening is ob-
served, as shown in Figure 8 [181]. As the formation of inter-granular κ-carbide particles is
detrimental to the hot workability of the medium-Mn lightweight steels [39,182], processing
maps were developed by employing dynamic materials model (DMM) to determine the
optimal hot deformation condition of the Fe-11Mn-10Al-0.9C steel [182]. According to the
processing map, the best process window of the Fe-11Mn-10Al-0.9C steel at large strains
(0.7) was identified as deformation temperature of 950–1100 ◦C and strain rate of 0.01–1.0
s−1; see Figure 9a. In this domain, the original coarse grains were refined, indicating that
the high efficiency was dissipated by DRX (Figure 9b). Meanwhile, two unstable regions re-
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sulted from inter-granular κ-carbides (Figure 9c) and necklace structure (Figure 9d) should
be avoided during hot working.
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(c) 0.01 s−1, (d) 0.001 s−1 [181]. (Reproduced with permission from [181]. Copyright 2020 Elsevier).
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Figure 9. (a) The processing map the Fe-11Mn-10Al-0.9C medium-Mn duplex lightweight steel at
true strain of 0.7, (b) optial image of the specimen deformed at 1100 ◦C and 0.1 s−1 corresponding
to Domain II showing a fine and uniform DRX microstructure, (c) scanning electron micrograph of
the specimen deformed at 800 ◦C and 0.001 s−1 corresponding to the instable area A showing the
micro-crack induced by κ-carbide, and (d) the EBSD phase map of the specimen deformed at 1000 ◦C
and 1 s−1 corresponding to the instable area B showing the necklace structure (A: austenite, F: ferrite,
κ: κ-carbide) [182]. (Reproduced with permission from [182]. Copyright 2019 Springer Nature.).
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8. Future Research Aspects
8.1. Alloy Design

The variations of concentrations in Mn, Al, and C alter the phase constituents in
lightweight Fe-Mn-Al-C steels and a wide range of tensile properties could be achieved.
Although Al acts as an alloying element both for weight saving and microstructure mod-
ification, the limitation of additions of Al should be explored to utilize its lightweight
function. The major alloying elements, Mn, Al, and C, need to be utilized properly to
enhance the properties of the steels. The role of microalloying elements, such as Nb, V and
Ti, in the lightweight Fe-Mn-Al-C steels should be further understood and the research
of other alloying elements such as Cu, Ni, and Cr are also needed to be involved so as to
optimize the overall properties and thus expand the application fields of the lightweight
alloys.

8.2. Microstructure Design

As different phases possess different features, the coordination is needed during de-
formation. The stress/strain partitioning among different phases should be investigated
and simulation methods might be helpful to assist the microstructure design by investi-
gating the deformation behavior of the steels. The assessment of contributions of different
strengthening mechanisms needs to be investigated for different lightweight Fe-Mn-Al-C
steels.

Meanwhile, the hardening mechanisms such as the precipitation of κ or B2 (DO3)
should be considered and the conditions to control of the formation of these precipitates
still need to be investigated. Measures to effectively utilize these ordered intermetallics as
the second phase should be explored further.

8.3. Comprehensive Properties

The research work on the comprehensive properties of lightweight Fe-Mn-Al-C steels
is still limited. For the applications of the steels in automobile industry, investigations on
the impact toughness of the materials are necessary and the formability of the materials
such as hole expansion ratio and bending properties need to be evaluated and the research
on high strain rate deformation is also necessary. Systematic research on the weldability
and coatability of Fe-Mn-Al-C lightweight steels is also needed. To extend the applications
of the steels, service properties such as fatigue, hydrogen cracking resistance, and oxidation
resistance should be further investigated.

8.4. Fabrication Method Development

With high Mn and Al concentrations, fabrication processes such as steel making,
casting, and hot rolling are facing challenges. The difficulties in fabricating the materials
should be overcome in the industrial production lines. Meanwhile, new fabrication methods
need to be explored. For example, 3D printing could be a promising technology for
producing the newly designed Fe-Mn-Al-C steels.

9. Summary

(1) In austenitic Fe-Mn-Al-C steels, the microstructure in solution treated condition is a
single γ phase or the one with nano-sized κ‘-carbide, depending on the compositions
and heat treatment schedules. Solid solution hardening, grain size refinement, and
precipitation hardening are the basic strengthening mechanisms. Measures to effec-
tively utilize nano-sized precipitates should be explored to increase the strengths and
strain hardening rates of the steels.

(2) Austenite-based duplex Fe-Mn-Al-C steels generally possess high strength with mod-
erate ductility. The strain partitioning between the dual phases should be investigated
to guarantee the accommodation of deformation in two phases with different proper-
ties so as to achieve higher performance.
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(3) Mn and Al, the major alloying elements of the present alloy, play the opposite role
on the phase stabilization of alloys as the austenite stabilizer and ferrite stabilizer,
respectively. It is essential to examine the phase constituents of the steels treated with
different schedules and their effects on the mechanical properties. The effects of trace
elements on the mechanical properties still need to be investigated to modify the
microstructures and tailor properties of the materials.

(4) Mechanical behaviors of the Fe-Mn-Al-C steels at different temperatures and strain
rates need to be investigated to meet the requirements for actual applications. Other
properties such as fatigue, formability, weldability, and coatability need to be evalu-
ated further to fulfill the requirements in the different practical uses.

(5) The fabrications of the lightweight Fe-Mn-Al-C steels need to be explored in the
conventional production line. New methods to fabricate the Fe-Mn-Al-C steels with
relatively high Al concentrations need to be developed.
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