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Abstract: Automatic vision systems have been widely used in the continuous casting of the steel
industry, which improve efficiency and reduce labor. At present, high temperatures with evaporating
fog cause images to be noisy and hazy, impeding the usage of advanced machine learning algorithms
in this task. Instead of considering denoising and dehazing separately like previous papers, we
established that by taking advantage of deep learning in a modeling complex formulation, our
proposed algorithm, called Cascaded Denoising and Dehazing Net (CDDNet) reduces noise and hazy in
a cascading pattern. Experimental results on both synthesized images and a pragmatic video from
a continuous casting factory demonstrate our method’s superior performance in various metrics.
Compared with existing methods, CDDNet achieved a 50% improvement in terms of peak signal-to-
noise ratio on the validation dataset, and a nearly 5% improvement on a dataset that has never seen
before. Besides, our model generalizes so well that processing a video from an operating continuous
casting factory with CDDNet resulted in high visual quality.

Keywords: dehazing; denoising; convolutional neural network; continuous casting.

1. Introduction

Computer vision has seen remarkable progress in the domains of image classifica-
tion [1–4], semantic segmentation [5–7], and restoration from degradation [8–11]. There
is no doubt that traditional industries seek to obtain advantages in terms of safety and
efficiency with the assistance of computer vision. However, since production environments
require high robustness and stability, deploying advanced but tricky algorithms to these
industries is questionable. For example, in the continuous casting of the steel industry,
due to its inevitably high-temperature environment, imaging suffers from noise and haze,
leading to low visual quality. Figure 1 shows an example from a real continuous casting
factory. The bottom area of the ladle (blue area in Figure 1) is where the vision system
focuses on in order to drive the robot arms (red area in Figure 1) to install the long casting
nozzle, but both the areas captured by the camera are deteriorated highly by haze and
noise due to the high temperature. High-level computer vision tasks, such as detection
and recognition, may fail in this situation. Considering that noise and haze misleading
the computer vision algorithm prevent the development of vision system advances in
the continuous casting of steel, it is crucial and fundamental for vision systems that are
pursuing robustness and accuracy to denoise and dehaze at an early stage.

In this paper, we propose a high performance end-to-end denoising and dehaz-
ing convolutional nerual network (CNN) model, called Cascaded Denoising and Dehazing
Net (CDDNet). While some approaches either neglect the influence of image noise or
reduce noise separately, CDDNet is designed to be a two-stage end-to-end pipeline which
removes noise and haze in a cascading pattern. It was trained on synthesized hazy and
noisy images, and was tested on synthetic images and a real video from an in-operation
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continuous casting factory. Experiments demonstrated that CDDNet performs well. It is
exciting to share that our proposed model generalizes so well that a real video processed
by CDDNet result in high visual quality.

To summarize, our contributions include:

• We analyze the atmospheric scattering model and additive noise from the perspective
of combining them. We further expand this formula into a new denoising and dehazing
algorithm that works in a cascading pattern.

• We propose CDDNet, a cascading two-stage U-Net for image denoising and dehazing.
• We provide in-depth experiments on both synthesized images and a real video from a

continuous casting factory, which demonstrates that CDDNet achieves superior perfor-
mance to other models.

(a)

(b)                                           (c)

Figure 1. Any vision system in the continuous casting of the steel industry suffers from noise and
haze. (a) A frame from a continuous casting factory. (b,c) Showing that haze and noise lead to low
visual quality.

2. Related Work

The continuous casting of the steel industry inevitably occurs in high temperature
environments with a lack of ambient light. When placing industrial cameras in such
situations, these disadvantages lead to image degradation in two ways. First, the camera
is unable to gain enough photons to activate; meanwhile, electric signals on the sensor
tend to be unstable and leak out. Both factors result in significant noise. Second, the high
temperature in this environment leads to much evaporation and liquefaction, generating
haze which considerably obscures the targets being watched. In this section, we first
overview the basic models of haze and additive noise that are of essential importance to
CDDNet’s design.

In computer vision, the formation of hazy images is usually described by the atmo-
spheric scattering model [12–14]:

I(x) = J(x)t(x) + A(1− t(x)), (1)

where I(x) is observed hazy image and J(x) is the clean image to be recovered. There are
two parameters that need to be figured out: A denotes the global atmospheric light, and
t(x) is the transmission matrix defined as:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and d(x) is the distance from the
target to the camera. The goal of image dehazing is to recover the J(x) from the I(x).

In recent years, there has been significant progress in image haze removal, and these
methods tend to take priors or make assumptions about the hazy images. By observing
that hazy images have lower contrast than clean images, Tan et al. [15] aimed to enlarge
the local contrast to improve the visibility of hazy images. However, since different images
have very different parameters of haze, editing contrast arbitrarily brings out fidelity loss.
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He [16] observed that the Dark Channel Prior (DCP) reliably calculates the transmission
matrix, but the DCP fails when objects share a similar color to the atmospheric light A
as a result of the transmission value tending to be zero. Zhu et al. [17] proposed a color
attenuation prior to recover images, and the model parameters were learned in a supervised
way. Since the success of convolutional neural networks in image processing, numerous
related algorithms based on CNN have emerged. DehazeNet proposed by Cai et al. [18]
is a CNN-based network elaborately trained to predict a transmission matrix, and the
global atmospheric light is estimated by empirical rules. All-in-One Net transforms the
atmospheric scattering model into a unified model, and dehazes images directly without
estimating A and t(x) [10].

When considering image noise, the main challenge is to recover a clean image x from
the noisy observation y, with the additive noise n, namely:

y = x + n. (3)

Most of these denoising methods can be classified into three groups: (1) based on
the assumption of local similarity of image methods, (2) transforming domain methods,
and (3) convolutional neural network methods. The first group of denoising methods
searches the local window of the image and restores the pixels according to similar parts of
the image. Non-Local Mean (NLM)) proposed by Buades et al. [19], and Block-matching
and 3D filtering (BM3D) proposed by Dabov et al. [20] are the two most successful rep-
resentatives of the first group. Since noise and signal usually exhibit different frequency
spectra, Portilla et al. [21] utilized the sparsity of the image in the transformed domain.
Deep learning methods have the advantage of fitting a complex distribution, and are be-
coming promising techniques for denoising. NBNet proposed by Cheng et al. [8], and
MemNet porposed by Tai et al. [22] are CNN-based methods that have superior denosing
performance. However, in the steel industry, pure denosing is insufficient, since the vast
majority of interference cases come from haze.

All above methods either cope with haze or noise; however, Matlin et al. [23] showed
that the noise will be amplified if we only process the haze. Denoising is vital, since
the image noise is everywhere, especially in a high-temperature environment such as
that of continuous casting areas in the steel industry. Liu et al. [24] observed that the
haze almost completely resides in the low frequencies, while noisy tends to have higher
frequencies. It is obvious to decompose the image into frequency domains and then filter
these disadvantages and reconstruct from the frequency domain. However, textures and
edges in images are inevitably smoothed, and extra detail enhancement tricks are utilized
to compensate for the loss of information.

In conclusion, dehazing and denoising have the features of ubiquity and being ill-
posed. The methods described above all ignore one of the two problems because they do
not address pragmatic industry scenarios or split haze and noise into different domains
under the naive assumption of no coupling. Our work not only deals with the dehazing and
denosing synchronously, but also uses no other prior about the relationship between haze and
noise: we came up with an end-to-end, CNN-based solution with superior performance.

3. Method

In this section, the proposed CDDNet is explained; see Figure 2a. CDDNet splits the
restoration process into two steps (denosing and dehazing) in a cascading pattern in order
to remove noise and haze synchronously. The rest of this section is structured as follows:
first, we combine the atmospheric scattering model and additive noise, leading to a more
complex yet pragmatic form. Second, our proposed method, CDDNet, inspired by the
complex formula, is explained in detail.
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Figure 2. Network architecture and its components. (a) Overall CDDNet architecture. (b) U-Net with
the CSFF module. We only show three layers for simplicity. (c) Dehazing module.

3.1. Transformed Formula

According to Section 2, we are not only concerned about the haze, but also the addi-
tive noise:

I(x) = J(x)t(x) + A(1− t(x)) + n(x), (4)

where I is the observed image degraded by both haze and additive noise, and n is the
noise contribution, assumed to be independent and identically distributed, with zero mean
and variance σ2. Matlin et al. [23] proved that if an image is preprocessed only by dehaze
algorithms, the noise level of the image will be amplified exponentially. In order to avoid
the amplifying, we split the restoration process into two stages in a cascading pattern by
first denoisiong the image, and then following a dehazing procedure. During the first stage,
the noise is treated as an additive term that can be removed by fitting its mean and variance,
for which a neural network does a good job. After the first stage, we obtain

I(x)− n̂(x) = Y(x) = J(x)t(x) + A(1− t(x)), (5)

where n̂ is the estimated noise term, and Y is the denoising restoration. The noise-free image
is then transferred to the second stage for dehazing. During the second stage, similarly to
AODNet, we unify the two parameters t and A into one formula, i.e., K in Equation (6),

J(x) = K(x)I(x)− K(x) + b, where

K(x) =
1

t(x) (I(x)− A) + (A− b)

I(x)− 1
,

(6)

where K(x) is a integrated parameter unifying the global atmospheric light A and trans-
mission matrix t(x). b is a constant bias with a default value 1. The clean image J(x) can be
retrieved by Equation (6) once the unified parameter K is estimated.

3.2. CDDNet

The architecture of our proposed method, Cascaded Denoise and Dehaze Net (CDDNet),
is shown in Figure 2a. CDDNet consists of two subnetworks, each of which is a U-Net.
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U-Net, proposed by Ronneberger et al. [5], is a popular baseline network especially adept
at pixelwise dense prediction (the input is a whole image and the output is a whole image
too). Each U-Net consists of two significant phases called encoder and decoder, as shown
in Figure 2b.

In the encoder, U-Net, level by level, extracts different scales’ features while the
spatial size of the input degraded image scales down. We replaced the regular extractor
with a Half-Instance Normalization Block (HIN Block), since the HIN Block proposed by
Chen et al. [9] achieves a balance between deep feature extraction and feature stability. We
use five HIN Blocks concatenated to form the encoding phase, and four convolution blocks
with a kernel size of 4 each between HIN Blocks to downsample the feature maps.

In the decoder, U-Net utilizes and rescales the information-rich features from the encod-
ing phase to recover the image, level by level. Similarly to HINet proposed by Chen et al. [9],
we use four ResBlocks to extract high-level features, and four transpose convolution blocks,
each of which is between ResBlocks, to upsample the features. Pixelwise prediction tasks,
such as image restoration and semantic segmentation, are faced with the difficulty that
when digging into higher-level features for gaining a deeper understanding of an image,
a network designed with numerous extractors tends to, by inference, produce a low-
resolution result. One of the reasons why U-Net is all the rage is that the skip connection
fuses features from the encoder component to compensate for the loss of information
caused by resampling, which leads to a high-resolution result. We also adopt the skip
connection in order to get a high-resolution restoration.

The first subnetwork of CDDNet takes the degraded image with noise and haze as
input X and generates a noise estimation R. The supervised attention module proposed
by Mehri et al. [11] is deployed to generate the noise-free image by X + R according to
Equation (5) and to connect the second subnetwork of CDDNet in a cascading pattern.
The latter stage receives a noise-free estimation from the previous stage and produces
the estimation of parameter K. At last, the dehazing module combines K and noise-free
estimation, as shown in Figure 2c, to generate a haze-free result Ĵ. We also allow some
kinds of information exchange between these two subnetworks by using cross-stage feature
fusion [11].

4. Experiments

We evaluated our approach on a wide range of datasets and report the standard
metrics, including PSNR and SSIM. The datasets, brief introductions of metrics, and training
details are as follows.

4.1. Implementation Details

Datasets We first created synthetic hazy images from the NYU2 Dataset [25] by setting
different atmospheric light levels and scattering coefficients. We took 27,000 synthetic
hazy images as training dataset and the rest images as TestSet A. We randomly added
Gaussian noise (zero mean and standard deviation varying from 0.01 to 0.3) to the hazy
image, then synthesized a set of images with haze and additive noise. Besides synthetic
hazy images, we took I-HAZE [26] as TestSet B, a dataset that contains 35 image pairs
of hazy and corresponding haze-free indoor images. Hazy images were generated using
real haze produced by a professional haze machine. In addition, we also collected a real
video (TestSet C) from an in-operation continuous casting factory, which truly causes
image noise and haze.

Metrics We use peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) to quantify the restoration performance. PSNR refers to the ratio between
the maximum possible power of a signal and the power of corrupting noise that affects the
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fidelity of its representation [27]. In the filed of image processing, given a noise-free image
(groundtruth)I and its estimation K, PSNR is defined as:

PSNR = 10× log10(MAX2
I /(

1
mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2)), (7)

where I is of size m× n and MAXI is the maximum possible pixel value of the image. The
higher PSNR is, the higher the quality of the restoration image. While PSNR is used for
estimating absolute errors between the ground trth and the restoration, SSIM is used for
measuring the structural similarity between two images [28]. SSIM is defined as:

SSIM(I, K) =
(2µIµK + c1)(2σIK + c2)(

µ2
I + µ2

K + c1
)(

σ2
I + σ2

K + c2
) , (8)

where µ is the average of the image, σ2 denotes the variance of the image, σIK is the
covariance of two images, and c1, c2 are two variables to stabilize the division with a weak
denominator. The higher SSIM is, the more faithful human perception is.

Training We used vanilla Stochastic Gradient Descent (SGD) with momentum 0.9
as the optimizer instead of Adam [29], since the adaptive optimization methods can be
sensitive and exhibit poor generalization if the training set is noisy [30]. The learning
rate was set to 2 × 10−4 initially and decreased to 1 × 10−6 with the cosine annealing
strategy [31]. We first center cropped the training set from 640× 480 image resolution to
256× 256, and we trained CDDNet on these patches with a batch size of 32 for 100 epochs.
Since CDDNet is a two-stage model including two inputs and outputs, we used two peak
signal-to-noise ratio functions as the metrics of loss, PSNR loss. X ∈ RN×C×H×W denotes
the input of first stage, where N is the batch size of data, C is the number of channels, and
H and W are the spatial dimensions of the image. R ∈ RN×C×H×W denotes the inference
of first stage, which is a noise estimation. Y ∈ RN×C×H×W denotes the ground truth
image only degraded by haze. K ∈ RN×C×H×W is the final product of stage two, and
J ∈ RN×C×H×W is the ground truth without noise and haze. Then CDDNet is optimized
end-to-end by:

Loss = −PSNR( X + R︸ ︷︷ ︸
denoising stage

, Y)− PSNR(K× (X + R)− K + 1︸ ︷︷ ︸
dehazing stage

, J). (9)

4.2. Quantitative Results

Most of the dehazing algorithms cannot handle the degradation caused by noise. As
mentioned in Section 3, dehazing approaches that ignore noise will significantly amplify
noise. Matlin et al. [23] suggests that combining denoise methods with dehazing methods
will remit this problem. Thus, we compare CDDNet with pure dehazing methods: All-
in-One Net proposed by Li et al. [10] and Dark-Channel Prior proposed by He et al. [16].
Meanwhile, we combined the denoising method BM3D with these dehazing methods to
make a comprehensive comparison.

Table 1 shows the average PSNR and SSIM results on TestSets A and B with
σ ∈ {0.05, 0.1, 0.2, 0.3}, respectively. Since CDDNet was validated on TestSets A, it made
sense for it to obtain superior scores in terms of PSNR and SSIM on this dataset. TestSet B is
a challenge for deep learning methods like CDDNet and AODNet, because these methods
have never seen TestSet B before and the results mostly show how well the deep learning
methods generalize. Compared with BM3D+AODNet on TestSet B, the PSNR and SSIM
of CDDNet increased by 0.66 dB and 0.08, on average. These results prove that CDDNet
generalizes and performs better than BM3D + AODNet. The last two rows of Table 1
show the differences (improvements) between CDDNet’s scores and the corresponding
best scores of the other methods. We conclude that CDDNet obtained superior PSNR and
SSIM performance to all competitors under a variety of challenging circumstances.
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Figure 3 displays part of the visual results from TestSet B. The second (DCP) and
fourth (AODNet) rows of Figure 3 reveal that pure dehazing methods reduced haze from a
global perspective, leading to the contrast of the image widening. The dehazing perfor-
mance of these traditional methods decayed as σ increased. As can be seen from the third
(BM3D+DCP) and fifth (BM3D+AODNet) rows of Figure 3, denosing before dehazing re-
sulted in better visual quality. For example, in the fourth (Figure 3d) and eighth (Figure 3h)
column (σ = 0.3), it can be seen that BM3D+DCP could further clean the rest of the haze
that vanilla DCP could not. However, BM3D inevitably blurred the origin while denosing,
leaving an artistic result. CDDNet, in the last row of Figure 3, obtained high visual quality
results compared with the other methods. We conclude that our method can retrieve clean
images from severely deteriorated images.

AODNet

BM3D+AODNet

DCP

BM3D+DCP

CDDNet

Inputs

(a) 0.05               (b) 0.1                  (c) 0.2                 (d) 0.3                 (e) 0.05                 (f) 0.1                 (g) 0.2                  (h) 0.3

Figure 3. Challenging real hazy images from I-HAZE addressed with various methods.

Table 1. PSNR and SSIM results of different methods under various noise levels with standard
deviation varying among {0.05, 0.1, 0.2, 0.3}.

Model
TestSet A TestSet B

0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

DCP 18.08 dB
(0.38)

16.28 dB
(0.23)

13.10 dB
(0.12)

10.88 dB
(0.08)

14.40 dB
(0.16)

12.97 dB
(0.08)

10.58 dB
(0.038)

9.10 dB
(0.023)

AODNet 15.86 dB
(0.34)

14.12 dB
(0.20)

11.34 dB
(0.10)

9.60 dB
(0.07)

13.88 dB
(0.16)

12.41 dB
(0.07)

10.06 dB
(0.029)

8.62 dB
(0.0017)

BM3D +
DCP

16.96 dB
(0.77)

16.47 dB
(0.71)

15.45 dB
(0.63)

14.06 dB
(0.56)

12.83 dB
(0.58)

12.77 dB
(0.56)

12.69 dB
(0.52)

12.42 dB
(0.49)

BM3D +
AODNet

16.76 dB
(0.76)

16.55 dB
(0.71)

15.86 dB
(0.65)

14.96 dB
(0.60)

14.64 dB
(0.66)

14.57 dB
(0.64)

14.36 dB
(0.61)

14.05 dB
(0.5)

CDDNet 25.37 dB
(0.89)

24.65 dB
(0.86)

23.61 dB
(0.81)

22.87 dB
(0.78)

15.33 dB
(0.724)

15.23 dB
(0.70)

15.01 dB
(0.67)

14.69 dB
(0.64)

↑ 7.29 dB
( 0.12)

↑8.1 dB
(0.15)

↑7.75 dB
(0.16)

↑7.91 dB
(0.18)

↑0.69 dB
(0.064)

↑0.66 dB
(0.06)

↑0.65 dB
(0.06)

↑0.64 dB
(0.14)

PSNR
improvements ↑ 40.3% ↑ 48.9% ↑ 48.9 % ↑ 52.9% ↑ 4.7% ↑ 4.5% ↑ 4.5% ↑ 4.6%
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4.3. Visual Results and Discussion

We collected a real video (TestSet C) from an in-operation continuous casting factory
that truly suffers from image noise and haze. We again evaluated TestSet C with CDDNet
and the methods compared above. Figure 4 demonstrates frames 3000 and 3400 from the
video being restored by the methods mentioned above. Each of the restoration images has
a histogram figure below that was used for judging the entire tonal distribution of a digital
image. The more the histogram shows the full range of intensities evenly, the higher the
global contrast of the image. Low-contrast images tend to be either too bright or too dark,
causing rich details and textures to be invisible. As can be seen from Figure 4, the raw
frames are hazy and noisy, and have low global contrast (most of the data points distribute
on the left side of the histogram). The methods mentioned above have few positive effects
on histogram distribution. AODNet and BM3D + AODNet tended to set numerous pixel
values to zero, causing the result to be too dark. For example, there are still some details
at the right bottom area of frame 3000, but AODNet made this area invisible. CDDNet
not only restored the image from its hazy and noisy state, but also spread the histogram
distribution, leaving appropriate contrast. We can see the brightest part of image (the red
hot long casting nozzle), besides the darkest details, taken the right bottom part of frame
3000, for example.

   AODNet                                                     BM3D+AODNet                                               CDDNet  

 #3000 frame from video                                             DCP                                                         BM3D+DCP       

 #3400 frame from video                                              DCP                                                        BM3D+DCP       

   AODNet                                                    BM3D+AODNet                                                CDDNet  

Figure 4. Hazy and noisy frames from video. CDDNet restores images with high visual qulity.
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We also analyze some regions of interest in Figure 5. As is shown, pure dehazing
methods (first and third columns) amplify the noise and bring about even more degradation.
Combining with denosing approaches, these dehazing methods converge but tend to lose
fine details. For instance, the second row of Figure 5 is an electric wire. CDDNet retained
fine details as much as possible, whereas other methods blurred the region and caused
some pixel overflow (red and green points). The last row is a region where dense and
bright white haze obscures the background. The BM3D + methods were confused by the
light, resulting in incorrect color restoration (white mixed with rainbow colors). CDDNet
not only made the background equipment appear, but also kept the colors accurate.

DCP               BM3D+DCP          AODNet        BM3D+AODNet       CDDNet  

 #550 frame  from video 

 #2560 frame  from video 

Figure 5. Hazy and noisy frames from a video. CDDNet retained fine details and kept the colors accurate.

5. Conclusions

In this paper, by deciding to gather additive noise with an atmospheric scattering
model, we proposed CDDNet, a two-stage convolutional network that reduces haze and
noise in a cascading pattern. We compared CDDNet with a variey of methods, on synthetic
images and a video (we collected it from an in-operation continuous casting factory), using
both objective metrics (PSNR, SSIM) and histogram distributions. Extensive experimental
results show that, when being faced with haze and noise, CDDNet achieves superior
performance in dehazing and denoising, and restores the images to a high visual standard.
Since few restoration methods were designed especially for the continuous casting of the
steel industry, we were excited to witness that our proposal has promising generalization
to a real continuous casting environment.
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