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Abstract: This paper presents an approach for the application of machine learning in the prediction
and understanding of casting surface related defects. The manner by which production data from a
steel and cast iron foundry can be used to create models for predicting casting surface related defect
is demonstrated. The data used for the model creation were collected from a medium-sized steel
and cast iron foundry in which components ranging from 1 to 100 kg in weight are produced from
wear and heat resistant cast iron and steel materials. This includes all production-relevant data from
the melting and casting process, as well as from the mold production, the sand preparation and
component quality related data from the quality management department. The data are tethered
together with each other, the information regarding the identity and number of components that
resulted in scrap due to the casting surface defect metal penetrations was added to the dataset. Six
different machine learning algorithms were trained and an interpretation of the models outputs was
accomplished with the application of the SHAP framework.

Keywords: casting defects; metal penetrations; steel casting; cast iron; machine learning; SHAP;
data-driven process modeling

1. Introduction

In the coming years, the foundry industry will have to face ever greater challenges in
terms of resource and energy optimization due to the expected ecological and economic
change towards a climate-neutral Europe. In order to curb climate change and prevent
a further increase in the earth’s temperature, the European Union has launched the “Eu-
ropean Green Deal” in 2019. This political and economical program aims to extend the
current target of reducing the European Union’s CO2 emissions by 40 percent (by 2030
compared to 1990 levels) to a reduction of 50 to 55 percent [1]. For this reason, sustainability
and resource conservation are moving to the center of the future business orientation
of the manufacturing industry, especially the foundry industries. The foundry industry,
which is one of the most energy-intensive industries in Germany, employs 70,000 people
in around 600 iron, steel, and non-ferrous metal foundries. The economic importance of
this sector, which is mostly structured as medium-sized enterprises, results from its classic
supplier function and its role as a key sector for the automotive and mechanical engineering
industries. From this leading position, foundries have to face a variety of technological,
economic, and sustainability-related challenges, as well as increasing competitive pressure:
Competition from emerging markets, increased demands for flexibility, rising delivery, and
quality pressure, the strategic goal of a CO2-neutral Europe, and increasing globalization
are forcing new approaches to maintain competitiveness. Against this backdrop, sustain-
able safeguarding of future viability requires the consistent further development of process
technology and control through the application of intelligent, adaptive manufacturing
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techniques. There is a big potential in the digitization of the process chain to make manu-
facturing more resilient, sustainable and flexible. The continuing dynamic development of
digitization and the associated methods and technologies have a considerable influence
on the requirements and designs of production systems. For efficient use of production
data, data analysis with machine learning methods or by means of deep learning and
transfer learning approaches and a reflection of the analysis results back into production is
essential, whereby so-called cyber-physical production systems can be built [2]. By using
cyber-physical production systems, the optimization of individual processes or parameters,
as well as the optimization of the process chain is possible [3]. Thus, a sustainable process
design is achievable in order to meet increasingly complex process requirements. Various
approaches for the application of AI methods and assistance apps in the foundry industry
already exist, such as [4–8]. However, a holistic ecosystem of assistance application for
the complete foundry production system does not exist. One possible factor achieving
the above-mentioned goals of resource and energy optimization is the reduction of scrap
rates. High scrap rates weigh doubly detrimental to the resource and energy balance, as
components that have already been cast are required to be melted down and manufactured
again. This case study, therefore, investigates to what extent machine learning can help
model the problem of casting surface defects (exemplary metal penetration) in a foundry
and draw conclusions for the manufacturing process.

Casting Surface Defects

In the steel and cast iron industry, where the production of components is carried out
using sand molds, it is well known that the biggest reason for components resulting in scrap
post production is often times the mold material and its quality properties. Insufficient
mold and core quality can be the reason for up to 40–50% of the overall scrap rate in a
foundry. One of these casting surface defects is the metal penetration. The defect leads, if
not directly to scrap, then to a considerable increase in finishing work post-production, and
therefore to additional manufacturing costs. Metal penetration is a highly complex casting
defect and there are many reasons why it can occur, to only name a few: overly large
grain size and wide grain distribution in the mold material, insufficient binder content,
insufficient proportion of lustrous carbon forming substances and gas permeability in
the mold, excessive compactability of the mold and unfavorable chemical composition of
the melt in connection with exceedingly high casting temperature and high metallostatic
pressure, as well as insufficient and or uneven compression of the molds or cores. Melting
phases form as a result of metal-mold reactions, resulting in scorched sand (sintering) and
mineralization. When casting alloyed steel, this fault is quite common. On the casted
component, it is evident to the naked eye. Edges in the sand mold or sand core, where
the metal remains liquid for a long period due to the geometry of the casting and the
molded pieces severely heated, are preferred mineralization areas. Mineralization, unlike
real mechanical/physical penetration, is a chemically generated penetration. Burnt sand
is still referred to when a thin sand crust of individual quartz grains adheres strongly to
the casting (sintering). Mineralization occurs when this thin and now an extremely firmly
adherent layer is made up of fused sand, giving the entire surface a pockmarked look [9].
As seen from above there are multiple reasons for these defects to occur, many of them are
connected with each other due to multi-parametric relationships and therefore difficult
to analyze.

2. Machine Learning

Machine Learning (ML) is regarded as programming computers to optimize a capa-
bility criterion using sample data or experience [10]. Machine Learning concentrates on
the development of computer programs that can access data and employ it to learn for
themselves automatically. For the past few years, machine learning has received much
attention. Due to the growing volumes and varieties of available data, computational
processing that is cheaper and more powerful, all of this trends enable a more complex,
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robust, and accurate system to be built, which are capable of any of the facilities that
are associate with intelligence, such as computer vision, natural language processing,
automotive, manufacturing, foundry, etc.

In practice, machine learning algorithms can be divided into three main categories
based on their purpose. Supervised learning occurs when an ML model learns from sample
data and associated target responses that can consist of numeric values or string labels,
such as classes or tags, to later predict the correct response when posed with new examples
Ref. [11]. Supervised learning is frequently applied in applications where historical data
predicts likely future events. Generally, supervised learning problems are categorized into
classification and regression. In regression problems, the model tries to predict results
within a continuous output based on the continuous functions. For example, it can predict
the price of a house according to the size and the living area. In contrast to regression, in
classification output is predicted in discrete value, such as yes or no, true or false, positive
or negative, etc. For instance, given an image, correctly classify whether the content is
composed of cats or dogs (or a combination of the both).

Unlike supervised learning, which is trained using labeled examples, an unsupervised
learning model is prepared by deducing structures present in the input data without
any associated response, leaving the algorithm to determine the data patterns on its
own [11]. A typical example is the recommendation system, it can determine segments
of customers with similar characteristics who can then be treated similarly in marketing
campaigns. There are many popular techniques including clustering and dimension
reduction. Reinforcement learning is concerned with the issue of how to interact with
the environment and to choose suitable actions in a given situation, to maximize the
reward [12]. This type of learning is often used for robotics, gaming, and navigation since
these applications must make decisions and the decisions bear consequences.

In this case the prediction of the casting quality of steel components produced by the
sand casting process, algorithms for this purpose are supervised learning, in addition to
the algorithms from the category regression. The basic workflow of a machine learning
project are given below.

2.1. Machine Learning Workflow

Machine Learning workflows define the phases initiated during a particular machine
learning implementation. We can define the machine learning workflow in 4 steps, which
shows in Figure 1:

1. Data acquisition;
2. Data pre-processing;
3. Training the model;
4. Model evaluation.

Figure 1. A typical workflow for a machine learning project.
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2.1.1. Data Acquisition

To start a machine learning project, the first step is to collect data from relevant
sources. It is the process of retrieving relevant manufacturing information, transforming
the data into the required form, and loading it into the designated system. The dataset
collected from the foundry industry comes from different sources, such as ERP databases,
IoT devices, and so on.

2.1.2. Data Pre-Processing

Once the data are collected, it needs to be pre-processed. Pre-processing involves
cleaning, verifying, and formatting data into a usable dataset. It is the most important
step that helps in building machine learning models more accurately. The very first step of
pre-processing is to identify missing data. Missing data are common in most real-world
datasets. These missing values need to first be handled to optimally leverage available
data. A fundamental strategy when using incomplete datasets is to discard entire rows or
columns containing missing values. However, this comes at the price of losing informative
data which may be valuable for model training. By contrast, imputation tries to infer
the missing values from the known part of the data. Some well-known methods include
replacing missing values with zero, mean, median, or mode.

In general, learning algorithms benefit from standardization of the dataset. Different
columns can be present in varying ranges. For example, there can be a column with a
unit of distance, and another with the unit of temperature. Those columns will have
strongly different ranges, making it difficult for many machine learning models to reach an
optimal computational state. There are some techniques to address this problem, they are
standardization, or mean removal and variance scaling; scaling features to a range, often
between zero and one, or so that the maximum absolute value of each feature is scaled to
unit size.

In many cases, data are in a format that cannot be processed by algorithms. For
instance, a column with string values or text, will mean nothing to a model that only
accepts numerical values as input. So it is necessary to convert the categorical features to
integer codes to help the model interpret it. This method is called categorical encoding.
Some popular methods include ordinal encoding, which embeds values from 1 to n in an
ordinal manner, n is the number of samples in the column. If a column has 3 city names,
ordinal encoding will assign values 1, 2, and 3 to the different cities. One hot encoding
can be used when data has no inherent order. One hot encoding generates one column for
every category and assigns a positive value 1 in whichever row that category is present,
and 0 when it is a absent.

New features can be created from raw features, this is called feature engineering.
For example, the day, month, and year can be extracted from a date time column. This
gives a new perspective to the model, which can now detect a brand new relation between
time and the target variable. In a similar way, discretization is the process to partition
continuous features into discrete values. Certain datasets with continuous features may
benefit from discretization, because it can transform the data set of continuous attributes
to one with only nominal attributes. Adding complexity to the model by considering
non-linear features of the input data could be useful. A intuitive and common way is to
use polynomial features, which can obtain features’ high-order and interaction terms. For
instance, the features of X can be transformed form (X1, X2) to (1, X1, X2, X2

1 , X1X2, X2
2).

2.1.3. Training the Model

Before training the model, usually data need to be divided into two parts, training
and testing:

• Training set: used to initially train the algorithm and teach it how to process information;
• Testing set: used to access the accuracy and performance of the model.

Once the dataset is ready to train, the next step involves feeding the training set
to the algorithm so that it can learn appropriate parameters and features used in the
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learning process. The machine learning models applied in this research will be explained
in Section 2.2.

To measure the model performance for regression problem, the following metrics
are introduced:

• Mean absolute error (MAE): is a loss metric corresponding to the expected value of
the absolute error loss. If ŷi is the predicted value of the i-th sample, and yi is the
corresponding true value, n is the number of samples, the MAE estimated over n is
defined as:

MAE(y, ŷ) =
1
n

n−1

∑
i=0
|yi − ŷi| (1)

• Mean squared error (MSE): is a loss metric corresponding to the expected value of the
squared error. MSE estimated over n is defined as:

MSE(y, ŷ) =
1
n

n−1

∑
i=0

(yi − ŷi)
2 (2)

• Root mean square error (RMSE): is the square root of value obtained from MSE:

RMSE(y, ŷ) =
√

MSE (3)

• R2 score: represents the proportion of variance of y that has been explained by the
independent variables in the model. It provides an indication of fitting goodness
and, therefore, a measure of how well unseen samples are likely to be predicted by
the model:

R2(y, ŷ) = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳ)2

(4)

• Root mean squared logarithmic error (RMSLE): computes a risk metric corresponding
to the expected value of the root squared logarithmic error:

RMSLE(y, ŷ) =

√√√√ 1
n

n−1

∑
i=0

(loge(1 + yi)− loge(1 + ŷi))2 (5)

Generally, many hyperparameters settings are involved in training machine learning
models. A hyperparameter for a learning algorithm is defined as a variable to be set prior
to the actual application of the algorithm to the data, one that is not directly learned from
the training process [13]. Hyperparameters are tuned by running a whole training job,
looking at the aggregate accuracy and adjusting. The most common search algorithms
include grid search, random search and Bayesian optimization.

2.1.4. Model Evaluation

Finally, after an acceptable set of hyperparameters is found and model performance
is optimized we can test the model. Testing uses the test dataset and is meant to verify
that models are using accurate features. Based on the feedback received one may return to
training the model to improve performance, adjust output settings, or deploy the model
as needed.



Metals 2022, 12, 1 6 of 15

2.2. Machine Learning Algorithm
2.2.1. Ridge Regression

Ridge regression is linear least squares with L2 regularization. It addresses some of
the problem of Ordinary Least Squares by imposing a penalty on the size of the coefficients.
The ridge coefficients minimize a penalized residual sum of squares:

min
w
||Xw− y||22 + α||w||22 (6)

where X is input data, w = (w1, . . . , wp) is coefficients vector for a linear model, y denotes
the target value, and α ≥ 0 is the complexity parameter which controls the amount
of shrinkage.

2.2.2. Random Forest Regression

A random forest algorithm [14] consists of many decision trees [15]. The random
forest establishes the outcome based on the predictions of the decision trees. The forest
generated by the random forest algorithm is trained through bagging [16] or bootstrap
aggregating [17]. Bagging involves using different samples of data rather than just one
sample, it utilizes a method to reduce the variance of a base estimator, by introducing
randomization into its construction procedure and then making an ensemble out of it. On
the other hand, bootstrap trains a sequence of weaker learners on repeatedly modified
versions of data. The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction. A random forest eradicates the limitations of
a decision tree algorithm. It reduces the overfitting of datasets and increases precision. It
predicts by taking the average or mean of the output from various trees. Figure 2 shows
the structure of a random forest.

Figure 2. The structure of random forest. The decision trees run in parallel with no interaction among
them. A random forest operates by constructing several decision trees during training time and
outputting the mean of the classes as the prediction of all the trees.

2.2.3. Extremely Randomized Trees Regression

Compare to the random forest, extremely randomized trees (ET) [18] brings random-
ness one step further in the way splits are computed. ET do not resample observations
when building a tree, instead, ET makes a small number of randomly chosen splits-points
for each of the selected predictors, and selects the “best split” from this small number of
choices. ET allows to reducing the variance of the model a bit more, at the expense of a
slightly greater increase in bias.

2.2.4. XGBoost

XGBoost is short for “Extreme Gradient Boosting” [19], it is also a tree-based ensemble
method like random forest. In addition to that, XGBoost incorporates another popular
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method called boosting [17], where successive trees add extra weight to samples which
have been incorrectly predicted by earlier trees. This way the final predictions are obtained
by a weighted vote of all trees [19]. It is called gradient boosting because it uses a gradient
descent algorithm to minimize the loss when adding new models. By combining the
strengths of these two algorithms, XGBoost has an excellent capacity for solving supervised
learning problems.

2.2.5. CatBoost

CatBoost [20] is another ensemble algorithm that leverages from boosting, however, it
works well with multiple categories of data. Compared to XGBoost, CatBoost also handles
missing numeric values. CatBoost distinguishes with symmetric trees which use the same
split in the nodes of each level, making it much faster than XGBoost. CatBoost calculates
the residuals for each data point and does this with the model trained with other data. In
this way, different residual data are obtained for each data point. These data are evaluated
as targets and the general model is trained to the number of iterations.

2.2.6. Gradient Boosting Regression

The gradient boosting (GB) algorithm is used to generate an ensemble model by
combining the weak learners or weak predictive models. It builds an additive model by
using multiple decision trees of fixed size as weak learners. The process of fitting a GB
model starts with the constant such as mean value of the target values. In subsequent
stages, the decision trees or the estimators are fitted to predict the negative gradients of the
samples. The gradients are updated in the each iteration.

2.3. Model Interpretation

The rapidly increasing usage of ML raises the attention of explainable ML to help peo-
ple better trust and understand model at scale. Humans must be able to fully understand
how decisions are being made so that they can trust the decision of an ML system. In prin-
ciple, ML models are needed to function as expected, to produce transparent explanations,
and to be visible in how they work.

Explainability is important in many ways. These include: ensuring fairness, looking
for issues with bias in training data, regulatory, legal, and branding concerns, and simply
studying the internals of a model to optimize it, to produce the best result. There are
some criteria that can be used for categorizing model interpretation methods. For example,
interpretability methods can be grouped based on whether they are intrinsic or post-hoc.
They could also be model-specific or model agnostic. They can also be grouped according
to whether they are local or global.

Recently, many methods have been developed to interpret prediction from supervised
ML models. LIME [21] is an approach that can explain the predictions of any classifiers by
learning an interpretable model locally around the prediction. DeepLIFT [22] is an example
of a model-specific method for explaining deep learning models in which the contributions
of all neurons in the network are back-propagated to the input features [23]. However,
the Shapley Additive Explanation (SHAP) [24], which inspired these and several other
methods [25–28], has often been proposed as a unit approach to explain the output of any
ML model.

The Shapley value (SHAP) was originally proposed to estimate the importance of an
individual player in a collaborative team [24,29]. SHAP interprets the Shapley value as an
additive feature attribution method, and SHAP interprets the predicted value of the model
as the sum of the attribution value of each input feature:

g(z′) = φ0 +
M

∑
j=1

φjz′j (7)

where g is interpretation model, z′ ∈ {0, 1}M indicates whether the corresponding feature
can be observed (1 or 0). M is the number of input, and φi ∈ R is the attribution value
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(Shapley value) of each feature. φ0 is the constant of the interpretation model (namely the
predicted mean value of all training samples) [24].

Lundberg and Lee [24] demonstrate that SHAP is better aligned with human intuition
than other ML interpretation methods. There are three benefits worth mentioning here.

1. The first one is global interpretability—the collective SHAP framework can show how
much each predictor contributes, either positively or negatively, to the target variable.
The features with positive sign contribute to the final prediction activity, whereas
features with negative sign contribute to the prediction inactivity. In particular, the
importance of a feature i is defined by the SHAP as follow:

φi =
1
|N|! ∑

S⊆N\{i}
|S|!(|N| − |S| − 1)![ f (S ∪ {i})− f (S)] (8)

Here, f (S) is the output of the ML model to be interpreted using a set of S of features,
and N is the complete set of all features. The contribution of feature i(φi) is deter-
mined as the average of its contribution among all possible permutations of a feature
set. Furthermore, this equation considers the order of feature, which influence the
observed changes in a model’s output in the presence of correlated features [30].

2. The second benefit is local interpretability—each observation obtains its own set of
SHAP framework. This greatly increases its transparency. We can explain why a case
receives its prediction and the contributions of the predictors. Traditional variable
importance algorithms only show the results across the entire population but not for
each individual case. The local interpretability enables us to pinpoint and contrast the
impact of the factors.

3. Third, SHAP framework suggests a model-agnostic approximation for SHAP frame-
work, which can be calculated for any ML model, while other methods use linear
regression or logistic regression models as the surrogate models.

The core idea behind Shapley value based explanation of machine learning models is
to use fair allocation results from cooperative game theory to allocate credit for model’s
output f (x) among its input features. Furthermore, SHAP framework of all the input
features will always sum up to the difference between baseline model output and the
current model output for the prediction being explained, which means we can explicitly
check the contribution of every feature on the individual label.

3. Experiments and Results
3.1. Introduction to Dataset

The production data used for the model development origins from a medium-sized
steel and cast iron foundry in which components are cast from wear and heat resistant
cast iron and steel materials. The range of materials includes many different grades
such as 1.4848, 2.4879, 3.3243, or 3.5102. The metal is melted in a medium-frequency
induction furnace (with a capacity of approximately 1t) and poured into bentonite-bonded
sand molds. The dataset includes all production-relevant data from the melting and
casting process (e.g., chemical composition of the melt measured with optical emission
spectrometry, melting duration, casting temperature, holding time, etc.), as well as data
from the quality management, such as sand related data (gas permeability, compactability,
water content, etc.) and information about which and how many components of a 1t
batch resulted in scrap or considerably increased need for finishing work due to metal
penetrations. Quality control is carried out by testing the chemical composition of the melt
with optical emission spectroscopy, mold sand testing is measured in the in-house sand
lab by measuring the water and sediment content, mesh analyses/grain size distribution,
compressive strength, wet tensile strength, compaction, and bulk weight. Table 1 shows
an abstract of the used input variables. The amount of scrap of a certain batch of produced
components is chosen as the target variable for the models. The components that are
produced and are part of the used dataset range from very small components (for wear



Metals 2022, 12, 1 9 of 15

parts applications in blasting systems with a weight of approximately 1 kg) to bigger
components (such as grids with a weight up to 70 kg). The original data collected in the
foundry has 1079 rows and 52 columns (the different production process parameters that
were mentioned above), around 1079 individual melt samples, 51 independent variables
and one output variable and the amount of scrap for each batch in kg. The dataset was split
into the training and testing datasets and account for 80% and 20% of the data, respectively.
Figure 3 shows the concept of the machine learning approach.

Table 1. Abstract of the input data used for model creation.

Mean Std

C (wt%) 1.68 1.24
Si (wt%) 1.12 0.55
Mn (wt%) 0.53 0.23
P (wt%) 0.02 0.01
S (wt%) 0.01 0.01
Cr (wt%) 20.83 6.16
Ni (wt%) 15.25 20.89
Mo (wt%) 0.59 1.47
Cu (wt%) 0.07 0.07
Al (wt%) 0.13 0.46
Ti (wt%) 0.02 0.04
B (wt%) 0.00 0.00
Nb (wt%) 0.39 0.57
V (wt%) 0.30 0.58
W (wt%) 0.79 1.94
Co (wt%) 0.54 1.39
melt duration (min) 112.54 157.44
holding time (min) 94.68 48.40
melt energy (kWh) 622.48 126.80
liquid heel (kg) 90.31 200.39
charged material (kg) 911.67 237.19
scrap (kg) 25.21 35.44
[. . . ] [. . . ] [. . . ]

Figure 3. Concept of the machine learning approach.

3.2. Experiments Settings

To obtain optimal training results, some methods are addressed to pre-process the
input data. First, the numerical missing values are imputed with median value of that
specific column, and categorical missing values are replaced with the constant value.
Second, all the numerical columns are scaled to unit norm, which reduce the impact of
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magnitude in the variance. Third, transformation is applied to some columns such that
data can be represented by a normal or approximate normal distribution. Fourth, three
columns which have too many unique values or few extreme values outside the expected
range are discretized into categorical values using a pre-defined number of bins. Fifth,
feature columns in the dataset that are highly linearly correlated with other feature columns
will be dropped. Finally, to extend the scope of independent variables, new polynomial
features that might help in capturing hidden relationships are created. After pre-processing
the raw input data, the number of independent variables is increased from 51 to 282.

3.3. Experiments Results

The six above described machine learning algorithms were trained and tested. To find
optimal hyperparameters of each algorithms, the Bayesian optimization was applied for
minimizing objective functions. To find the best combinations of hyperparameters and
decrease training error, a solution called cross-validation was employed. A testing set
should still be held out for final evaluation. In the basic approach, the training dataset was
divided in k groups, called f olds, of equal sizes. The prediction function is learned using
k− 1 folds, and the resulting model is validated on the remaining part of the data. In this
setting, k is equal to 10. The performance measure reported by k− f old cross-validation is
then the average of the values computed in the loop. Table 2 provides the results of every
machine learning algorithm on the training set.

Table 2. The results on training dataset for 6 models. The ET outperforms than other 5 models.

Model MAE MSE RMSE R2 RMSLE

GB 10.7366 323.9538 17.8981 0.7372 0.7264
CatBoost 10.8500 317.1721 17.6428 0.7442 0.7434

ET 10.0091 302.2621 17.0227 0.8561 0.7091
XGBoost 10.8536 341.6021 18.3330 0.7231 0.7193

Random forest 10.7280 343.3068 18.3815 0.7244 0.7079
Ridge 12.7954 387.4913 19.5019 0.6897 0.8859

After the hyperparameter tuning of every ML model, some relative important hyper-
parameters are shown on the Table 3. These hyperparameters will then be applied to every
ML model to make predictions.

Table 3. Selected best hyperparameters for ML models after training phase.

Model Hyperparameters

GB max_ f eatures = 0.785 min_sample_lea f = 1 n_estimator = 287
min_samples_split = 5

CatBoost learning_rate = 0.03 depth = 5 random_strength = 35
l2_lea f _reg = 0.2

ET max_depth = 11 max_ f eatures = 0.4 n_estimator = 137
min_samples_lea f = 2

XGBoost max_depth = 7 learning_rate = 0.0131 n_estimator = 292
subsample = 0.638

Random forest max_depth = 6 ccp_alpha = 0 n_estimator = 300
max_ f eatures = 0.5164

Ridge alpha = 0.96 copy_X = True normalize = True
solver = auto tol = 0.001

The ML models are evaluated on the training set using fore-mentioned scoring metrics.
The ET algorithm has the best performance on the all five metrics comparing to other five
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models. After training the model, a model with the best hyperparameters of every ML
model can be used to predict the final output on the testing dataset. Table 4 shows the
metrics on the testing set of six models.

Table 4. The results on testing dataset for 6 models. AS in the training set, ET has the best
performance.

Model MAE MSE RMSE R2 RMSLE

GB 10.8295 336.6787 18.3488 0.7187 0.7481
CatBoost 10.6095 340.0453 18.4403 0.7159 0.7088

ET 9.2742 288.6199 16.9888 0.7452 0.6585
XGBoost 10.1959 310.3118 17.6157 0.7408 0.7003

Random forest 10.3164 349.7810 18.7024 0.7078 0.6978
Ridge 13.3635 439.6418 20.9676 0.6327 0.9129

The result on the testing set is very similar to the training set, the ET algorithm
outperforms the other five models in terms of all scoring metrics, it can be concluded that
the ET has given the best response and an excellent result in the testing phase. So the ET
algorithm will be chosen as the model for model interpretation and predictions.

Figure 4 demonstrates a residuals plot for the ET model. It shows the difference
between the observed value of the target variable (y) and the predicted value (ŷ).

Figure 4. The residuals plot shows the difference between residuals on the vertical axis and the
dependent variable on the horizontal axis, allowing us to detect regions within the target that might
be susceptible to more or less error. The Histogram on the right side of plot is a common way to
check that residuals are normally distributed.

3.4. Global Model Interpretation Using SHAP

Global model interpretation means understanding the distribution of the prediction
output based on the features, answering the question “how does the trained model make
predictions”. The SHAP framework provides two ways to visualize global interpretation,
feature importance and summary plot.

The idea behind SHAP feature importance is simple: features with large absolute
Shapley values are important. After calculating the absolute Shapley values per feature
across the data, the features will be sorted by decreasing importance. After pre-processing,
the training dataset contains 282 features. The contribution of each individual feature
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is horizontally stacked and summed up. In general, it indicates that para_1 is the most
important feature followed by attribute para_2 and para_3. These three features have
greater mean SHAP framework than others. Changing the value of para_1 can cause
the alteration of predicted output on average by 4.26. On the other hand, the very last
271 features contribute only insignificantly to the final prediction (sum of the top three
parameters is higher than the sum of the combined 271 features), compared to the top
3 features. The result is shown in Figure 5.

Figure 5. SHAP feature importance of ET model for the training data set. After pre-processing
(polynomial feature engineering) of input features, the number of features increased from 51 to 282.

The feature importance plot is useful, but contains no information beyond the im-
portance. For a more informative plot, the summary plot (Figure 6) provides feature
importance with feature effects. Each point on the summary plot is a Shapley value for a
feature and an instance. The position on the y-axis is determined by the feature and on the
x-axis by the Shapley value. The color represents the value of the feature from low to high.
Overlapping points are jittered in the y-axis direction, the features are ordered according
to their importance. From Figure 6 we can tell that a high level of the attribute para_1
(excessive content of organic binders in the mold material) and para_2 (exceedingly high
fine particles content in the mold material) content have an impact on the final prediction.
The high comes from red color, and positive is shown on the x-axis. Similarly, it can be
assumed that the attribute para_3 is negatively correlated with the target variable.
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Figure 6. SHAP summary plot of ET model for the training dataset.

4. Discussion and Conclusions

In this paper, it was shown how production data from the foundry environment can
be used to develop data-driven prediction models for casting surface defects. To provide
a basis of comparison, 6 ML regression methods were evaluated. Their hyperparameters
were tuned carefully. Before training and testing, the dataset was first processed. On the
used test data, the ET showed the best prediction results for the expected amount of rejected
components (R2 = 0.75, RMSE = 17 kg). The interpretation of the models using the SHAP
framework provides a conclusive statement about the reasons for the casting defect metal
penetration. Based on the SHAP framework, the prediction model indicates that the process
variables para_1 (excessive content of organic binders in the mold material), para_2 (too
high fines content in the mold material), and para_3 (insufficient gas permeability of the
mold material), which all are related to measured mold quality, are some of the main
influencing variables for the casting surface defect to occur. This is in line with information
from the literature [9] and, additionally, the everyday experience of foundry engineers. In
this respect, it can be seen that machine learning can provide a reasonable modeling of
the production process. In this case the fact that these mold related parameters are critical
and play a major role in these casting defects are well known, but the fact that the model
is correctly identifying these critical chemical and physical parameters from the dataset
shows the potential of the application of machine learning in the foundry environment.
However one major problem is the consistency of the used data. From evaluation of the
R2-value, it is clear that there must be more influencing parameters on the casting surface
defects, that were not investigated, most likely due to the fact that they are not measured
or well recorded and, therefore, not included in the given dataset. The biggest problem is
most likely the quality of the data, for example, sand quality related data are only measured
from certain sand samples taken out of the production process. At the moment it is not
possible to have a conclusive in-line quality measurement of the used sand, therefore only
the samples that were tested in the lab could have been evaluated. Overall it can be said
that a more comprehensive model could be developed by implementing more process data,
especially more accurate data from the sand quality testing, into the modeling.

Conclusions

In the foundry industry often times the reasons for bad quality production results
are not well known, understood and or appear seemingly random. Machine learning
could help with this as it is a conclusive and powerful tool to analyse big and complex
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data. The foundry environment with its data from the multiple sub-processes such as
melting, sand preparation, and mold production, fits very well into the definition of
complex data. However, for a practical use in the daily production environment and
even some kind of automated control loop that helps adjusting the manufacturing process
many challenges and problems in the foundry environment need to be resolved. One
challenge for the effective use of machine learning in this environment is the lack of
data collection and access. The foundry industry is characterized by a strong mixture
of new and existing plants in a factory environment that has often grown historically.
In these heterogeneous brownfield environments, complete digitization of production
is associated with challenges, such as analog communication paths, lack of connectivity,
media disruptions, and a large number of different machine controls [31]. This results in
the following pain points for the foundry industry: data acquisition is often still performed
manually even in key processes; fully automated, cross-system data acquisition exists
only in the rarest cases; media discontinuities exist between existing systems and manual
information acquisition; data quality is often highly heterogeneous and not sufficiently
good for data-driven optimization; effective data utilization of process data often does not
take place or only to a limited extent; process optimization is based on assumptions and
experience, trial-and-error and, therefore, multi-parametric relationships are not or only
very challengingly recognizable. This leads to high scrap rates, often times low process
stability and, therefore, poor resource and energy efficiency. In the future, foundries will
need very flexible, resilient, and efficient production. The pain points described above give
rise to the overriding problem that a large number of efficiency potentials are currently not
being exploited. On the one hand, these are of an economic nature, since production costs
can be reduced, for example, through process optimization and a reduction in the scrap rate.
On the other hand, there is considerable potential in the area of ecological sustainability,
which can be leveraged, for example, through process optimization for reduced energy
consumption, but also through targeted energy-optimized plant layout. In order to exploit
these efficiency potentials and as described above to meet the increasing requirements, the
complete digitization of production and use of machine learning seems the next step in
optimizing production processes.
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