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Abstract: Creep tests were carried out on notched plate specimens of nickel-based superalloy GH4169
with different stress concentration coefficients. It was found that the duration of the first stage of
the creep curve increases with the increase of stress concentration coefficient, while the fracture
ductility decreases with the increase of stress concentration coefficient. To predict the life of notched
plate specimens, four constitutive models were used to analyze the stress and strain of the notches.
It was found that the average Von Mises equivalent stress (AVES) on the minimum notch section
first decreases and then increases with the creep time, resulting in a minimum value. The minimum
average Von Mises equivalent stress (MAVES) is considered as the characteristic stress of notched
specimens in this paper. The creep life equation is fitted according to the results of creep tests of
smooth specimens, and then the predicted life of notched specimens is obtained by substituting the
minimum average Von Mises equivalent stress of notched specimens into the creep equation. The
prediction results of the four constitutive models are within 2 times the dispersion band, and the
three-stage model is within the 1.5 times dispersion band.

Keywords: nickel-based superalloy; creep rupture; life prediction; notched specimens; average Von
Mises equivalent stress

1. Introduction

The hot section components of aero-engine often operate at relatively high tempera-
tures for a prolonged time. The complex loads and irregular shapes result in a multiaxial
state of stress in the components. To study the creep behavior of this kind of component
in the complex working environment and predict their life, the first step is to accurately
predict the stress rupture life of notched specimens under a laboratory environment.

The research on the rupture life of notched specimens at high temperatures has
gradually increased since the 1970s, among which the notched round bar specimens are
widely researched. The commonly used methods include the skeletal point method [1–6],
the multi-axial ductility exhaustion method [7–11], and the prediction method based on
AVES [12]. These methods cannot be operated without the finite element analysis of notched
specimens. Hayhurst [6] et al. used skeletal point stress for the prediction of rupture life.
They found that in the process of stress redistribution, there was a point at the minimum
cross-section where the stresses are nearly constant. The skeletal point stresses have been
used to characterize the deformation and failure behavior of the material under multiaxial
creep conditions. This model is suitable for notched round bar specimens to find the skeletal
point along the radius direction. While if the cross-section of the specimen is rectangular
or irregular like that in the real components, it is not easy to find the skeletal point. The
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multi-axial ductility exhaustion approach establishes the relationship between uniaxial
and multiaxial creep ductility through the multiaxial ductility factor, which is generally
a function of hydrostatic pressure. Webster and Pickard [12] performed finite element
analysis on the notched specimens and obtained the AVESes at a certain time. Using the
concept of critical rupture ductility (i.e., creep failure through ductility exhaustion), strain
accumulation is assumed to follow the steady-state rate consistent with the AVES until the
rupture ductility is reached.

It is necessary to carry out a large number of long-term creep experiments to obtain
the creep ductility curve. This paper proposes a new method for predicting rupture life
based on AVESes, without using the concept of critical rupture ductility. According to our
research, it is found that the AVES at the minimum cross-section of notched specimens first
decreases and then increases with time, so there exists a MAVES. The MAVES is taken as
the characteristic stress and is substituted into the creep life equation to obtain the rupture
life of notched specimens. The influence of four different creep constitutive equations and
three different creep life equations on the life prediction is analyzed in this paper.

2. Experiment and Results
2.1. Composition and Microstructure Characterization

GH4169 is a precipitation strengthening nickel-based superalloy with good fatigue
and corrosion resistance. It is widely used in aero-engine rotor components, such as high-
pressure compressor disks and turbine disks. The composition of GH4169 is similar to that
of the nickel-based superalloy IN718 [13], as shown in Table 1.

Table 1. Composition of Ni-based superalloy GH4169.

Element Cr Ti Fe Mo Al Nb
Wt% 17.00~21.00 0.75~1.15 14.2~24.0 2.80~3.30 0.30~0.70 5.00~5.50

Element N C Mn Si P Ni
Wt% ≤0.01 0.015~0.006 ≤0.35 ≤0.35 ≤0.015 Bal.

A small piece of material is taken from the original material for metallographic testing.
The metallographic specimen was subjected to 6 rounds of rough polishing and 1 round of
final polishing. The order of coarsely polished sandpaper was 800#, 1000#, 1500#, 2000#,
3000# to 5000#, and the final polishing process was performed using NonDry suspension
and polishing cloth for 3–5 min. Finally, the specimen is immersed in the corrosion solution
for 1–5 s. The composition of the corrosion solution is 80 mL hydrochloric acid +40 mL
methanol +40 g copper chloride.

The metallographic structure of the virgin material of GH4169 alloy is shown in
Figure 1. In low magnification microscope photos (Figure 1a), the twin structure is marked
by the red arrows, and the local area of grain refinement is marked by blue arrows. It can be
observed that the grain size distribution of the material is not very uniform. Large grains
have diameters of more than 50 µm, while fine grains have diameters of 10–20 µm, and
fine grains are mainly concentrated in local areas. At high magnification, inclusions in the
material can be seen, the size of which is 1–10 µm, mainly distributed in the grain interior.
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Figure 1. Metallographic structure of GH4169: (a) at low magnification; (b) at high magnification. 
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2.2. Specimens and Test

In this paper, three kinds of notched and a kind of unnotched plate specimens were
designed. Notches in all notched specimens are of the same depth but with different radii,
R = 1 mm, 5 mm, and 20 mm, respectively. The detailed dimensions of tensile and creep
specimens are shown in Figures 2 and 3. The only difference between the tensile and creep
specimens is the presence or absence of convex plates. The strain of the tensile specimen
was measured using a laser-type non-contact extensor, so tensile specimens have no convex
plates. The strain of the creep specimen was measured with a clamp-type extensometer,
which needed to be clamped on the convex plates at both ends.
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Tensile and creep tests were carried out in air at 650 ◦C. Prior to applying load, all
specimens were incubated at the test temperature for 30–60 min to ensure the uniform
temperature inside the specimens. Each kind of creep specimen was tested for 5–6 loads,
one for each load.

2.3. Experimental Results

The tensile nominal stress vs. strain curves of unnotched and notched specimens are
shown in Figure 4. The elastic modulus and ultimate strength of the notched plate are both
higher than those of the unnotched plate, and the rupture strain is smaller than that of the
unnotched plate. For notched specimens, the ultimate tensile strength increases, and the
fracture strain decreases when the notch becomes sharper.
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The first stage of creep of the unnotched creep test curve is not obvious, as shown
in Figure 5a. But with the increase of notch stress concentration, the first stage of creep
becomes more and more obvious, as shown in Figure 5b–d.
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3. Life Prediction Method
3.1. Constitutive Model

The creep analysis of notched specimens is inseparable from the finite element analysis.
To understand the internal stress and strain distribution of notched specimens more clearly,
it is necessary to establish the elastic-plastic coupled creep model based on tensile and
creep experiments results of the material, and establish the finite element model of notched
specimens by applying fixed constraints on one end of the specimens and concentrated
forces on the other end.

The constitutive equation consists of the elastic-plastic constitutive coupled with creep
constitutive, and the calculation process is divided into two steps: the first step is elastic-
plastic loading, and the second step is creep loading. The multilinear isotropic hardening
model is selected as the elastic-plastic constitutive model, and four creep constitutive
models are used for comparative analysis. Since the first stage of creep experiment results
(as shown in Figure 5) is not obvious, two creep constitutive models which only describe
the second stage of creep are selected in this paper, and the other two creep constitutions
can describe the three stages of the creep curve.

Because the notched specimen has a certain stress concentration at the minimum
cross-section, the locations where the stress is concentrated will enter plasticity earlier
than other locations, and the deformation of the specimen will mainly concentrate at the
notch. Considering the large deformation caused by the notched position, the elastoplastic
parameters of the material need to be fitted by true stress-true strain, and the conversion
formulas are as follows:

σ = σe (1 + εe) (1)

ε = ln (1 + εe) (2)

where σ is true stress, ε is true strain, σe is engineering stress, and εe is engineering strain.

3.1.1. Multilinear Isotropic Hardening Constitutive Model

The multilinear isotropic hardening behavior is described by a piece-wise linear
stress-total strain curve, starting at the origin and defined by sets of positive stress and
strain values, as shown in Figure 6. The first point (ε1, σ1) in the model is the yield point.
Theoretically, the more points selected in the curve, the more accurate the model will be.
However, there can be no infinite points. In this paper, 20 points are used.

Metals 2022, 12, x 6 of 17 
 

 

ε = ln (1 + εe)  (2) 

where σ is true stress, ε is true strain, σe is engineering stress, and εe is engineering strain. 

3.1.1. Multilinear Isotropic Hardening Constitutive Model 
The multilinear isotropic hardening behavior is described by a piece-wise linear 

stress-total strain curve, starting at the origin and defined by sets of positive stress and 
strain values, as shown in Figure 6. The first point (ε1, σ1) in the model is the yield point. 
Theoretically, the more points selected in the curve, the more accurate the model will be. 
However, there can be no infinite points. In this paper, 20 points are used. 

 
Figure 6. Multilinear isotropic hardening. 

The elastic-plastic parameters obtained by fitting the tensile data of the unnotched 
specimens were input into the ANSYS for simulating the tensile properties of notched 
specimens. The relationship between the displacement of the gauge segment and the load-
ing force was obtained by the finite element calculation. The results are shown in Figure 
7. The experimental and calculated values of maximum loading are very close, with errors 
of −1.6% (R = 20 mm), 0% (R = 5 mm), and −2.2% (R = 1 mm), respectively. The tensile 
behavior of notched specimens can be well described by the multilinear isotropic harden-
ing constitutive. 

 

 

 

 

 

(ε6,σ6)(ε5,σ5)(ε4,σ4)(ε3,σ3)
(ε2,σ2)

(ε1,σ1)

εi

σi

0

E

...

Figure 6. Multilinear isotropic hardening.

The elastic-plastic parameters obtained by fitting the tensile data of the unnotched
specimens were input into the ANSYS for simulating the tensile properties of notched
specimens. The relationship between the displacement of the gauge segment and the
loading force was obtained by the finite element calculation. The results are shown in
Figure 7. The experimental and calculated values of maximum loading are very close, with
errors of −1.6% (R = 20 mm), 0% (R = 5 mm), and −2.2% (R = 1 mm), respectively. The
tensile behavior of notched specimens can be well described by the multilinear isotropic
hardening constitutive.
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3.1.2. Creep Constitutive Model

Two creep constitutive models which only describe the second stage and two creep
constitutive models capable of describing the three stages of creep were selected. The creep
constitutive models capable of describing the whole process of creep were embedded into
the finite element software ANSYS interface program usercreep f.

1. Norton law
.
ε

c
= Aσn (3)

where A and n are material constants.

2. Exponential form
.
εc = B exp(σ/d) (4)

where B and d are material constants.

3. θ Projection approach

The principle of the θ Projection approach is that creep curves under uniaxial constant
stress measured over a range of stresses and temperatures can be “projected” to other
stress/temperature conditions and then reconstruct the complete creep curves [14]. The θ
Projection approach can be written as the sum of two terms, as shown in equation (5). It is
considered that the creep curve is the sum of the first stage of attenuation and the third
stage of acceleration, and the second stage of relative stability is a process of the relative
balance between attenuation and acceleration [15].

εc = θ1(1− e−θ2t) + θ3(eθ4t − 1) (5)

where θ1 and θ3 are “scaling” parameters that define the extent of the primary and tertiary
creep with respect to strain. Whereas θ2 and θ4 are “rate” parameters characterizing the
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curvature of the primary and tertiary creep curves [16,17]. The effect of temperature is not
considered in this paper, so θ value is written as a function of stress and temperature:

lgθi = bi + fiσ (6)

where bi, fi (i = 1, 2, 3, 4) are material parameters.

4. Ye model

The Ye model was recently developed by our research team [18]. The creep constitutive
replaces the nominal stress in the traditional creep model with the normalized stress of
tensile strength and can describe the whole process of creep.

.
ε

c
=

β

(δt + ς) ln(δt + ς)
+ µc6tc6−1 (7)

where

β = −
(

σ

σUTS

)c3

exp(c4) (8)

δ =

(
σ

σUTS

)c1

exp(c2) (9)

µ = (σ/σUTS)
c7 exp(c8) (10)

where σUTS is ultimate tensile strength, c1–c8 are material constants.
The constitutive parameters are listed in Table 2, and the fitting results are shown in

Figure 8. Norton law and exponential form can describe the second stage of creep well, and
the θ-projection method and Ye model almost fit perfectly.

Metals 2022, 12, x 9 of 17 
 

 

  

  

Figure 8. Creep constitutive models fitting results: (a) Norton law; (b) Exponential form; (c) θ pro-
jection method; (d) Ye model. 

3.2. Von Mises Equivalent Stress 
Since the Von Mises equivalent stress was distributed unevenly on the cross-section, 

the concept of AVES was introduced to characterize the Von Mises equivalent stress of 
the whole cross-section. The AVES is obtained by adding the equivalent stress over small 
increments of the area and divided by the total area as shown in Equation (11). 

= 0
1 A

VM VMσ σ dA
A

 (11) 

The curves of AVES with time are shown in Figure 9. The shape of the curves are 
similar to whatever the constitutive model used. The AVES of unnotched specimens in-
creased slowly during creep, while the AVES of notched specimens first decreased rapidly 
and then increased slowly with time. The shape of the curves is similar to the stress-relax-
ation curves of the material. This is because in the initial stage of creep, the total displace-
ment of the notched specimen varied extraordinarily little, and the stress on the notched 
section was higher than that on other sections. So, the stress on the notched section was 
redistributed. During the creep process of the notched specimen, the minimum notched 
cross-section began to shrink, resulting in the moderate increase of the AVES. If the small 
deformation finite element calculation was used rather than the large deformation calcu-
lation, the AVES of the smallest section would not increase after reaching the minimum 
value. 

0 50 100 150 200 250 300 350 400 450 500 550
0.00

0.05

0.10

0.15

0.20

0.25  802MPa Experiment
 754MPa Experiment
 708MPa Experiment
 694MPa Experiment
 661MPa Experiment
 626MPa Experiment
 802MPa Calculation
 754MPa Calculation
 708MPa Calculation
 694MPa Calculation
 661MPa Calculation
 626MPa Calculation

Tu
re

 c
re

ep
 st

ra
in

Time/h

(a) Norton law

0 50 100 150 200 250 300 350 400 450 500 550
0.00

0.05

0.10

0.15

0.20

0.25  802MPa Experiment
 754MPa Experiment
 708MPa Experiment
 694MPa Experiment
 661MPa Experiment
 626MPa Experiment
 802MPa Calculation
 754MPa Calculation
 708MPa Calculation
 694MPa Calculation
 661MPa Calculation
 626MPa Calculation

Tu
re

 c
re

ep
 st

ra
in

Time/h

(b) Exponential Form

0 50 100 150 200 250 300 350 400 450 500 550
0.00

0.05

0.10

0.15

0.20

0.25  802MPa Experiment
 754MPa Experiment
 708MPa Experiment
 694MPa Experiment
 661MPa Experiment
 626MPa Experiment
 802MPa Calculation
 754MPa Calculation
 708MPa Calculation
 694MPa Calculation
 661MPa Calculation
 626MPa Calculation

Tu
re

 c
re

ep
 st

ra
in

Time/h

(c) θ projection method

0 50 100 150 200 250 300 350 400 450 500 550
0.00

0.05

0.10

0.15

0.20

0.25  802MPa Experiment
 754MPa Experiment
 708MPa Experiment
 694MPa Experiment
 661MPa Experiment
 626MPa Experiment
 802MPa Calculation
 754MPa Calculation
 708MPa Calculation
 694MPa Calculation
 661MPa Calculation
 626MPa Calculation

Tu
re

 c
re

ep
 st

ra
in

Time/h

(d) Ye model

Figure 8. Creep constitutive models fitting results: (a) Norton law; (b) Exponential form; (c) θ projection
method; (d) Ye model.
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Table 2. Parameters of constitutive models.

Norton law A n
1.62 × 10−3 6.625

Exponential form B d
1.41 × 10−7 104.68

θ projection method b1 b2 b3 b4 f 1 f 2 f 3 f 4
−0.885 −10.2 −5.50 −2.05 −1.1 × 10−4 9.7 × 10−3 5.1 × 10−3 −2.42 × 10−4

Ye model c1 c2 c3 c4 c5 c6 c7 c8
1.955 6.726 −10.5 16.74 −9.26 1.0 × 10−5 19.31 −9.41

3.2. Von Mises Equivalent Stress

Since the Von Mises equivalent stress was distributed unevenly on the cross-section,
the concept of AVES was introduced to characterize the Von Mises equivalent stress of
the whole cross-section. The AVES is obtained by adding the equivalent stress over small
increments of the area and divided by the total area as shown in Equation (11).

σVM =
1
A

∫ A

0
σVMdA (11)

The curves of AVES with time are shown in Figure 9. The shape of the curves are similar
to whatever the constitutive model used. The AVES of unnotched specimens increased
slowly during creep, while the AVES of notched specimens first decreased rapidly and then
increased slowly with time. The shape of the curves is similar to the stress-relaxation curves
of the material. This is because in the initial stage of creep, the total displacement of the
notched specimen varied extraordinarily little, and the stress on the notched section was
higher than that on other sections. So, the stress on the notched section was redistributed.
During the creep process of the notched specimen, the minimum notched cross-section
began to shrink, resulting in the moderate increase of the AVES. If the small deformation
finite element calculation was used rather than the large deformation calculation, the AVES
of the smallest section would not increase after reaching the minimum value.

Metals 2022, 12, x 10 of 17 
 

 

  

  
Figure 9. The AVES variation with time: (a) Unnotched specimen; (b) Notched specimen (R = 20 
mm); (c) Notched specimen (R = 5 mm); (d) Notched specimen (R = 1 mm). 

The relationship between the minimum value of AVES and the nominal stress of dif-
ferent notches and constitutive models is shown in Figure 10. The MAVES of the un-
notched specimen is the same as the nominal stress loaded. With the increase of notch 
stress concentration coefficient, the difference of the MAVES calculated by different con-
stitutive models gradually increases. The MAVES calculated by the second stage model is 
larger than that calculated by the whole stage model. The calculation results of the same 
type of creep constitutive models are very close. 

 

 

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000
(a) Unnotched specimen

A
ve

ra
ge

 V
on

 M
ise

s e
qu

iv
al

en
t s

tre
ss

/M
Pa

Time/h

 Exponential form
 Norton law
 Ye model
 θ projection method

0 50 100 150 200 250
0

200

400

600

800

1000
(b)Notched specimen(R=20mm)

A
ve

ra
ge

 V
on

 M
ise

s e
qu

iv
al

en
t s

tre
ss

/M
Pa

Time/h

 Exponential form
 Norton law
 Ye model
 θ projection method

0 50 100 150 200
0

200

400

600

800

1000

(c)Notched specimen(R=5mm)

A
ve

ra
ge

 V
on

 M
ise

s e
qu

iv
al

en
t s

tre
ss

/M
Pa

Time/h

 Exponential form
 Norton law
 Ye model
 θ projection method

0 50 100 150 200 250
0

200

400

600

800

1000
(d)Notched specimen(R=1mm)

A
ve

ra
ge

 V
on

 M
ise

s e
qu

iv
al

en
t s

tre
ss

/M
Pa

Time/h

 Exponential form
 Norton law
 Ye model
 θ projection method

Figure 9. The AVES variation with time: (a) Unnotched specimen; (b) Notched specimen (R = 20 mm);
(c) Notched specimen (R = 5 mm); (d) Notched specimen (R = 1 mm).
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The relationship between the minimum value of AVES and the nominal stress of
different notches and constitutive models is shown in Figure 10. The MAVES of the un-
notched specimen is the same as the nominal stress loaded. With the increase of notch stress
concentration coefficient, the difference of the MAVES calculated by different constitutive
models gradually increases. The MAVES calculated by the second stage model is larger
than that calculated by the whole stage model. The calculation results of the same type of
creep constitutive models are very close.
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Figure 10. The MAVES vs. nominal stress: (a) Unnotched specimen; (b) Notched specimen
(R = 20 mm); (c) Notched specimen (R = 5 mm); (d) Notched specimen (R = 1 mm).

3.3. Creep Life Equation

Three creep life equations are applied to evaluate notched specimen life prediction
based on the MAVES. The Monkman–Grant equation [19–22] and the Larson–Miller equa-
tion [22–26], developed in the 1950s, are still widely used today. The latest creep life
equation, developed by Wilshire et al. [27], has been rapidly applied to the study of creep
properties of different materials [28–32].

1. Monkman–Grant equation

Monkman and Grant [19] found a functional relationship between creep rupture life
and the minimum creep rate of materials. They proposed a power law equation, containing
the Arrhenius term, where the minimum creep rate is related to the creep life through the
Monkman–Grant relationship as shown in Equation (12):

M/t f =
.
ε

c
m = A′σn∗ exp(−Qc/RT) (12)

where M is the Monkman–Grant constant, A’ and n* are material parameters, Qc are the
parameters related to the activation energy, R is the gas constant, and T is the absolute
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temperature. As there is only one loading temperature in this paper, the equation can be
simplified as:

t f = A′′ σn∗ (13)

2. Larson–Miller equation

The Larson–Miller equation expresses the life tf and temperature T as the endurance
thermal strength parameter P. Thus, the empirical relationship between the stress and the
durable thermal strength parameters is established as follows:

P = T(CLM + log t f )
log(σ) = a1 + a2P + a3P2 + a4P3 (14)

where CLM is the Larson–Miller constant and P is the parameter related to temperature
and life.

3. Wilshire equation

In recent years, a research group at the University of Swansea has proposed a creep
data processing method (called the Wilshire equation) based on the microscopic deforma-
tion mechanism of materials.

(σ/σUTS) = exp
{
−k1

[
t f exp(−Q∗c /RT)

]u}
(15)

where σUTS is the ultimate tensile strength of the material, and Qc* is the parameter related
to the activation energy. k1 and the exponent u are material constants. Qc* is fitted by
the creep test results at different temperatures. The experiments were carried out only at
650 ◦C, therefore, the equation can be simplified as

(σ/σUTS) = exp(−k′1t f
µ) (16)

The fitting parameters of the three creep life equations are shown in Table 3. The
fitting results are shown in Figure 11. Regardless of the creep life equation selected, there is
a certain error at 708 MPa. This may be due to experimental error. The fitting degree of
the regression curve to the observed value is called goodness of fit. The metric statistic of
the goodness of fit is the determination coefficient, which is represented by the symbol R2.
The maximum value of R2 is 1, and the closer R2 is to 1, the better the fitting degree of the
regression curve to the observed value is. Instead, the smaller the value of R2, the worse
the fitting degree of the regression curve to the observed value is. Consequently, it can be
observed that the results fitted by the Monkman–Grant equation are worst among the three
models, and the results fitted by Larson–Miller equation and Wilshire equation are similar.

Table 3. Parameter values of the life equation.

Monkman–Grant equation A′′ n*
1263 −0.1153

Larson–Miller equation a1 a2 a3 a4 CLM T
2.585 11.80 137.82 −5545 3.023 923.15

Wilshire equation σUTS k1
′ u

1150 0.1336 0.254

3.4. Analysis of Prediction Results

The MAVES calculated by all constitutive models were substituted into different life
prediction equations, and the results are shown in Figures 12–14. Whichever constitutive
model and life prediction method are selected, the stress rupture life prediction results
of the notched specimens are almost within the double dispersion band. Because the
difference of the MAVES of the same constitutive type is very small, the life prediction
results of notched specimens are close.
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Figure 11. Creep life fitting results of unnotched specimens: (a) Monkman–Grant equation;
(b) Larson–Miller equation; (c) Wilshire equation.

If the creep constitutive model capable of describing the whole process of creep and
the life equation of the Wilshire equation or Larson–Miller equation are used, the prediction
result will be the most ideal, which are almost within the 1.5 times dispersion band. The
higher accuracy of prediction results maybe because the calculation results of the three-stage
model are closer to the real load conditions.

No matter which constitutive model is selected, the results predicted by Monkman–
Grant equation are all in the double dispersion band. The extrapolation ability of Monkman–
Grant equation is insufficient, leading to the characteristic of small predicted values for
the short-lived case as shown in Figure 13. Monkman–Grant equation has its limitations,
especially in long-term data prediction based only on short-term experiments results [30],
which is why the short-life prediction results in this paper are too large, as shown in
Figure 13.

The prediction results are always smaller than the test results when the second-stage
creep constitutive model and the Wilshire equation are selected. This life prediction method
is conservative and commercial. The software usually has its own second-stage creep
constitutive model. Therefore, the combination of the second-stage constitutive model and
the Wilshire equation has good prospects in engineering application.



Metals 2022, 12, 68 12 of 15Metals 2022, 12, x FOR PEER REVIEW 13 of 16 
 

 

  

  

Figure 12. The prediction results are based on different constitutive models and the Wilshire equa-
tion: (a) Norton law; (b) Exponential form; (c) Ye model; (d) θ projection method. 

  

  

10 100 1000
10

100

Pr
ed

ic
te

d 
lif

e/
h

Experimental life/h

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor

(a) Norton law
     Wilshire equation

10 100 1000
10

100

Pr
ed

ic
te

d 
lif

e/
h

Experimental life/h

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor
 ±1.5 error factor

(c) Ye model
     Wilshire equation

10 100 1000
10

100

Pr
ed

ic
te

d 
lif

e/
h

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor
 ±1.5 error factor

Experimental life/h

(d) θ projection method 
     Wilshire equation

10 100 1000
10

100

(a) Norton law
     Monkman-Grant equation

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor

Pr
ed

ic
te

d 
lif

e/
h

Experimental life/h
10 100 1000

10

100

(b) Exponential form
      Monkman-Grant equation

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor

Pr
ed

ic
te

d 
lif

e/
h

Experimental life/h

10 100 1000
10

100

(c) Ye model
     Monkman-Grant equation

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor

Pr
ed

ic
te

d 
lif

e/
h

Experimental life/h
10 100 1000

10

100

 (d) θ projection method 
       Monkman-Grant equation

 Notched specimen(R=1mm)
 Notched specimen(R=5mm)
 Notched specimen(R=20mm)
 ±2 error factor

Pr
ed

ic
te

d 
lif

e/
h

Experimental life/h

Figure 12. The prediction results are based on different constitutive models and the Wilshire equation:
(a) Norton law; (b) Exponential form; (c) Ye model; (d) θ projection method.
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Figure 13. The prediction results are based on different constitutive models and Monkman–Grant
equation: (a) Norton law; (b) Exponential form; (c) Ye model; (d) θ projection method.
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Figure 14. The prediction results are based on different constitutive models and Larson–Miller
equation: (a) Norton law; (b) Exponential form; (c) Ye model; (d) θ projection method.

4. Conclusions

Based on the creep experiments on unnotched and notched specimens and finite element
analysis with different constitutive models, the following conclusions have been drawn.

1. The change rule of AVES with time is that it first decreases rapidly and then increases
slowly, so there is a minimum value of AVES.

2. With the increase of notch stress concentration coefficient, the MAVES calculated by
the second stage model is larger than that calculated by the whole stage model.

3. Whatever the life equation or constitutive model is used, the results of notch life
prediction using MAVES as the characteristic stress are within 2 times the dispersion
band. If a three-stage creep constitutive model is used, the predicted results are
scattered within a factor of 1.5.
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