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Abstract: Rolling is one of the most employed industrial processes which can be used at multiple
manufacturing stages, allowing different geometries such as plates, rods, profiles, billets, slabs,
tubes, and seamless tubes to be obtained. However, rolled products develop anisotropy due to the
preferential orientation of crystals in the rolling direction. Thus, some process configurations and
different processing parameters (e.g., thickness reduction per rolling pass, deformation routes, roll
diameters, and strain rate) have been proposed to deal with the desired anisotropy. In this context,
this investigation evaluates and compares the effect of symmetrical and asymmetrical rolling on an
aluminum alloy sheet deformed until a 38% thickness reduction using multiple rolling passes. The
asymmetrical process displayed larger texture and microstructure gradients across the sheet thickness
than the symmetrical one, manifested as more grain refinement and more intense shear texture
components close to sheet surfaces. In terms of plastic anisotropy, the visco-plastic self-consistent
model predicted higher average anisotropy for the symmetric rolling than the asymmetric process
due to a strong combination of recrystallization and deformation texture components. Conversely,
the asymmetric process showed lower planar anisotropy values due to the increase in the fraction
of shear and deformation texture components near the sheet surfaces, producing a less intense
overall texture than the symmetric rolling. The additional shear strain component was mainly
responsible for the material strengthening and texture weakening after the asymmetrical rolling
process. In addition, the shear strain produced grain refinement, decreased misorientation, and higher
dislocation densities than the as-received and symmetrically rolled materials. After asymmetrical
rolling, the microstructure and texture showed heterogeneous profiles across the sheet thickness. This
gave rise to a heterogeneous grain size refinement, decreased misorientation close to sheet edges, and
plastic gradients.

Keywords: asymmetrical rolling; texture evolution; Al alloy; microstructure heterogeneity; anisotropy

1. Introduction

Today, there is a high demand for lighter, safer, low-cost, recyclable, and green produc-
tion structures. Al-Mg-Si alloys, as essential lightweight alloys, are extensively utilized in
various industries, including the aerospace, automobile, and construction industries, due
to their high mechanical strength, excellent recyclability, and weldability [1–3]. However,
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as compared to steel, Al-Mg-Si sheet alloys have inferior forming properties and a higher
cost. As a result, better formability is necessary to enhance the competitiveness of these
alloys. In this context, sheet metal manufacturing is an excellent method for meeting
the abovementioned objectives. In this context, rolling is a forming process required for
manufacturing both final or semi-final products previous to other forming processes in
industrial applications.

On the other hand, rolling and its modifications are the most frequently used methods
for generating ultrafine-grain (UFG) materials, thanks to their speediness and efficiency
in producing large volumes of materials [4–6]. Rolling processes have also captured the
interest of scientists investigating novel ways to tailor the microstructure and characteristics
of metals [7–9]. Although there are many papers regarding rolling, researchers are always
looking for novel deformation modifications or combinations with other treatments that
might help to find optimized processes [10,11].

Among the several kinds of rolling processes, symmetric (SR) and asymmetric rolling
(ASR) are characteristic plastic deformation techniques used for enhancing the microstruc-
tures and mechanical properties of a given metal. Moreover, the deformation by these two
rolling processes is followed by the development of a particular crystallographic texture,
which significantly influences the mechanical properties of the treated materials. In this
regard, Wang et al. [12] demonstrated that ASR might modify shear strain, microstructure,
and texture to improve the mechanical performance of an Al-Mg-Si alloy. Several investiga-
tions on the development of shear texture and grain refinement in SR and ASR processes
have recently been published [7,12–14]. For example, Hockauf et al. [15] compared the
microstructure evolution during SR in pure aluminum and 6xxx series alloys to study
how the chemical composition influences mechanical performance and shear banding
formation. Additionally, Madhavan et al. [16] discovered that during SR, high dislocation
activity inhibits the creation of the copper texture component predicted in pure aluminum.
They also found that shear banding, an active deformation process in Al-Mg alloy, favors
the formation of the brass texture component. Further, Xie et al. [17] showed that ASR
improves the mechanical performance of the Al-Cu-Li alloy by influencing the texture and
distribution of precipitates.

Some investigations have suggested that ASR is more efficient for grain refinement
than SR, resulting in improved mechanical properties of AA6061 aluminum alloy [17,18].
Furthermore, ASR, as opposed to SR, causes shear strains, which result in shear textures,
which can improve the formability and strength of aluminum alloys [4]. Alternatively,
changing the strain path in SR and ASR processes is another factor affecting the mechanical
properties, the texture evolution, and the microstructure evolution [19,20]. For example,
Bhattacharjee et al. [21] studied the influence of the strain path on the texture and mi-
crostructure evolution of pure aluminum and Al2.5% Mg alloys. They found the copper
texture component in both materials treated by unidirectional cold rolling and the strength-
ening of the brass component through cross-rolling processing. Kong et al. [22] examined
the deformation and recrystallization textures of an AA3105 aluminum alloy produced by
unidirectional and crossed rolling. They showed that the β-fiber was strengthened during
unidirectional rolling as the thickness reduction was increased. Ma et al. [19] found that
strain path variations in ASR and conventional SR processing impacted strain distribution
and stored energy, influencing microstructure, recrystallization kinetics, and mechanical
properties of an AA7050 aluminum alloy.

On the other hand, a useful model that allows for a better understanding of the plastic
behavior of metallic materials is the one proposed by Lebensohn and Tomé [23]. This
model, called the visco-plastic self-consistent (VPSC) model, uses an anisotropic approach
for modeling the plastic deformation of polycrystals, allowing the prediction of texture
evolution during several plastic deformation processes. For that reason, this model has
earned the attention of many researchers around the globe. For example, Graça et al. [24]
studied the shear effect of the ASR process employing the VPSC model in an Al alloy. The
authors demonstrated that ASR improved the mechanical properties and the plastic strain
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ratio. Alternatively, the model is also suitable for analyzing different metallic systems. For
instance, Roatta et al. [25] used the VPSC code to model the texture evolution in a Zn-Cu-Ti
alloy during monotonic loading. Durán et al. [26] evaluated the AA1000 Al alloy sheet’s
formability after heat treatment using different VPSC schemes coupled with a Marciniak
and Kuczynski (MK) analysis. Shore et al. [27] also employed crystal plasticity modeling
to assess the anisotropic plasticity of different Al alloys after ASR processing. They found
that the ratio of roll radius to sheet thickness was a dominant process parameter. Therefore,
they concluded that performing ASR in the latest stages of SR allows for better mechanical
performance. Moreover, Tamimi et al. [28] deformed thin AA5182 Al alloy sheets using the
ASR process, and they concluded through VPSC simulations and experimental tests that
ASR increases not only the shear texture components but also the planar anisotropy.

A large number of studies concerning the rolling process of Al alloys sheets have been
performed lately. However, there are no studies dealing with the local microstructure and
texture heterogeneities across the sheet thickness during a rolling process and their effects
on the overall material plastic behavior. Hence, it is crucial to know how the different zones
across the sheet thickness behave and how they affect the alloy performance.

Although most investigations are generally focused on the microstructure, texture,
and mechanical properties of aluminum alloys processed by SR and ASR processes, not
much research has been done in terms of the microstructure and texture heterogeneity for
an AA6063 aluminum alloy. As a result, the primary goal of this study is to examine the
microstructure, texture evolution, and plastic behavior in the AA6063-T6 alloy throughout
SR and ASR processes, taking into account localized and overall contributions across the
sheet thickness. To reach this goal, advanced microstructure characterization using electron
back-scattering diffraction (EBSD) across the entire sheet thickness helped to account for
the microstructure and texture gradients. In addition, EBSD texture measurements served
as input data for the plastic behavior modeling using the visco-plastic self-consistent model.
In this way, this study will open the way to understanding the effect of local heterogeneities
on the overall plastic, mechanical, and anisotropy behavior after SR and ASR processing.

2. Materials and Methods
2.1. As-Received Material

The as-received (AR) material for this research was an AA6063-T6 (EN AW-6063, Eu-
ropean designation) Al alloy sheet with dimensions of 100 mm × 25 mm × 3 mm and the
chemical composition indicated in Table 1 (first row, composition supplied by manufacturer;
second row, composition measured by energy-dispersive X-ray spectroscopy (EDX)). Prior to
SR and ASR, the alloy was subjected to aging treatment (solution treatment at 530 ◦C for 4 h,
then quenched in water, followed by heating at 190 ◦C for 10 h and air cooling).

Table 1. Al alloy 6063-T6 chemical composition (wt%).

Composition Fe Si Mn Mg Cr Zn Ti Cu Al

Supplied by
manufacturer 0.35 0.2–0.6 0.1 0.45–0.9 0.1 0.1 0.1 0.1 Bal.

Measured by EDX - 0.22 - 0.91 - - - - Bal.

2.2. Rolling Process

Both rolling processes were conducted at room temperature using a rolling mill with
a 16.6 rpm rolling speed. The roll diameters for the SR process were 86 mm. In contrast,
the ASR process utilized two rollers with diameters of 91 mm and 74 mm, as indicated in
Figure 1 (these values guarantee a good bite of the sheet and avoid slipping between the
contact surfaces of the sheet and rolls). The total thickness reduction of 38% was achieved
through repeated rolling passes of 25 µm thickness reduction each. All specimens were
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consistently inserted in the same orientation and direction. Therefore, the equivalent strain
for the SR and ASR processes can be evaluated through Equations (1)–(3) [29,30].

εSR =
2√
3

ln
(

1
1− r

)
(1)

εShear =
2√
3
(1− r)2

r(2− r)
tan ϕ·ln 1

1− r
(2)

εASR =
√

ε2
SR + ε2

Shear (3)

where εSR represents the rolling equivalent strain, εShear is the shear strain, εASR is the
equivalent asymmetrical strain, r is the thickness reduction, and ϕ counts as the apparent
shear angle. Hence, the SR equivalent strain considering a 38% thickness reduction is 0.55.
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Figure 1. Schematic representation of the (a) SR and (b) ASR processes.

On the other hand, the equivalent strain of the ASR process is dependent on the
shear and rolling strain components, as shown in Equation (3). The shear component is a
function of the apparent shear angle, which can be calculated using an array of indentation
marks or painted lines, as displayed in Figure 2a,b, respectively. For this purpose, four
lines of several indentations were created across the sheet thickness using different loads.
The indentation marks were observed using an optical microscope ZEISS Axio Vert.A1.
Through the comparison of the indentation marks and the painted lines before and after
deformation, an apparent shear angle of ~18◦ was determined (see Figure 2). Thus, the
calculated shear component according to Equation (2) is 0.11, giving rise to an equivalent
strain in the ASR process of 0.56 following Equation (3).

2.3. Microstructure and Texture Characterization

The microstructure and texture were analyzed by EBSD and EDX, using an integrated
TSL-OIM EDAX EBSD system mounted on a FEG SEM Quanta 200 electron microscope
(manufactured by ThermoFisher scientific, Waltham, MA, USA operating at 15 kV and 70◦

tilt with a 15 mm working distance). For this purpose, first, specimens were cut from the
transversal direction (TD) plane (or rolling direction (RD)–normal direction (ND) plane).
Then, samples were mechanically polished using 2500 grit silicon carbide (SiC) paper to
0.03 µm colloidal silica suspension, per standard metallographic procedures. Next, EBSD
measurements were performed on the as-received (AR) and deformed specimens across
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the whole sheet thickness. Five EBSD maps named S1, S2, S3, S4, and S5 were obtained
across the sheet thickness to evaluate the texture and microstructure gradients.
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Figure 2. Apparent shear angle measurements: (a) array of indentation marks (four indentation profiles
named C, M, N, and X were used) and (b) painted line method for the as-received and ASR materials.

During EBSD measurements, scanning step sizes of 1 and 0.2 µm were used. The EBSD
data were processed using TSL-OIM (version 7.3b) and the MatLab MTEX toolbox open-
source code (version 5.6.0) [31]. A maximum misorientation threshold angle of 5◦ was utilized
in the oriented image microscopy (OIM) analysis software for grain size calculation, as was a
clean-up procedure based on grain dilatation with a minimum grain size of 4 pixels. Grain size
and kernel average misorientation (KAM) profiles were constructed over the sheet thickness
taking average measurements over the width of the map every 0.5 µm (for more details of
KAM profiles, see [32]). Geometrically necessary dislocations (GNDs) were calculated from
two-dimensional EBSD maps using Nye’s tensor [33]:

ρ
(2D)
GND =

1
b

√
α2

12 + α2
13 + α2

21 + α2
23 + α2

33 (4)

where α represents the tensor components and b represents the Burgers vector for Al
(2.85 × 10−10 m−2). From two-dimensional mapping, five components of the Nye’s tensor
can be assessed, and a scalar magnitude for the GNDs is obtained applying Equation (4).

2.4. Mechanical Properties and Crystal Plasticity Modeling

Tensile tests were carried out at room temperature with a universal testing machine
Instron 3362 (manufactured by Instron, Norwood, MA, USA) at a constant strain rate of
1 × 10−3 s−1. Electrode discharge machining ((EDM) manufactured by MAKINO, Mason, OH,
USA) was used to cut bone shape samples with gauge dimensions of 12 mm× 3 mm× 4.5 mm.
Vickers scale hardness profiles were obtained across the sheet thickness using a micro-durometer
KMHV2000Z (manufactured by PACE TECHNOLOGIES, Tucson, AZ, USA), applied load of
0.9 N, and dwell time of 15 s.

The plastic behavior was evaluated through the visco-plastic self-consistent (VPSC)
model developed by Molinary et al. [34] and Lebensohn et al. [23]. This model considers
the grain as an ellipsoidal inclusion embedded in a homogeneous environment. The model
is based on the mechanisms of slip and twinning systems activated by a resolved shear
stress. Then, the model returns the macroscopic stress–strain response and the texture
evolution after the simulation is complete. The reader is referred to [35] for more details of
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the code files and structure. For the material hardening, the 12 {111}110 slip systems were
defined, and a Voce-type law was used, as indicated in the following equation:

τs = τs
0 + (τs

1 + θs
1Γ)
(

1− exp
(
−Γ
∣∣∣∣ θs

0
τs

1

∣∣∣∣)) (5)

where τs is the threshold resolved shear stress; Γ is the accumulated shear strain in each
grain; and τs

0 , θs
0, θs

1, and (τs
0 + τs

1) represent the initial critical resolved shear stress (CRSS),
the initial hardening rate, the asymptotic hardening rate, and the back-extrapolated CRSS,
respectively. Table 2 presents the values used for the simulations.

Table 2. Voce law hardening parameters (MPa).

τs
0 τs

1 θs
0 θs

1

76 38 350 0.4

Texture evolution and tensile test curves before and after rolling were simulated to
verify the fitting of the VPSC model to experimental data. Other important parameters
for running the simulations are the boundary conditions, such as the strain and the stress
components. In this investigation, the SR process was simulated under the plane-strain
condition, where the thickness reduction causes the absolute value of strain. Thus, the
difference between SR and ASR processing depends on the normalized velocity gradient
for rolling conditions, which can be described as follows:1 0 x

0 0 0
0 0 −1

 (6)

where x represents the shearing effect. That is, if x = 0, we are dealing with the SR process,
while x 6= 0 means an ASR process. The value of x is a relationship between the shear and
the normal strain component, as shown in Equation (7).

x = ±γ13

ε33
(7)

where the shear component can be calculated from the apparent shear angle (γ13 = tan(ϕ)),
as shown before. The rolling test parameters for the VPSC model are indicated in Table 3.

Table 3. Rolling test parameters.

Condition Thickness
Reduction (%)

Normal Strain- ε33
Equation (1) γ13=tan(ϕ) x

SR 38 0.55 - -
ASR 38 0.55 0.32 0.59

3. Results and Discussion
3.1. Microstructure and Texture

The microstructure analysis was performed on selected locations of the specimens
named S1, S2, S3, S4, and S5. The inverse pole figure (IPF) maps, grain boundary maps,
and pole figures of the AR, SR, and ASR specimens were obtained from the EBSD data.
Figures 3–5 depict the IPF maps, grain boundary maps, and pole figures of the AR, SR,
and ASR specimens across the sheet thickness, respectively. In the image quality (IQ)
maps, the high-angle grain boundaries (HAGBs) whose misorientation angle is >15◦ and
low-angle grain boundaries (LAGBs) with a misorientation angle of 2◦ ≤ θ ≤ 15◦ are
indicated in black and red colors, respectively. The microstructure of the AR specimen is
composed of equiaxed grains with an average size of 41 µm (see Figure 3). Furthermore, a
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large number of particles was noticed inside certain grains, which can be explained by the
aging effect [36].
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After rolling processing, microstructure changes are more evident; both SR and ASR
processes generate elongated grains showing uneven coloration according to the IPF maps,
as illustrated in Figures 4 and 5, respectively. This behavior is related to the grain fragmen-
tation process occurring inside the initial grains. In this mechanism, the density of defects
increases, forming micro-shear bands inside the grains with different orientations concern-
ing the original grain. This behavior is also reflected in the material texture modification,
as corroborated by the IPF maps and pole figures in Figures 4 and 5.
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Analyzing in detail the SR microstructure across the sheet thickness, Figure 4 suggests
some texture and microstructure changes indicating a more homogeneous texture and
grain size. This means the strain distribution after 38% thickness reduction is evenly
distributed throughout the thickness of the sheet. For that reason, a well-defined rolling
texture is observed in all the areas. The difference is a lower texture intensity in the
surface vicinities than in the middle zone. Conversely, the material processed by ASR
exhibits the largest microstructure and texture changes at S1 and S5 locations, i.e., near the
small and big rolls, as the grain size and morphology are both significantly affected, as
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indicated in Figure 5. From this figure, it is evident that the shear effect of the ASR process
is due to the velocity gradient between the rolls creating elongated and shear-strained
grains concerning the rolling direction (RD). In addition, the shear effect also creates more
randomly oriented grains near the surfaces, as the pole figures indicate lower intensities
with no well-defined rolling texture components. Moreover, the shear strain also affects the
center zone, generating a counterclockwise texture twist around the ND.

The above observations confirm the heterogeneity deformation state through the sheet
thickness as well as the grain refinement promoted by the ASR processing due to the more
intense shear deformation. Deformation processes involving shear strain components are
well known for reaching smaller grain sizes than monotonic processes for the same strain
magnitude. This is because shear strains break the grains’ preferential orientation, giving rise
to random orientations, which is one of the reasons why severe plastic deformation techniques
allow for more considerable grain refinement than conventional processing routes [37].

For the five investigated locations (S1 to S5), Figure 6 indicates the average misorienta-
tion, average grain size, and LAGB fractions before and after rolling processes. Compared
to the AR specimen, it is evident that the average misorientation, average grain size, and
HAGB fractions were reduced in the SR and ASR processed specimens. After SR, the
different microstructural characteristics seem to be homogeneous in all the analyzed zones
across the sheet thickness. For example, the grain size of the SR specimen slightly changed
throughout the sheet’s thickness, having values of 12.9 µm, 12.5 µm, 12.4 µm, 11.5 µm, and
8.6 µm for the edges S1 through S5 (standard deviation of 1.7 µm), respectively. The ASR
specimen achieves the opposite result, where all the microstructure characteristics show
heterogeneous and asymmetric behavior. Due to the velocity gradient between the rolls,
the ASR specimen shows quite the opposite, with average grain size values of 11.7 µm,
20.3 µm, 17.8 µm, 12.2 µm, and 6.3 µm at S1, S2, S3, S4, and S5 (standard deviation of
5.5 µm), respectively. Therefore, it may be deduced that the ASR sample has a heteroge-
neous grain size with the lowest values close to the regions S1 and S5. In addition, the grain
size tends to decrease towards the S5 area from the area S2, confirming an asymmetric
profile (see Figure 6).
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Figure 6. Local microstructural characteristics across the sheet thickness.

In addition to grain refinement, grain boundary misorientation is another property
affected by the ASR process. Accordingly, it is evident that the ASR specimen contains
more HAGB fractions at S1 and S5, while the SR process presents less scatter between
the five zones, as shown in Figure 6. The same behavior is observed for the average
misorientation, suggesting a faster grain boundary evolution from LAGBs to HAGBs on
the surfaces than in the middle zone. According to Zhao et al. [38], increasing accumulative
equivalent strain allows subgrains to coalesce, reducing the LAGB fractions and enhancing
the HAGB fractions. Muñoz et al. [13] reported similar results while studying low-carbon
steel produced by the SR and ASR processes with larger GND densities near the sheet
surfaces than in the middle zone. This accumulated misorientation phenomenon obeys
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the continuous dynamic recrystallization (CDRX) mechanism, where grain refinement is
obtained from dislocation movement and grouping.

When it comes to the overall average grain size behavior, Figure 7 indicates a grain
size reduction from 20 µm to 4.4 µm and 3.3 µm after SR and ASR processing, respectively
(the average values were calculated given the number of grains instead their area weight).
Although the grain size distributions do not reflect such differences between the AR
material and the rolled ones, this is explained by the number of grains smaller than 10 µm
in each material, as suggested by the inset coming from the yellow shading in Figure 7. This
behavior corroborates the faster grain fragmentation, mainly around the sheet surfaces, due
to the more intense and heterogeneous shearing strain in the ASR than in the SR process.
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In terms of overall texture, Figure 8 represents the alloy’s texture as pole figures
(PFs) and orientation distribution functions (ODFs). Thus, Figure 8a indicates that the AR
sheet texture is dominated by Cube and Goss texture components, as corroborated by the
ODF and the ideal orientation representation in Figure 8d. These components have been
associated with the recrystallization phenomena in Al alloys processed by rolling [24,39].
On the other hand, when the sheet was rolled symmetrically and asymmetrically, a similar
overall behavior was observed, as shown in Figure 8b,c. It is worth mentioning that both
processes reduce the Cube component intensity while the Goss component is strengthened.
Another visible observation after rolling, either by SR or ASR, is the counterclockwise
twist around the ND. This could be related to the multiple rolling passes to reach the 38%
thickness reduction. At first glance, the overall texture of the processed sheets seems to
be dominated by the components far from the surfaces (i.e., texture in the middle zone),
especially for the ASR process. However, it is important to consider that the overall texture
intensity decreases more with the ASR processing than with the SR concerning the AR
material, as indicated in Figure 8. This behavior can be a consequence of the texture
randomization near the surfaces by the ASR process, as indicated in Figure 5.

Regarding the grain boundary nature, Figure 9 compares the misorientation angle
distributions and the misorientation axes for all the analyzed conditions. This figure high-
lights a higher fraction of LAGBs after SR and ASR processing than in the AR material.
This behavior is also indicative of grain fragmentation induced by plastic deformation.
Thus, the original grains are subdivided by grouping dislocations that give rise to dislo-
cations walls which can evolve into LAGBs or HAGBs depending on the plastic strain
magnitude. Several researchers have described this grain fragmentation mechanism as a
recrystallization phenomenon at low temperatures without nucleation called continuous
dynamic recrystallization [40,41]. In this context, the misorientation axis distribution sug-
gests that grain boundaries follow the same path in both processes. The difference comes
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from the rate at which the change occurs. Accordingly, the ASR process produces a faster
change from LAGBs to HAGBs than the SR. The previous affirmation is corroborated by
the larger average misorientation and the lower grain boundary texture intensity shown in
the misorientation axis distribution in the ASR process.
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3.2. Mechanical Properties

The engineering stress–strain curves of the tensile tests of the AR, SR, and ASR
specimens are depicted in Figure 10a. As observed in this figure, the ASR process slightly
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enhances the yield stress (YS) of the rolled specimen compared to the SR one. The YS
increased from 192.2 MPa for the AR specimen to 248 MPa and 250.7 MPa after SR and
ASR processing, respectively. Additionally, the ultimate tensile stress (UTS) increased from
243.5 MPa to 258.1 MPa and 265.1 MPa, correspondingly. However, the ductility decreases
after the SR and ASR processes concerning the AR specimen. According to Zhu et al. [42],
ductility in metallic materials is controlled by microstructure characteristics such as grain
size and dislocation density. Therefore, high dislocation densities in homogeneous smaller
grain sizes can affect the strain hardening capacity, reducing material ductility. This is due
to the shorter mean free path for dislocation motion that also leads to faster dislocation
annihilation. The above observations demonstrate that the SR and ASR processes increase
the tensile strength but at the expense of ductility.
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Figure 10. (a) Engineering stress–strain curves, (b) normalized strain hardening rate curves,
(c) hardness measurements across the sheet thickness, and (d) Hollomon equation fit.

Figure 10b depicts the strain hardening rate curves of AR, SR, and ASR specimens. As
can be observed, the strain hardening rates of the SR and ASR specimens exhibit dramatic
decreases from a larger strain hardening rate than the AR condition. Thus, the SR and ASR
materials reach the plastic instability faster than the AR material. This later presents a flatter
curve that starts with a smooth decay, reaches a plateau, and finishes with a second decay
until the necking occurs. On the other hand, the ASR material presents a curve with a fast
decay followed by the formation of multiple peaks and valleys until necking. This behavior
can be attributed to the microstructure heterogeneity between the near-surface and the
middle zones of the sheet that creates a heterogeneous strain distribution. Therefore, the
SR material, which is more homogeneous across the sheet thickness, presents a strain
hardening curve with smooth decays and short plateaus. The hardness measurements
across the sheet thickness also confirm the heterogeneity, as shown in Figure 10c. The
hardness profiles agree with the observed microstructure evolution where the ASR process
produced more significant changes (e.g., smaller grain sizes and a higher fraction of HAGBs
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in S1 and S5 than in S2–S4) close to the surface neighborhoods than in the center zone. For
that reason, the greatest hardness values were obtained near the surfaces, while in the SR
process, hardness values show less scatter.

One of the essential characteristics of plane products is their formability capacity.
Using the Hollomon equation, this property can be assessed indirectly by measuring the
strain hardening exponent. A power law describes this well-known equation as follows [43]:

σ = kεn (8)

where, σ, ε, k, and n represent the true stress, true strain, strength coefficient, and strain
hardening exponent, respectively.

The values of the strain hardening exponent and strength coefficient for the AR, SR, and
ASR specimens are given in Figure 10d. The AR specimen has a strain hardening exponent of
n = 0.072. After SR and ASR processing, the values of the strain hardening exponents decrease.
According to Khelfa et al. [44], the decrease in the strain hardening exponent can be explained
as a function of the dislocation density. At the early stages of deformation, dislocation density
increases rapidly, creating subgrains that prevent and reduce the dislocation movement inside
the grains, which influences strain hardening capacity.

Analyzing the rolled conditions, the strain hardening exponent value of the ASR
specimen (n = 0.047) is 2.3 times higher than that of the SR specimen (n = 0.02). This
difference can be related to the evolution of the microstructural properties between the
surface and the central areas, as evidenced by the average misorientation, grain size, and
grain boundary evolutions in Figure 6. Hence, the microstructure heterogeneity across the
sheet thickness after ASR processing helps in reaching better formability concerning the
microstructural characteristics obtained by SR.

3.3. Microstructure Heterogeneity and Plastic Behavior

The grain fragmentation after rolling processing can be correlated with the GND
evolution. Figure 11 represents the GND distributions in regions S1, S3, and S5 for all the
materials. This figure shows that the dislocation density of rolled materials increases by one
order of magnitude after plastic deformation concerning the AR material. This observation
results from the amount of LAGBs and the lower average misorientation that indicates
more distortions inside the original grains. Therefore, the GNDs appear to compensate for
the curvature of the grains creating new grain boundaries.
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GNDs are due to the contribution of two components: (1) GNDs associated with
curvature-induced dislocations and (2) GNDs that build misorientation across dislocation
cell walls (associated with the subgrains) [45]. Thus, based on the misorientation angle
distributions, most of the GNDs created by the rolling process after 38% thickness reduction



Metals 2022, 12, 1551 15 of 20

correspond with the second group. For that reason, more significant deformations are
needed to obtain a refined grain size dominated by HAGBs.

It can also be appreciated in Figure 11 that in the ASR process, the GND density in
the middle zone (S3) is smaller than that in the surface areas (S1 and S5). This particular
distribution indicates the creation of plastic gradients between the surface and the middle
zone, creating a sandwich-like structure. The creation of plastic gradients has been associ-
ated with the combination of strength and ductility [46]. However, the plastic gradients
are insufficient to improve strength without sacrificing ductility. They need to be specially
distributed in a heterogeneous microstructure where nanostructured and coarse grains
coexist properly [47].

As shown in Figure 12a,b, the kernel average misorientation (KAM) and the grain size
profiles indicate heterogeneous behaviors across the sheet thickness. Figure 12a demonstrates
that after rolling, both SR and ASR produce more considerable misorientation differences
around the surfaces than in the middle zone. In addition, the grain size profiles indicate
that ASR gives rise to a curved profile with the smallest grains near the surfaces, while SR
follows a flatter profile, as indicated in Figure 12b. From the KAM and grain size profiles,
the heterogeneity of the ASR processed sheet covers almost 500 µm (~250 µm for each side).
However, this heterogeneity degree is not enough to overcome the strength–ductility trade-off
because the dimensional differences between the regions that make up the sheet heterogeneity
are not that great. Ma et al. [48] suggest the combination of coarse with nanometric grains to
reach a well-defined microstructure heterogeneity with no homogeneous plastic deformation.
Although the grain size heterogeneity produced by ASR is not enough to keep the alloy
ductility, it can influence the plastic anisotropy due to the marked texture changes around the
sheet surfaces, as shown in Figures 4 and 5.
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To evaluate the plastic anisotropy, the VPSC model was adjusted by considering the
overall and local texture measurements. Therefore, a predicted anisotropy for all the sheets
and the different zones was obtained. Figure 13a demonstrates a good texture prediction
for the SR and ASR process after 38% thickness reduction concerning the experimental pole
figures indicated in Figure 8. Moreover, Figure 13b indicates a good fit of the predicted true
stress–strain curves with the experimental ones. The plastic anisotropy was quantified using
the normal anisotropy (R) and the planar anisotropy (∆R) parameters defined as follows [49]:

R =
R0 + 2R45 + R90

4
(9)

∆R =
R0 − 2R45 + R90

2
(10)

where R0, R45, and R90 are the Lankford coefficients at 0◦, 45◦, and 90◦ orientations con-
cerning the rolling direction.
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Therefore, Figure 13c shows the predicted anisotropy for all the materials. Both
processes increase the values of normal anisotropy, but the ASR produces the lowest planar
anisotropy. As the mechanical response of metallic materials is controlled by texture,
grain morphology, and alloying elements, the lowest planar anisotropy of the ASR process
is highly related to the texture intensity reduction and the grain size and morphology
heterogeneities across the sheet thickness.

Based on the satisfactory texture predictions by the VPSC model, the local texture mea-
surements in the different zones of the sheet were used to evaluate their plastic anisotropy
contributions, as indicated in Figure 14a. This figure reveals that the middle zones for
both processes account for the largest normal anisotropy values. In contrast, the planar
anisotropy in all the regions of the SR material is higher than that in the AR condition. Thus,
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the ASR process has better formability for the microstructure and texture heterogeneity
between the surfaces and the middle zone. Conversely, the SR material possesses a greater
normal anisotropy that helps to increase the resistance to necking [39].
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Figure 14. (a) Predicted Lankford coefficients at different zones across the sheet thickness; (b) texture
components at different zones across the sheet thickness.

The texture component distribution in the sheet explains the lower scatter of the
Lankford coefficients after ASR processing. Figure 14b demonstrates that in regions S1,
S3, and S5, the fraction of shearing components is higher for the ASR than for the SR
material. The same behavior is observed for the deformation components, with the copper
component being the most intense. It is also important to mention that after SR and ASR,
the material texture changes from a dominant Cube component to the Goss orientation.
The middle zone (i.e., S3), where the fraction of the recrystallization components is the
highest, allows this observation to be noticed more clearly.

According to Vincze et al. [39], low Lankford coefficients at 45◦ are due to the re-
crystallization components, especially the Cube one. However, the Lankford coefficients
obtained by both processes through multiple small thickness reductions gave rise to larger
values of R. For example, Sidor et al. [50] found normal anisotropy values ranging from
0.42 to 0.49 when the texture was dominated by Cube and Goss components. In addition,
they also demonstrated that the combination of Cube, P, Q, and E components increases
the R-value to 0.74. Therefore, the SR process produces higher R values, increasing the
thinning resistance by combining recrystallization and deformation components starting
from a Cube-dominated texture in the AR material. On the other hand, the ASR process
reduces the intensity of recrystallization components because of the deformation and shear
components with the highest fractions in the surface neighborhoods. This behavior reduces
the planar anisotropy because it produces less intense overall and local textures.
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4. Conclusions

The processing of an AA6063-T6 aluminum alloy by symmetrical and asymmetrical
rolling at room temperature promoted the development and distribution of different
textures and grain sizes as a function of the deformation mode. Due to its shear strain
component, the asymmetrical process gave rise to texture, grain size, misorientation, and
dislocation heterogeneities across the sheet thickness, decreasing the planar anisotropy.
On the other hand, the symmetric rolling kept a microstructural and texture evolution
more homogeneous across the sheet thickness with a higher normal anisotropy value
than the asymmetrical process. Therefore, the main texture changes consisted of shear
and recrystallization components in the surfaces and middle zones for the asymmetric
rolling. Conversely, the symmetrical rolling was dominated by recrystallization components
changing the intense Cube component of the as-received material to the Goss component.

As for microstructural heterogeneity, the ASR process produced more grain refinement
due to larger area fractions with grains smaller than 10 µm with respect to the SR process. The
microstructure and texture heterogeneity of the ASR material reduced the sheet’s anisotropy,
with ∆R values ranging between 0.6 and 1.1, while the SR material reached values between 1.3
and 1.4. Conversely, the average Lankford coefficient after SR processing was 15% larger than
that in the ASR processing. Thus, the ASR and SR processing of an AA6063-T6 aluminum
alloy seem to reduce the anisotropy and increase formability, respectively.
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