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Abstract: To clarify the effect of sulfur on inclusions and mechanical properties of Ce-Mg treated
resulfurized SCr420H steel. Laboratory experiments were conducted to prepare steels with sulfur
contents as 0.01%, 0.06%, and 0.132%. Inclusion evolution in liquid steel, MnS precipitation during
solidification, and tensile test results of steel after quenching and tempering were investigated. The
results showed that due to the limitation of mass transfer in molten steel, composite inclusion that Ce-
O-S wrapped by Ce-Ca-Mg-Al-Si-O, which was named transition state inclusions, can form quickly
after adding Ce-Mg lump to the molten steel. As the homogenization of molten steel, the difference of
sulfur content in steel can lead to the transition state inclusions transformed into different inclusions.
With the increase of sulfur content, the quantity of MnS increased significantly, and the morphology
of MnS transformed from “stick” to “dendritic + fishbone”, and then to “fishbone”. Tensile test results
and fracture analysis indicate that the decline of inclusion spacing as the increase of sulfur content
leads to a shorter physical path of crack propagation in steel. Therefore, the increase of sulfur content
can bring about a decrease in the strength and plasticity of the steel. From the perspective of inclusion
control, making the MnS inclusion precipitate more dispersive and increasing the distance between
inclusions can be considered as a method for preventing the decline of mechanical properties in steel
with high sulfur content.

Keywords: MnS; inclusion; cerium; sulfur; fracture

1. Introduction

As an element that can improve steel machinability, sulfur has been widely used in
gear steel, non-quenched and tempered steel, and other steel grades that require good
turning and forming performance [1,2]. The increase of sulfur content can result in the for-
mation of a large amount of MnS in steel. This inclusion can play a lubricating role during
machining, reducing tool wear and machining costs [3–5]. Resulfurized gear steel SCr420H
produced by a steel plant in China is a steel grade with sulfur addition (0.01–0.02%), was
widely used in the manufacture of high-grade automobile gears. The production pro-
cess was as follows: electric arc furnace (EAF)→ladle furnace (LF)→vacuum degassing
furnace (VD)→continuous casting (CC). During the production process, sulfur addition
was conducted at the final timing of the VD process. Due to the lack of machinability,
it is considered to design an enhanced machinability gear steel based on steel SCr420H
with increasing sulfur addition. In addition, to achieve grain refinement during the gear
carburizing process [6,7], grain refining elements cerium and magnesium are considered
to be added into steel during the secondary refining process [8–16]. However, it is known
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that sulfur, as one of the common inclusion forming elements, can participate in inclu-
sion formation in liquid steel [17,18] and MnS precipitation during solidification [19] and
present an impact on the mechanical properties of steel finally [20]. Therefore, an in-depth
understanding of the influence of sulfur content on inclusions and mechanical properties
becomes necessary for designing a proper sulfur content for industrial production.

In recent years, the effect of cerium and magnesium in steel has gradually become
a research hotspot, and many studies have reported that cerium and magnesium can
improve the cleanliness and properties of steel [21–27]. However, the application of these
two elements in industrial production has some limitations. High cerium content can easily
cause nozzle clogging [28], and magnesium treatment have problems such as low yield
and severe reaction [29]. Under this background, Ce-Mg combined treatment technology
has attracted the interest of scholars. This technology’s idea is to realize cerium and
magnesium’s synergistic effect and avoid a high single element content addition. At present,
this technology has been applied in the industrial processing of die steel for improving
its performance [30]. As the elements with strong reactivity, cerium and magnesium can
obviously impact inclusion in steel [31–37]. Li et al. [35] studied that the effect of Ce-Mg
alloy on inclusion evolution in industrial production of die steel, and they found that with
the increase of magnesium content, the stability area of cerium inclusions moves from the
Ce2O2S stability area to the direction of the CeS stability area. The literature [36] indicates
that rare earth magnesium alloy has better deoxidization and desulfurization ability than
only adding cerium and only adding Mg in H13 steel, because the composite inclusions that
low-density MgO attaching or wrapping on the surface of high-density cerium inclusions
are easy to float up. Chang et al. [37] found that inclusions in GCr15 bearing steel were
obviously refined after rare earth (cerium and lanthanum) and magnesium treatment, and
the proportion of large particle inclusions decreases with increasing rare earth content. It is
noted that some studies clarified the relations between the content of rare earth element
and magnesium and inclusion evolution, but it is rarely seen that research about the role of
sulfur content in inclusion formation and evolution after Ce-Mg treated steel.

As mentioned, MnS inclusion can enhance machinability as the free-cutting phase
in steel. However, the mechanical properties of steel can inevitably be damaged, which
is contradictory to the requirement of gear steel to have enough strength and plasticity.
Many studies have studied the harmful effect of MnS inclusion in steel, but these researches
mainly focus on steel with low sulfur content [38–41]. In resulfurized steel, the relation
between MnS precipitation and fracture in steel with high sulfur content is needed to
research, especially it may be different from steel with low sulfur content, due to the variety
of morphology, quantity, and distribution of MnS.

In the present study, the industrial production process of resulfurized SCr420H was
simulated in laboratory. Three groups of steels with different sulfur content were prepared
for comparison. Cerium and magnesium were added to the liquid steel during the refin-
ing process, and the influence of sulfur content on inclusion evolution was analyzed by
sampling. The three-dimensional morphologies of MnS inclusion were revealed by the
method of electrolytic etching. Based on the tensile test results and fracture observation,
the relation between MnS inclusion and steel fracture was proposed.

2. Methods
2.1. Material Preparation

In this experiment, cerium and magnesium powder were mixed evenly and then
pressed into a lump by using a powder compressing machine. The metal ratio was (5%
Ce-20% Mg-75% Fe), and the addition amount in the experiment was set as 0.7%. Chemical
reagents (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were used to prepare
refining slag, and all reagents were heated at 800 ◦C for 6 h to remove moisture. To simulate
the actual production situation, graphite, ferrosilicon, ferromanganese, chromium, nickel,
copper, and molybdenum supplied by a domestic steel plant were used as alloy materials in
this experiment, and MgO crucible was used as the reaction vessel (Shandong Refractories
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Group Lunai Kiln Refractory Co., Ltd., Shandong, China). The MgO crucible has a height
of 90 mm and a diameter of 55 mm. The total mass of experimental raw materials was
controlled at about 1000 g.

2.2. Experiment Procedure

Three experimental steels with different sulfur content were designed, each named
Steel A, Steel B, and Steel C. Sulfur was added in steel in the form of FeS, and the addition
of sulfur in the experiment was designed as 150 ppm, 700 ppm, and 1500 ppm, respectively.
The experiment was conducted in a MoSi2 tube furnace, as shown in Figure 1. To control
the air tightness of furnace, a simple air tightness inspection device was installed at the
outlet of the furnace. During the whole experiment, 99.999% of high purity argon was
continuously introduced into the furnace to control the protective atmosphere. The MgO
crucible was placed in a graphite crucible, and the role of graphite crucible was to protect
MgO crucible. The flow chart of the experiment was shown in Figure 2. The total time of
the experiment was controlled at 73 min. Before the experiment began, the molybdenum
rod was used to stir the molten steel several times to ensure that the molten steel was
completely liquid and uniform. At 5 min, Al was fixed in the bottom of quartz tube and
inserted in the molten steel during experiments. Refining slag (55% CaO 11% SiO2 29%
Al2O3 5% MgO Basicity R = 5) was added at 13 min of the experiment. At 48 min, the
refining process enters the second stage. Slag with high SiO2 content was added on steel
for the purpose of adjusting the slag basicity to 1.5. At 53 min, FeS wrapped by iron foil
was fixed in the bottom of quartz tube and inserted in the molten steel. In order to ensure
the yield, Ce-Mg lump is usually added at about 5–15 min before the end of steelmaking in
production, and this design was referred to in the current experiment. Ce-Mg lump was
added in liquid steel after FeS addition for 5 min. At 73 min, experiments were finished
and started cooling. To understand the evolution behavior of inclusions in an experiment,
quartz tubes with an internal diameter of 6 mm were used to extract the sample. Sample
S0 was obtained at 58 min (timing before Ce-Mg lump addition), sample S1 was obtained
at 60 min (timing after Ce-Mg lump addition for 2 min), and sample S2 was cut from the
as-cast ingot. In order to ensure the validity of experimental data, the first group experiment
(Steel A) was repeated.
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Figure 2. Experimental process.

The sample treatment method for inclusion observation and mechanical properties
was shown in Figure 3. The cylindrical ingot was cut into two semi-cylinders along
diameter. One was forged and conducted heat treatment for tensile test, and another was
used to acquire samples for inclusion observation. The forging process starts at 1200 ◦C
after heat preservation for 2 h, and finally air-cooled to room temperature after forging. The
cross section of forging bar was 12 mm × 12 mm. Forged steel were austenized at 900 ◦C
for 25 min, and oil quenched to room temperature, followed by tempering at 200 ◦C for
120 min. The atmosphere of heat treatment process was air. For the mechanical property
characterization, tensile tests were conducted on Shimadzu AGS-X100KN electronic tensile
testing machine following standard GB/T 228.1-2010 (ISO 6892-1:2009, MOD).
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Figure 3. Sample treatment method for inclusion observation and mechanical properties.

2.3. Analysis

The as-cast sample was used to measure the steel composition. The contents of silicon,
manganese, molybdenum, chromium, nickel and copper were measured by a direct reading
spectrometer (ARL4460, Thermo Fisher Scientific, Waltham, MA, USA). The contents of
carbon and sulfur were measured by infrared carbon and sulfur analyzer (CS230, LECO
Corporation, St. Joseph, MI, USA), the contents of cerium and acid solution aluminum were
measured by ICP-OES (Optima 8300DV, PerkinElmer, Waltham, MA, USA), The content of
magnesium was measured by ICP-MS (Agilent 7800, Agilent Technologies, Santa Clara, CA,
USA), and the content of oxygen was measured by nitrogen & oxygen analyzer (ONH836,
LECO Corporation, St. Joseph, MI, USA).
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ZEISS EVO18 SEM-EDS (Carl Zeiss AG, Oberkochen, Germany) was used to analyze
the morphology and composition of inclusions in steel, and the OPTON OTSInca system
(OTSInca, OPTON Co., Ltd., Beijing, China) was used to analyze density, aspect ratio, and
Dinclusion spacing (Dinclusion spacing represents the average distance between each inclusion
and its nearest inclusion) of inclusions in the steel. In order to reveal the three-dimensional
morphology of MnS inclusions, the samples were electrolytically etched in 1% tetram-
ethylammonium chloride—10% acetylacetone—methanol [42], and the morphology was
observed by SEM-EDS. FactSage 8.0 software (FactSage, Thermfact Ltd. (Montreal, QC,
Canada) & GTT-Technologies (Aachen, Germany)) was used to analyze the formation of
inclusions in liquid steel at 1873K and the precipitation of MnS during solidification. ZEISS
ULTRA PLUS SEM-EDS (Carl Zeiss AG, Oberkochen, Germany) was used to analyze the
surface and longitudinal section of the tensile fracture.

3. Results and Discussion
3.1. Steel Composition

The steel composition of Steel A–C was listed in Table 1, the yield of main alloy
elements was stable. The sulfur content of Steel A–C was 0.01%, 0.06% and 0.132%, and
represented low sulfur, medium sulfur and high sulfur respectively. It can be seen that
the yield of sulfur of Steel A–C was 66.7%, 85.7% and 88%, respectively. As the increase of
sulfur content, cerium content and magnesium content have a weak downward trend, but
it can still be considered as the same level. In order to simulate production, ferroalloy used
in the factory was used in this experiment, and calcium may come from calcium impurities
in ferroalloy, which was illustrated in some literature [43,44].

Table 1. Steel composition (%).

Steel C Si Mn Cr Ni Cu Mo Als Ca Mg Ce T.O S Category

A 0.191 0.320 0.865 1.210 0.16 0.17 0.03 0.020 0.0019 0.0010 0.014 0.0026 0.01 Low sulfur
B 0.203 0.298 0.872 1.210 0.15 0.17 0.03 0.017 0.0022 0.0009 0.013 0.0029 0.06 Medium sulfur
C 0.214 0.313 0.869 1.225 0.15 0.17 0.03 0.016 0.0020 0.0008 0.013 0.0030 0.132 High sulfur

3.2. Evolution of Inclusions in Liquid Steel

Figure 4 lists the typical inclusion morphology in Sample S0 of Steel A–C. Figure 4a
was MnS inclusion, which was mainly formed during the solidification process of steel. In
the present study, although water quenching is conducted as soon as possible after Sample
S0 was extracted, this did not completely avoid the formation of MnS. Figure 4b is a Ca-Mg-
Al-Si-Mn-O-S composite inclusion, and this inclusion has a spherical shape, indicating that
the inclusion may be liquid in steel. Some literature [45–47] has explained the formation
mechanism of Ca-Mg-Al-O inclusion, which is mainly formed in the secondary refining
process. In this experiment, SiO2 formed in composite inclusion with the consumption of
acid-soluble aluminum by slag-steel reaction during the period from 13 min to 58 min, and
the Ca-Mg-Al-Si-O inclusion formed in steel in final. Figure 4c is a spinel inclusion, which
was one of the typical inclusions in Al-killed steel.

Figure 5 shows typical inclusions detected in Sample S1–S2 of Steel A–C. In steel
A, after the addition of Ce-Mg lump, it was found that Ce-Al-O inclusions and Mg-Al-
O inclusions formed in Sample S1, as shown by A-S1-(a) and A-S1-(b). Cerium reacted
with inclusions Ca-Mg-Al-Si-O and transformed into Ce-Ca-Mg-Al-Si-O inclusions, as
demonstrated by A-S1-(c). A-S1-(d) showed a novel composite inclusion with a double
layer structure: Ce-O-S inclusion was the core inclusion bearing with Ce-Ca-Mg-Al-Si-O
inclusions. According to the detection results of Sample S2 of Steel A, the composition
of inclusions changed with the continuation of the experiment. The composite inclusion
bearing Ce-O-S inclusion (A-S1-(d)) disappeared, while Ce-Al-O inclusions, spinel, Ce-Ca-
Mg-Al-Si-O inclusions can still be detected in Sample S2. Besides, (Ca, Mn) S also formed
in steel, which is usually considered to be formed during solidification.
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In Sample S1 of Steel B and Steel C, inclusion types were identical with Steel A.
A similar inclusion type exhibited a composite inclusion with a double layer structure:
Ce-O-S inclusion serving as a core wrapped by Ce-Ca-Mg-Al-Si-O inclusions can be also
found during detection. Typical element mapping of this type of inclusion was shown in
Figure 6. With the continuation of the experiment, inclusion with that structure disappeared.
However, Ce-O-S inclusion still existed in the composite inclusion as a constituent phase in
Sample S2, as shown in B-S2-(c) and C-S2-(a), and this was the main difference from Steel
A. In addition, Ce-Mn-S inclusions with a low aspect ratio can be detected only in Steel C,
as shown in C-S2-(c).
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Figure 6. Typical elemental mapping of transition state inclusion in S1 sample for experiments A–C.

Figure 7 presents the proportion of MnS inclusions in Steel A–C. It can be seen that
with the increase of sulfur content, the number of MnS inclusions in as-cast samples
increased, and the proportion of MnS inclusions in Steel B and C both exceeded 90%, which
was the primary inclusions. Figure 8 shows density, aspect ratio and Dinclusion spacing of
inclusion. With the increase of sulfur content, inclusions density increased, aspect ratio
increased, but the inclusion spacing decreased, and their relationship was approximately
linear. It indicated that the sulfur content has a significant impact on the MnS precipitation
and morphology.

Metals 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 7. Percentage distribution of inclusion classification in S2 sample for Steel A–C. 

 
Figure 8. Inclusion density, aspect ratio and Dinclusion spacing in Sample S2 of Steel A–C. (a) Inclusion 
density. (b) Aspect ratio. (c) Dinclusion spacing. 

A summary of the phenomenon that the sulfur content has an impact on inclusion 
evolution in liquid steel at 1873K and MnS inclusion precipitation during solidification 
can be obtained as follows, a type of double structure inclusion that Ce-O-S inclusion serv-
ing as a core wrapped by Ce-Ca-Mg-Al-Si-O inclusions can form in liquid steel after Ce-
Mg lump addition and disappeared with experiment time prolonging. In Sample S2, Ce-
O-S inclusion can not be detected in Steel A but can be found in Steel B and Steel C. The 

Figure 7. Percentage distribution of inclusion classification in S2 sample for Steel A–C.



Metals 2022, 12, 136 8 of 16

Metals 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 7. Percentage distribution of inclusion classification in S2 sample for Steel A–C. 

 
Figure 8. Inclusion density, aspect ratio and Dinclusion spacing in Sample S2 of Steel A–C. (a) Inclusion 
density. (b) Aspect ratio. (c) Dinclusion spacing. 

A summary of the phenomenon that the sulfur content has an impact on inclusion 
evolution in liquid steel at 1873K and MnS inclusion precipitation during solidification 
can be obtained as follows, a type of double structure inclusion that Ce-O-S inclusion serv-
ing as a core wrapped by Ce-Ca-Mg-Al-Si-O inclusions can form in liquid steel after Ce-
Mg lump addition and disappeared with experiment time prolonging. In Sample S2, Ce-
O-S inclusion can not be detected in Steel A but can be found in Steel B and Steel C. The 

Figure 8. Inclusion density, aspect ratio and Dinclusion spacing in Sample S2 of Steel A–C. (a) Inclusion
density. (b) Aspect ratio. (c) Dinclusion spacing.

A summary of the phenomenon that the sulfur content has an impact on inclusion
evolution in liquid steel at 1873K and MnS inclusion precipitation during solidification can
be obtained as follows, a type of double structure inclusion that Ce-O-S inclusion serving
as a core wrapped by Ce-Ca-Mg-Al-Si-O inclusions can form in liquid steel after Ce-Mg
lump addition and disappeared with experiment time prolonging. In Sample S2, Ce-O-S
inclusion can not be detected in Steel A but can be found in Steel B and Steel C. The increase
of sulfur content promotes MnS precipitation and also has an impact on the Dinclusion spacing
and morphology of MnS.

3.3. Discussion on Evolution Mechanism of Inclusions in Liquid Steel

To illustrate the inclusion mechanism in liquid steel after Ce-Mg lump addition,
a thermodynamic calculation was conducted by FactSage software. Database was se-
lected as FactPS and FSstel, and the system was 0.20C-0.30Si-0.87Mn-0.02Al-0.001Mg-
0.0020Ca-0.003O-1.20 Cr-S-Ce-Fe (balance). It can be seen from Figure 9, the results
showed that with the increase of cerium content, the evolution sequence of Ce-containing
inclusions in 0.01% sulfur content steel was CeAlO3→Ce2O3→Ce2O2S, and the evolu-
tion sequence of Ce-containing inclusions in 0.06% and 0.132% sulfur content steel was
CeAlO3→Ce2O2S→Ce2S3. When cerium content was fixed as 0.013%, the variation of
cerium-containing inclusions was CeAlO3→Ce2O2S with the increase of sulfur content.
From here, it can be concluded that the increase of cerium content and sulfur content can
both result in the transition between CeAlO3 and Ce2O2S.
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sulfur content (b) Effect of Ce content on inclusion formation in steel containing 0.06% sulfur content
(c) Effect of Ce content on inclusion formation in steel containing 0.132% sulfur content (d) Effect of S
content on inclusion formation in steel containing 0.013% Ce content.

Based on experimental results and thermodynamic calculation results, the inclusion
evolution mechanism for this research was concluded as shown in Figure 10. In a short
time after adding the Ce-Mg lump, due to the limitation of mass transfer, there was a
concentrated area of cerium in liquid steel. Considering thermodynamic calculations, the
high content of cerium in the concentrated area resulted in the formation of Ce2O2S. At
the same time, the addition of magnesium can bring a severe stirring of the molten pool
because the solubility of magnesium in liquid steel is very low, resulting in the proba-
bility of physical collision of inclusion increasing greatly. Under this system conditions,
a comprehensible situation is that Ce2O2S, as a high melting point inclusion, presents a
solid-state in liquid steel, and collides with Ca-Mg-Al-Si-O inclusion in a liquid state. As a
result, the liquid phase adhered to the outside of the solid phase and formed a composite
inclusion with a double-layer structure, as shown in A-S1-(d), B-S1-(d), C-S1-(d) in Figure 5.
Considering that formation mechanism and experimental phenomenon, this inclusion was
named transition state inclusion. With the homogenization of steel and conduct of chemical
reactions, in Steel A, due to the CeAlO3 has higher formation ability than Ce2O2S, Ce2O2S
phase of transition state inclusion transition into CeAlO3 as expressed in reaction (1).

Ce2O2S + 2[Al] + 4[O] = 2CeAlO3 + [S] (1)
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In Steel B and Steel C, the formation ability of Ce2O2S is stronger than CeAlO3.
Therefore, Ce-O-S of transition state inclusion was not replaced, and as the substitution
reaction conducting at the outer layer, SiO2 and CaO in the outer layer were consumed
according to reaction (2)–(5), which can be seen as B-S2-(c) and C-S2-(a).

4[Ce] + 2(Al2O3)inclusion + 3(SiO2)inclusion = 4CeAlO3 + 3[Si] (2)

2[Ce] + (Al2O3)inclusion + 3(CaO)inclusion = 2CeAlO3 + 3[Ca] (3)

2[Ce] + (SiO2)inclusion + [S] = Ce2O2S + [Si] (4)

2[Ce] + 2(CaO)inclusion + [S] = Ce2O2S + 2[Ca] (5)

Also, based on the experimental phenomena, there were two reactions conducted in
liquid steel as follows, (1) Cerium reacted directly with aluminum and oxygen to form
CeAlO3 in liquid steel. (2) Cerium reacted with the Ca-Mg-Al-O inclusion forming before
adding Ce-Mg lump with the consumption of the unstable oxide components (such as SiO2)
and forming composite inclusion Ce-Ca-Mg-Al-Si-O.

3.4. Precipitation of MnS Inclusion during Solidification

The three-dimensional morphology of MnS observed by SEM was presented in
Figure 11a–l. It is obviously that the size of MnS inclusion has become much more ex-
tensive and the morphology of MnS has become from “stick” to “dendritic + fishbone”
to “fishbone” with the increase of sulfur content. Especially, MnS inclusions showed a
multi-directional growth morphology in Steel C, which is consistent with the analysis in
two-dimensional morphology.
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Figure 11. 3D morphology of MnS inclusions in as-cast sample. (a–d) Sample S2 of Steel A; (e–h)
Sample S2 of Steel B; (i–l) Sample S2 of Steel C.

For understanding the precipitation behavior of MnS, in the present study, FactSage
software was used to analyze the precipitation behavior of MnS during solidification under
different sulfur contents. The calculation was based on the Scheil-Gulliver model [48] which
assumes that no diffusion takes place in the solid and that solute redistribution in the liquid
is fast. The database were FactPS and FSstel, and the calculation system is 0.20C-0.30Si-
0.87Mn-0.02Al-0.001Mg-0.0020Ca-0.003O-1.20Cr-S-0.013Ce-Fe(balance). The calculation
results were shown in Figure 12. With the increase of sulfur content, the temperature point
at which MnS precipitated in large quantities advances during solidification. The increase
of sulfur content resulted in the increase of the mass fraction of MnS obviously, and when
the sulfur content reached 0.132%, the mass fraction of MnS in the system reached 0.21%.
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3.5. Effects of MnS Inclusions on Mechanical Properties

Figure 13 presents the tensile strength and elongation of Steel A–C. It can be seen that
with the increase of sulfur content, tensile strength and elongation showed a downward
trend. Tensile strength decreased from 1443.8 MP to 1343.57 MPa, and the elongation
decreased from 9.7% to 6.8%. The negative effect of the increase of sulfur content on the
strength and ductility of steel was noticeable.
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To explore the impact mechanism of sulfur content on tensile fracture, the fracture
morphology of Steel A–C was observed and analyzed. Representative fractography of
tensile specimens was presented in Figure 14. According to Figure 14a–i, the fracture
morphology consisted of major cracks, voids, and dimples. With the increase of sulfur
content, the void amount increased obviously, and the morphology that multiple voids
coalescenced into large-sized voids can be observed clearly in Steel C as shown in Figure 14i.
MnS inclusion can be found in some voids, which indicates that MnS inclusion provided a
nucleation point for void initiation. Figure 14j–l present the observation and analysis of the
longitudinal section of the tensile fracture. It can be seen that MnS inclusion located at the
root of a void. It can be inferred that stress concentration occurs at the tip of MnS, which
resulted in void initiation. This is consistent with the research of Yamamoto et al. [49].

The fracture of steel was usually illustrated as void nucleation, growth, coalescence.
As the nucleation point of the void, the distance between inclusions may greatly determine
the difficulty of void coalescence. In the present study, the increase of sulfur content caused
the decline of inclusion spacing and resulted in a shorter physical path of crack propagation
in steel, which makes void coalescence occurrence easier. A schematic diagram of this
mechanism was presented in Figure 14m.

For the purpose of machinability enhancement, the sulfur content of gear steel
SCr420H is considered to increase in the future. The volume of MnS will increase a
lot in steel because of the increase of sulfur content. Excessive MnS inclusion can increase
the nucleation points of cracks inevitably and bring a harmful effect on the mechanical
properties of steel. Therefore, it is essential to adopt some metallurgical means to make
MnS distribute uniformly, and the damage of inclusions to mechanical properties can
be suppressed.
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Figure 14. Morphology observation and inclusion analysis on tensile fracture. (a–c) tensile fracture
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4. Conclusions

The current work investigated the effect of sulfur content on inclusion and mechanical
properties by laboratory experiment and thermodynamic calculation. The main conclusions
were summarized as follows.
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(1) After the Ce-Mg addition, the cerium concentration area formed in liquid steel. This
may result in the formation of transition state inclusions. In current experiment,
solid Ce2O2S formed in the cerium concentration area and collides with Ca-Mg-
Al-Si-O liquid inclusion, and the liquid phase adhered to the outside of the solid
phase, and formed a composite inclusion with a double-layer structure. As a type
of transition state inclusion, it only exists in a short time after Ce-Mg addition. As
the homogenization of liquid steel, cerium concentration area disappeared, and the
difference of sulfur content in steel can result in this type of transition state inclusions
transformed into different inclusions.

(2) The thermodynamic calculation results indicated that with the increase of cerium con-
tent, the evolution sequence of Ce-containing inclusions in 0.01% sulfur content steel
is CeAlO3→Ce2O3→Ce2O2S, and the evolution sequence of Ce-containing inclusions
in 0.06% and 0.132% sulfur content steel is CeAlO3→Ce2O2S→Ce2S3.

(3) With the sulfur content increasing from 0.01% to 0.132%, MnS becomes the prominent
inclusion in steel, and inclusion spacing decreases from 21.20 µm to 10.19 µm, the ten-
sile strength decreases from 1443.8 MPa to 1343.57 MPa, and the elongation decreases
from 9.7% to 6.8%.
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