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Abstract: The TA1 welded joints with different heat inputs were obtained by a fiber laser and their
microstructure, mechanical properties and corrosion resistance in simulated saliva solution were
studied. The results show that the microstructure in fusion zone (FZ) is needle-like α′ martensite and
lath-shape α′ martensite, and that of the heat-affected zone (HAZ) is zigzag α phase. With the increase
of heat input, the volume fraction of needle-like α′ martensite decrease and the microstructure is
coarsened in FZ, but there is almost no change in the microstructure of the HAZ. The order of
the corrosion resistance of welded joints with different heat inputs is the same as FZ > HAZ >
base material (BM), and the heat input has a more influence on the corrosion resistance of FZ. The
binary multiple linear regression relationship between the corrosion current density/charge transfer
resistance and the length/width of α′ martensite was established, indicating that the width of α′

martensite is the main factor affecting the corrosion resistance.

Keywords: CP-Ti; laser beam welding; heat input; microstructure; corrosion resistance

1. Introduction

In recent years, the problem of oral prosthodontics has attracted more and more
attention with the development of material processing technologies. Titanium and its alloys
can satisfy a series of requirements for dental materials, such as low Young’s modulus and
density, superior biocompatibility, high strength-to-weight ratio, and excellent corrosion
resistance [1–3]. Among them, commercial pure titanium (CP-Ti) and Ti-6Al-4V (TC4)
alloys are the most commonly used. However, Al and V ions of TC4 alloy are easily
released during wear or corrosion, which can result in peripheral neuropathy, osteomalacia,
Alzheimer’s disease, et al. [4–6]. Therefore, the CP-Ti is used as the preferred material for
denture restorations, implants, and other applications in many fields of stomatology [7,8].

The production and application of most titanium components depend highly on
fusion welding technologies. Titanium and its alloys have low thermal conductivity
(22 W cm−1 K−1) and high affinity with nitrogen, hydrogen, and oxygen at high tempera-
tures, indicating that laser beam welding (LBW) with high energy density and precision is
an ideal welding method for them [9,10]. Heat input, as one of the most influential and
controllable parameters for LBW, can affect the microstructure and properties of welded
joints by changing the flow of the molten pool, cooling rate, geometrical constraints and
defect formation. The research on the effect of welding heat input on the microstructure
and properties of titanium alloy welded joints was mostly focused on dual-phase titanium
alloys (like TC4). Due to the uneven temperature distribution around the melt pool in the
welding process, an uneven microstructure is formed in the welded joint (i.e., from the
FZ to the BM). In addition, the size and microstructure evaluation in both FZ and HAZ
depends on specific heat input [11,12]. With the increase of welding heat input, the α′

martensite morphology in FZ changes from needle-like to lath-like and the prior β grains
are coarsened, deteriorating their mechanical properties [13]. Increasing the heat input in a
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certain amount is beneficial to the reduction of the porosity, thereby increasing the tensile
strength; while excessive heat input may lead to the formation of welding defects, like
undercuts, resulting in the decrease in the tensile strength [14]. In addition, studies have
shown that the mechanical properties of welded joints depend on the shape of the weld
and heat input is an important factor affecting the shape of the weld [15]. However, there is
a tremendous lack of the research on the effects of heat input for CP-Ti laser welded joints.

Corrosion resistance is one of the main considerations for stomatological materials
because it not only affects the service life of components but also relates to the harm
to living organisms. The corrosion resistance of titanium alloys is related to the phase,
grain size, grain boundary density, etc. [16,17]. The complex welding thermal cycle in laser
welding process results in the differences in the chemical composition and microstructure of
different zones in the welded joints. Many studies have shown that the corrosion resistance
of FZ is poorer than the BM in the TC4 welded joint which is mainly attributed to the
decomposition of coarse columnar grains and metastable α′ martensite [18–21]. However,
there are relatively few studies on the corrosion resistance of CP-Ti welded joints and there
is a lack of research on the corrosion resistance of welding heat input.

In this study, the effects of heat input on microstructure and of welded joints were
characterized by scanning electron microscope (SEM). Mechanical properties of welded
joints are evaluated by microhardness tests and tensile tests. In addition, the corrosion
resistance of different zones of welded joints was studied by potentiodynamic polarization
curve and electrochemical impedance spectroscopy (EIS) in simulated artificial saliva solu-
tion that simulating human oral environment, thus exploring the mechanism of corrosion
resistance change under different heat input. This work will provide theoretical support
for the application of CP-Ti in stomatology.

2. Materials and Methods
2.1. Materials and Welding Parameters

TA1 plates with a thickness of 4 mm, a width of 50 mm and a length of 60 mm were
used. Before laser welding, the plates were dried, polished, and cleaned with ethanol to
avoid the interference of external factors on the experimental results. The welding process
was carried out by fiber laser (IPG-YLS-10000, IPG Photonics Corporation, Oxford, MA,
USA) with a maximum power of 10 kW, an emission wave length of 1070 nm and a spot
focus diameter of 0.2 mm. In the welding process, the welding speed was kept constant
and the heat input was changed by the laser power under the premise of penetration and
qualified forming. The specific parameters are shown in Table 1. In addition, argon gas
(99.9% pure) was used as the shielding gas to protect the front and back of the weld, and
the flow rates were 20 L/min and 5 L/min, respectively.

Table 1. The specific experimental parameters in the laser welding procedures.

Sample Power/P (W) Welding Rate/v (mm/s) Heat Input/E (J/mm)

S1 2000 15 133.3
S2 2400 15 160
S3 2800 15 186.6

2.2. Microstructure Observations and Mechanical Properties Testing

After being etched by Kroll’s reagent (3% HF + 6% HNO3 + 91% H2O, Tianjin Kermel
Chemical Reagent Co., LTD., Tianjin, China), the microstructure of the welded joint was
observed by field scanning electron microscopy (FSEM, JEOL-7800F, JEOL Ltd., Tokyo,
Japan). According to the SEM results, Image-Pro Plus 6.0 (Media Cybernetics, Rockville,
MD, USA) was used to analyze the size of the α′ martensite. Before the microhardness
test, the sample is polished and polished to ensure that the surface of the sample is flat.
Microhardness tests were performed with a microhardness tester (HXD-1000TMC, Xian
Weixin Testing Equipment Co., LTD., Xi’an, China) under a loading force of 200 g, a loading
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time of 15 s, and the interval between each test point was 0.2 mm. The test range is a
rectangular area of 3.8 mm × 8 mm and the center of the rectangle is located at the center
of the FZ. The tensile tests were measured by an electronic universal testing machine
(Zwick-Z250, ZwickRoell GmbH & Co. KG, Ulm, Germany) and the size of the plate-like
tensile specimen was 100 mm × 10 mm × 3 mm, which was repeated three times to ensure
the accuracy of the experimental results.

2.3. Electrochemical Measurements

The welded joint samples were ground up to 3000 grit silicon, rinsed with deionized
water, cleaned ultrasonically with ethyl alcohol and then air dried. During the electrochemi-
cal test, the exposed area was 0.1 cm2 and the rest of the sample was covered with insulating
glue and silica gel sealed. The experimental device is a conventional three-electrode electro-
chemical cell with a platinum foil counter electrode and a saturated calomel electrode (SCE)
reference electrode and an electrochemical workstation (GAMRY Interface1000, Gamry
Instruments Consulting Co., LTD., Shanghai, China). The electrochemical test solution
is simulated artificial saliva solution whose composition is shown in Table 2, and the
temperature was kept at 37 ◦C ± 0.1 ◦C.

Table 2. Chemical compositions of simulated artificial saliva solution.

NaCl KCl CaCl2·2H2O Na2HPO4·2H2O Na2S·2H2O CH4N2O Distilled Water

0.4 g 0.4 g 0.795 g 0.78 g 0.005 g 1 g 1 L

The −1.2 VSCE cathode potential was polarized for 180 s to remove the oxide film at
first and then the open circuit potential (OCP) test was performed for 18,000 s. Electrochem-
ical impedance spectroscopy (EIS) was performed at OCP from 0.01 Hz to 100 kHz and the
amplitude is 10 mV. The range of the potentiodynamic polarization curve was −0.5 to 2 V
(vs. OCP) and the scanning speed was 0.5 mV/s.

3. Results
3.1. Microstructure Evolution

As shown in Figure 1, the microstructure of TA1 is equiaxed α phase whose average
grain size is about 54.53 µm.
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The microstructure of different zones in the welded joints with different heat inputs is
shown in Figures 2–4. The boundaries of the prior β grains were clearly revealed in the
FZ. When the heat input is 133.3 J/mm, long orthogonally oriented martensite plates α′

with needle-like morphology and a small amount of lath-shape α′ martensite dominates
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the microstructure in FZ, and the average length and width of about 8.28 µm and 0.78 µm,
respectively. During laser beam welding, the β phase grows along the temperature gradient
direction accompanied with the molten pool solidification. The prior β phase is deformed
to martensite by shear deformation under a high cooling rate [22]. The microstructure of
HAZ is zigzag α phase and its grains are coarser than that of BM (Figure 2c).
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The morphology and grain size of α′martensite in FZ changed with the increase of heat
input, i.e., the decrease of cooling rate. As shown in Figure 3a, the volume fraction of needle-
like α′ martensite decreases and the slat spacing increases when the heat input increases
to 160 J/mm. In addition, the grains are coarsened, the width of α′ martensite increases
slightly, and its average length increases to 9.97 µm. When the heat input increases to
186.6 J/mm, the arrangement of α′martensite was relatively chaotic and the volume fraction
of needle-like α′ martensite continued to decrease (Figure 4a). The size of α′ martensite
is significantly coarsened, and its length and width were 1.44 times and 1.46 times bigger
than those of the S2 specimen, respectively (Figure 5). However, there is almost no change
in the microstructure of the HAZ with different heat inputs.
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3.2. Mechanical Properties of Welded Joint

Figure 6 shows the microhardness distribution of the welded joints. The three-
dimensional image is projected onto the XOY plane indicating the presented shape matches
the macroscopic topography of the welded joint. The average microhardness of BM is
about 171.2 HV and it decreases gradually from FZ to BM for the welded joints. The highest
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microhardness is located in the upper part of FZ and the microhardness of the welded joint
gradually decreases with the increase of heat input in which its effect on the upper FZ is
the most significant. This may be attributed to the change in cooling rate and the influence
of the Marangoni convection effect.
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The stress-strain curves of BMs and welded joints with different heat inputs are shown
in Figure 7, which can characterize the strength and plasticity of the samples. As shown
in Table 3, the strength of the welded joint is bigger and the plasticity is smaller than BM.
With the increased of heat input, the yield strength and tensile strength of the welded joint
decreased slightly, but the elongation increased slowly.
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Table 3. Tensile test results of welded joints.

Sample Ultimate Tensile Strength (MPa) Yield Strength (MPa) Elongation (%)

BM 365.4 298.1 26.9
S1 510.5 343.6 10.2
S2 497.4 341.5 13.7
S3 480.5 317.2 14.3

3.3. Corrosion Behaviors
3.3.1. OCP

As shown in Figure 8, the OCP values of every sample in the welded joints increase
continuously and then keep stable which is attributed to the formation of the passive film
with the immersion process development. After stabilization, the order of OCP of welded
joint is FZ > HAZ > BM (−364.1 mV) which indicates that FZ and BM have the best and
worst thermodynamic stability, respectively [23]. The change of welding heat input has an
obvious effect on the OCP of FZ, and that of S2 is about −196.4 mV which is more positive
than S1 (−276.7 mV) and S3 (−266.5 mV).
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3.3.2. Potentiodynamic Polarization

The potentiodynamic polarization curves of samples in the welded joints in the sim-
ulated artificial saliva are shown in Figure 9. It can be seen that all samples have similar
passivation phenomena and the order of passivation current density (ip) for the welded
joints with different heat inputs is BM > HAZ > FZ. Generally, a smaller ip value represents
a more stable passive film [24]. The Tafel extrapolation method is used to fit the corrosion
potential (Ecorr) and corrosion current density (icorr) of different samples, and the results
are shown in Table 4. It can be seen that the law of the Ecorr is consistent with the OCP.
According to Faraday’s law, higher icorr represent accelerated corrosion rates [25]. The
change of heat input has a great influence on the icorr of FZ, and the icorr of S3 is 1.29 times
and 2.77 times than that of S1 and S2, respectively.
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Table 4. Fitting results of polarization curves of welded joints.

Samples Ecorr
(mV)

icorr
(µA cm−2) βa (mV dec−1) −βc (mV dec−1)

BM −346.2 0.649 200.5 231.7

S1
FZ −309.3 0.181 289.9 251.5

HAZ −318.6 0.318 299.3 264.6

S2
FZ −301.1 0.084 222.6 183.0

HAZ −308.7 0.303 196.9 265.2

S3
FZ −302.4 0.233 361.5 230.9

HAZ −313.8 0.339 257.7 262.8

3.3.3. EIS

As shown in Figure 10, the Nyquist diagrams of different samples in the welded joint
only contain capacitive reactance loops in the first quadrant and the radius of the capacitive
loop of BM is the smallest indicating its worst corrosion resistance. In the phase angle part
of the Bode diagram, the peak positions of FZ and HAZ move to low frequencies and FZ
has a higher phase angle indicating its optimal corrosion resistance. The EIS results were
fitted by Rs(Qf(Rf(QdlRct))), where Rs, Rf, and Rct represent solution resistance, passive
film resistance, and charge transfer resistance, Qf and Qdl represent the constant-phase
element(CPE) of passive film and electric double layer, respectively. The CPE is used to
describe the non-ideal capacitance, and its impedance is given by Equation (1) [26]:

ZCPE(w) =
1

(jw)n (1)

where w is the angular frequency, j is the imaginary unit, n is the surface inhomogeneity
exponent. The fitting results are shown in Table 5. It can be seen that the Rf and Rct values
of FZ and HAZ both increases first and then decrease with the increase of the heat input.
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The Rct value of FZ changes more obviously, and those of S2 and S3 are 1.34 times and
0.86 times than that of S1, respectively. The results are consistent with the potentiodynamic
polarization curves.
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Table 5. The EIS fitting results of welded joint.

Samples Rs (Ω·cm2)

Qf Rf
(Ω·cm−2)

Qdl

Rct (Ω·cm−2)Y0
(Ω−1·cm−2·Sn) nsl

Y0
(Ω−1·cm−2·Sn) nsl

BM 29.09 9.011 × 10−5 0.8248 35.02 1.036 × 10−4 0.8168 1.506 × 105

S1
FZ 43.2 6.585 × 10−5 0.8383 133 7.394 × 10−5 0.8689 3.652 × 105

HAZ 36.09 6.726 × 10−5 0.8293 65.34 7.337 × 10−5 0.8603 2.59 × 105

S2
FZ 40.02 5.849 × 10−5 0.8839 141.5 4.538 × 10−5 0.8731 4.888 × 105

HAZ 39.54 7.583 × 10−5 0.85 68.27 5.815 × 10−5 0.8418 2.815 × 105

S3
FZ 31.97 1.216 × 10−4 0.8329 94.75 8.93 × 10−5 0.8194 3.142 × 105

HAZ 34.24 8.575 × 10−5 0.8414 46.15 4.874 × 10−5 0.8288 2.254 × 105
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4. Discussion

According to the continuous cooling transformation (CCT) curves, the CP-Ti transfor-
mation mode is related to the cooling rate [27]. The β grains transform into α-phase by
diffusional in a slow cooling rate [10]. Under moderate cooling rate, the bulk transition
occurs which is attributed to the nucleation effect and short-range diffusional hopping at
the bulk/matrix interface [28,29]. The β grains transform into α′ martensite without atoms
diffusion in the form of coherent shearing under the high cooling rate [30]. Due to the
rapid heating and cooling process of laser welding, non-equilibrium transformations are
introduced in different zones of the welded joint which is mainly affected by the cooling
rate. The β grains in the FZ grow along the temperature gradient direction in the cooling
process and the parallel primary martensite rapidly nucleates and grows until meet the β

grains boundary when the temperature drops below the critical temperature. In addition,
the growth direction of secondary martensite is perpendicular to the primary martensite,
and its nucleation and growth depend on the cooling rate. As shown in Figure 2b, the
faster cooling rate limits the growth of primary martensite and promotes the nucleation of
secondary martensite to form fine needle-like α′ martensite. With the increase of heat input,
there is enough time for the primary martensite growth and partial becomes lath-shape α′

martensite with increased width. It is worth mentioning that α′ martensite length is mainly
limited by the size of the prior β grains [31]. The increase of heat input caused the increase
of α′ martensite length indicating the coarsening of the prior β grains in a certain. The
zigzag α phase in HAZ is generated by bulk transformation and the change of heat input
affects its internal twinning and dislocation, while it has little effect on the morphology
and size.

The microstructure is the most important factor affecting the mechanical properties.
α′ martensite is a supersaturated solid solution and alloying elements play a role in solid
solution strengthening [32]. In addition, the presence of a large number of deformation
twins and stacking faults in the FZ makes it difficult for dislocations to slip [33,34] which
result in the increase of the strength in the welded joint. The yield strength (σs) of welded
joints can be expressed by the Hall–Petch formula [35,36]:

σs = σ0 + kd−
1
2 (2)

where σ0 is the tensile force required for dislocation movement, k is a constant related to
the microstructure, and d is the average diameter of the particle size. The relationship
between yield strength and hardness is shown in Equation (3)

σs = kH + b (3)

where, k and b are the coefficients related to the microstructure, and H is the microhardness.
Therefore, the finer grains result in the higher strength and hardness. Due to the Marangoni
convection effect caused by surface tension during welding, the top of FZ is wider and the
heat dissipation conditions are better than other zones of FZ resulting in its finer grains
and higher microhardness (Figure 6).

The main factors affecting the corrosion resistance of welded joints are the microstruc-
ture type and grain size, among which the microstructure type dominates. The studies
show that the corrosion resistance of α′ martensite and zigzag α is better than that of α
phase in BM in the simulated artificial saliva solution [23]. As shown in Figures 2–4, the
changes of heat input affect the grain size of FZ rather than the microstructure type. The
binary linear regression fitting method is used to analyze the relationship between Rct/icorr
and the length/width of α′ martensite, where the length of the length of α′ martensite can
represent the size of the prior β grain. The fitting results are shown in Figure 11 which is in
good agreement with the experimental results and the fitting formulas are as follows:

Rct = 313, 793.47826a− 4, 519, 010.86957b + 1, 291, 818.47821 (4)
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icorr = −0.25212a + 3.65647b− 0.58349 (5)

where a is the length of α′ martensite (µm), and b is the width of α′ martensite (µm). The
absolute values of the b coefficient in the two formulas is about 14 times than that of a coef-
ficient indicating the width of α′ martensite has a greater effect on the corrosion resistance.
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Studies have shown that passivation first occurs at the lattice defects sites on the
titanium surface, and these defects often concentrate in the grain boundaries [37]. Alloys
with finer grains have a higher density of grain boundaries, and passive films have a higher
density of nucleation sites, which results in a higher proportion of passive films and lower
corrosion rates. However, a more severe non-equilibrium transformation is introduced in
the welded joint when the heat input is low (133.3 J/mm) resulting in a more unstable state
of α′ martensite and its preferentially dissolution in the corrosion process. In addition, the
effect of the change of heat input on the corrosion resistance of HAZ is relatively small.
The changes in corrosion resistance may be attributed to the formation of defects such as
internal twins in the zigzag α phase during cooling under different heat input conditions.

5. Conclusions

By studying the microstructure, mechanical properties, and corrosion resistance in
simulated artificial saliva solution of welded joints under different heat inputs, the following
conclusions are obtained:

(1) The microstructure of FZ is needle-like α′ martensite. The volume fraction of needle-
like α′ martensite decreases, the distribution is relatively chaotic, and the grain size
increases with the increase of heat input. The microstructure of HAZ is zigzag α phase
and the change of heat input does not significantly change its shape and size.

(2) With the increase of heat input, the elongation increases, while microhardness and
tensile strength decrease. In addition, the microhardness of welded joints gradually
increases from BM to FZ.

(3) The increase of heat input does not change the corrosion resistance law of each zone
of the welded joint as FZ > HAZ > BM. The corrosion resistance of FZ and HAZ
increased first and then decreased with the increase of heat input.

(4) The mathematical model between grain size and corrosion resistance in FZ was
established by multivariate linear fitting method, it is found that the width of α′

martensite is the main factor affecting the corrosion resistance.
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