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Abstract: Self-induced internal corrosion stress transgranular cracking is investigated theoretically
and experimentally linking grain boundary wetting (GBW) and grain boundary diffusion (GBD) to
improve the ability to reveal the micro mechanism of crack in compositional gradient-structural inter-
metallic materials. Theoretical analysis shows that the grain boundary wetting and diffusion induce
the diffusion-coupled dynamic internal stresses, and their interaction leads to crack nucleation. The
experimental results show a stress concentration zone have been established at the grain boundary
interface where the cracks preferentially nucleate and then extend through the inside of the grain to
both sides, forming a typical transgranular fracture.

Keywords: corrosion stress; transgranular fracture; grain boundary wetting; grain boundary diffusion

1. Introduction

The fracture phenomena in polycrystalline metals have inspired renewed interest in
the mechanism of cracking when solid metals are in contact with liquid metals. Especially,
in some material-processing scenarios, such as joint processes [1–4], galvanizing [5–7], heat
treatment [8], smelting and solidification [9–11], hot working [12], nuclear industrial [13],
microelectronics, data storage technology [14], corrosion science [15–17] etc. The under-
standing of the fracture mechanism will provide useful insights into the strengthening
mechanisms of materials with novel structures or new perspectives on designing materials.
Usually, this striking and interesting catastrophic intergranular failure is usually known
as liquid metal embrittlement (LME) [18] and stress corrosion cracking (SCC) [19]. As of
today, these two ways reducing the mechanical properties of structural materials ways
are studied separately. A nanometer thick liquid metal film along the grain boundary
was taken as one of the significantly important characteristics for embrittlement in many
typical LME systems [20–23]. SCC is a characteristically complicated process and subtle to
some processes which create stress concentrators combined with the critical local solution
chemistry for cracking [16,19,24–28]. Mechanically and morphologically, two kinds of
fracture result in the propagation of cracks in presence of liquid metal and stress or metallic
or nonmetallic ions and stress [29], and a large number of cracks grow along intergranular
film or notch and intergranular fracture is presented.

Studies aforementioned were mainly involved in the intergranular crack while the dy-
namic transgranular corrosion crack gained less attention and no intermetallic compound
(IMC) formed at interface. IMCs, which are composed of long columnar grains and normal
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to a composition-gradient interface, can be formed at the interface in some experiments
of liquid metals contacts with solid metals [30–34]. Usually, the formed intermetallic will
improve the corrosion resistance and prevent corrosion fracture, yet cracks parallel to the
interface can be found. This is very different from the general LME and SCC cracks. The
direct contact between the solid metal and the liquid metal is detached by an intermetallic
film and the preliminary contact is removed, and the LME does not occur [18,35]. It is likely
that the cracking tendency in IMC layer is dependent on the composition of alloy, because
of variation in diffusion characteristics such as the magnitude of the composition range
and the interfacial curvature variation between the liquidus and solid. The phenomenon
is not understood hitherto even qualitatively. On the other hand, previous research was
mainly focused on cracking performance on a macro-scale. The simple reason given is that
the excessive local residual stress developed in such intermetallic compounds film but no
detail and essential causes about the internal stress. The important role played by residual
stresses in the posterior crack behavior of the material is now not well known. Lack of
in-depth understanding of the root causes of cracking will be an impediment to designing
engineering parts for safety-critical applications.

The stress-assisted embrittlement is closely related to chemical interdiffusion driven
by the chemical potential linking to the synergistic effects of impurity diffusion motivated
by stress gradient and moving of GB [36–39]. Otherwise, a significant stress may generate
in oxide film on account of the thermal protective materials during oxidation or the scale
growth for superalloy [40–42]. Residual stresses may be emerged mainly in the proximity of
surface in metallic materials, and cracks will, in a number of instances, be originated in the
centers of grains and out of any neighboring GBs [43]. Consequently, the local stress state
is pertinent to the cracks nucleation near the surface, and it can even have an effect on the
growth of macroscopic (engineering) cracks. GB cracking controlled by surface and grain
boundary diffusion (GBD) have been also reported [44–46]. What’s more, crack occurs
primarily by intergranular at hardly applied stress levels [47,48]. The crack formation
was evidently linked with diffusion of melt into GB, causing the mechanical stresses on
account of the atomic volumes of difference between matrix and diffusant [22]. All GB
migration, which was taken as a significant component to the evolution of polycrystalline
microstructures, necessarily creates mechanical stresses/strains [49]. The reasons for this
are multifaceted, but, one of the contributing factors for intergranular cracking may be
stress normal to the GB [50], the normal stress will be generated during the GBD process
resulting from the dependence of grain boundary energy on composition [51]. These results
indicate clearly the crucial role played by the stress state of the GB which may be useful
in engineering, but they do not give any insights into the microscopic mechanisms and
experimental evidence of crack growth.

In this paper, based on the systematic metallurgical interaction between the IMC
layers formed in situ at interface and TiAl melt, the micro causes of the transgranular crack
nucleation and growth of cracks coupling with GB wetting and diffusion are investigated
from theoretical and experimental. The dynamic evolution of internal stress coupled with
GB wetting and diffusion is analyzed in theory firstly, introducing a framework to compre-
hend the internal stresses coupled with diffusion in affecting the posterior crack behavior
of the material by focused considering matter flow in dynamic grooves. Here the emphasis
is on the stresses interacting at grain boundaries, as they are probably the most relevant in
the context of self-induced internal corrosion stress transgranular cracking (SICSTC). The
mechanism of transgranular cracks paralleling to the interface is obtained by analyzing
the evolution of internal stress coupled with the GBD in grooves under different corrosion
time, and a crack mechanism map has been revealed. It provides a deep understanding of
the root causes of cracking and pave the way for developing new engineering technologies,
such as surface modification, a joining process and smelting technology.
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2. Experiment

The Ti-47Al (at.%) alloy samples were supplied in the form of a cylindrical cast ingot
which was produced by induction skull melting (ISM) under an argon atmosphere, with the
raw materials were shown in Table 1. To promote uniformity, the ingot is remelted at least
five times. The cast ingot had exact chemical compositions of Ti-47.05Al (at.%) by EPMA
analysis. The ingot was cut into bars with size of 8 mm in diameter and 90 mm in length by
wire electrode cutting, and the oxide on the surface were removed to meet the experimental
requirement by abrasive paper. Placing each bar into a Nb container (Table 1) with external
diameter 12 mm, inner diameter 8 mm and surface finish 1.6. The Nb container was fixed in
the setup such as in Figure 1, and vacuum to 5× 10−3 Pa, then filled with high-purity argon
(0.5 MPa) as a protection. At a heating rate of 50 ◦C/min to 1600 ◦C and keeping different
times, the samples were quenched quickly, the solidified bars were cut transversely and
then ground by 60–2000 grit papers, polished using diamond solutions (2.5 µm and 1 µm)
and finally polished with a 0.04 µm colloidal silica suspension. A ZEISS scanning electron
microscope (SEM) (Carl Zeiss, Merin compact, Germany) equipped with an Aztec Energy
EDX (Oxford Instruments, UK) was employed to examine the microstructure and the
major elements concentration of the samples. The electron probe microanalysis (EPMA)
microscope (JEOL JXA-8230, Japan) with a working distance of 11 mm at 20 kV was used
to measure the elemental distribution of the samples.

Table 1. Component and form of materials used in experiments.

Material Form Chemical Composition (wt%)

Ti (bala.) Sponge Fe Si Cl C N O Mn Mg H
0.015 0.009 0.047 0.009 0.005 0.047 0.003 0.004 0.001

Al(bala.) Lump Fe Si Ga Cu Mg Zn
0.1 0.03 0.02 0 0 0.01

Nb a (bala.) Tube
C N H O Fe Si Mo W Ti Ta Ni Hf Zr
8 49 3 110 15 30 32 140 <5 500 <5 20 32

a Chemical composition ≤ (ppm wt).
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3. Results

In order to figure out the characteristics of cracking, the representative microstructure
of the fracture surface from the corrosion samples were examined by scanning electron
microscope (SEM). Figure 2 shows the crack morphology of the interface subjected to
SICSTC, and cracks are mainly found in ε+O2-IMC layer Figure 2a,b and δ+β-IMC layer
Figure 2c–f, and the corresponding chemical formula revealed in Table 2. Figure 2a shows
the crack appearance of the V-grooves suffered from corrosion stress, in which it can be
found that the crack propagates through the columnar IMC grains continuously and no
obvious crack branches can be detected which is a typical characteristic of transgranular
crack, with the direction of crack propagation paralleling to the interface. Moreover, the
continuous growth of transgranular cracks was located in two thirds of the V-grooves depth
and parallel to the interface near the groove tip. It is interesting to note that transgranular
cracks are clearly visible at the groove boundaries and ambiguous inside them, implying
the transgranular cracks are preferentially initiated at surface and propagated across the
GB. In additional, the cracks seem to joint to a straight line. For 0.5 h corrosion, obvious
wetting channels appear along the grain boundaries in columnar ε+O2-IMC grains. The
crack formed at 0.8 times of the wetting channel length and no branches, which is per-
pendicular to the wetting channel and parallel to the interface, demonstrating an obvious
transgranular crack. It is interesting to note that the crack is wider at grain boundaries than
in columnar grains, indicating that the crack nucleates at the grain boundary and extends
across the interface again. Compared with Figure 2a, the crack has a bigger width and
more unambiguous. In contrast, the cracks traverse the wetting channels which are not
vertical to the interface show a slight deflection and seem to have a tendency to be normal
to the wetting channel, with the width of the cracks is smaller, as shown in Figure 2b. Else,
there seems to be a microcrack perpendicular to the wetting channel boundary which is not
vertical to the interface. As the δ+β-IMC layer is corroded, the location of the crack gradu-
ally shifts towards the Nb container and cuts though the bottom of U-grooves, as depicted
in Figure 2c. It can be clear to see that the continuous crack which traverses the hump-like
δ+β-IMC grains propagating parallel to the interface and no crack branching is detected.
Which is accordance with Figure 2a,b. It is note-worthy that the crack is perpendicular to
the intersection where the flat wall meets the curved boundary of U-groove tip after a slight
deflection during its extension. The crack is more pronounced at the edge of the U-groove
root compared with Figure 2a,b. It can be inferred that the crack nucleated at the interface.
For 1.5 h corrosion, the crack can be found at the bottom of the widened U-grooves and
traverses the new formed concaves, propagating across the hump-like δ+β-IMC columnar
grain and paralleling to the interface, as disclosed in Figure 2d. It is worth to note that
a slight crack deflection is detected in the U-groove, the crack is more obvious near the
boundary with the advent of the concave. Experimental evidence cited here, as well as
described in Figure 2c, supports a contention that the crack originates the boundary. When
the corrosion time reaches two hours, a significant crack extends along the bottom of the
U-groove and traverses through the columnar IMC protuberances, indicating an explicit
transgranular crack. It is essential to uncover that the crack originates from the boundary
on account of the width of the crack at the interface is wider than that within the grain, as
portrayed in Figure 2e. It is note-worthy that two new V-grooves seem to be formed at the
bottom of the U-groove and the crack goes though the root of the two new V-grooves. By
comparing the results of the crack width near the boundary and inside the groove, the crack
originates the boundary is proposed. After 2.5 h for corrosion, Figure 2f shows that the
crack extends along the bottom of the broadened U-groove and across the slender columnar
IMC grain. Compared with Figure 2e, the width of the crack seems to increase. Cracks
grow through both phases and no preferable path, indicating no remarkable toughness
difference between δ and σ phase. Additionally, a sheet coating seems to have formed on
the bottom of the broadened U-groove, which necessarily accompany the formation of
cracks, reducing the rate of crack formation and increasing times to failure. This is coherent
with Ainslie’s concept [53].
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Table 2. The phases and the correlative chemical formula.

Phase Chemistry Formula

δ Nb3Al
σ Nb2Al
ε (Ti1-xNbx)Al3, TiAl3(h), NbAl3

O2 Ti2NbAl
β (Nb)ss

Experimentally, it is clear from microstructure observations on fracture pattern that the
path of crack is predominantly transgranular, though the morphology of grooves changes
with the corrosion time. It can be concluded that the original crack core is a cleavage
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crack at the GB interface which traverses two neighboring columnar IMC grains and, upon
meeting another cleavage crack at the center of IMC grains, interconnecting joint thereafter.

Fracture surface of a sample have exhibited a cleavage crack morphology suggesting
the presence of a continuous transgranular crack along the interface, as shown in Figure 3.
Figure 3a shows a smooth macro fracture surface between the Nb container and the TiAl
melt. Figure 3b,c show the morphology of crack surface inside the Nb container and
the surface of TiAl sample, respectively, demonstrating a cleavage crack with the river
pattern morphology.
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of TiAl sample.

4. Discussion
4.1. The Source of the Force

Based on the analysis in Section 3, the crack is always transgranular while its location
changes with the evolution of interface morphology, which is very different from other SCC.
Based on the previous study [54], three IMC layers consisting of many small and parallel
columnar crystals with a certain surface curvature formed on the surface of Nb container,
as shown in Figure 4. This interfacial configuration has instability, which is coincident
and consistent with other studies [55,56]. The macroscopic behavior is that the TiAl melt
corrodes the Nb container in an immersive manner. The root of the GB propagates in a
diffusion regime and widens in a dissolution regime, which is inferred to experience a
liquid grooving [57]. Thermodynamically, the morphology of the GB grooves will evolve
spontaneously (from V-groove to U-groove) [58]. Therefore, a systematic parametric study
is carried out in this section to investigate the factors affecting the transgranular cracks.
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Fluctuations can occur at grain boundaries when the TiAl melt corrading the Nb
container, as shown in Figure 4. Columnar IMC grains with even length 2a and height
h perpendiculars to the substrate [52]. It is assumed that this initial configuration is one
of equilibrium with the same uniform curvature on the surface. This curvature must be
given by:

K0 =
cos θ

2a
(1)

where θ is the dihedral angle at the intersection of the GBs, and the concave surfaces are
negative. Therefore, the residual stress in the groove root can be obtained by:

σ0 = γs(sin θ/h + K0) (2)

where γs is the surface tension of the related IMC layer.
With the advent of a concentration gradient, the diffusive flux toward the region of

maximum stress can be driven by the chemical potential [41]:

∇µ = −Ω∇σ (3)

where ∇σ is the relevant stress gradient.
When the IMC layer is in contact with the TiAl alloy liquid, The Equation (3) can be

concretized as:
µB = µ0 − σ(y)Ω (4)

µS = µ0 − K(s)γsΩ (5)

where the subscripts B and S represent the boundary and surface quantities, respectively, y
and s are coordinates along the boundary and the surface. µ0 is a standard potential, σ(y)
is the local stress normal to the boundary, Ω is the atomic volume, and K(s) is the local
surface curvature.

Under the chemical potential, atoms would move into the GB from the interface, and
the flux of atoms, J, is given by the Nernst-Einstein equation:

JB(y) = −
δBDB
ΩκT

[
dµB(y)

dy

]
(6)

JB(S) = −
δSDS
ΩκT

[
dK(S)

dS

]
(7)
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where δBDB and δsDs signify the diffusivities of the boundary and surface, k is Boltzmann’s
constant and T is the absolute temperature.

Combining Equation (3) with Equation (4), the fluxes along the GB (y direction) in
Figure 5 are given by:

JTi+Al(y) = −
δTi+Al DTi+Al

ΩκT

[
dµTi+Al(y)

dy

]
= − δTi+Al DTi+Al

ΩκT

[
dσ(y)

dy

]
(8)

JNb(y) = −
δNbDNb

ΩκT

[
dµNb(y)

dy

]
= − δNbDNb

ΩκT

[
dσlb(y)

dy

]
(9)
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The diffusion concentration in the GB has a subscript gb, and those of in surface with a subscript s
and in TiAl melt with a subscript l, respectively.

This process is closely related to the GBW because of the diffusion along the prewetted
GB is fast enough, the stresses inside the prewetted GB phase are inclined to a steady
state [54]. The corresponding normal stress along the GB can be expressed as [14]:

σGB(y, t) = γsk(0)− E∗
∫ ∞

0
K(y, z)

∂ω(z, t)
∂z

dz (10)

∂w(y, t)
∂t

=
−δDgbΩ

kT
· ∂2σ(y, t)

∂y2 (11)

where E∗ = E
4π(1−ν2)

is the equivalent elastic module, and:

K(y, z) =
1

y− z
+

1
y + z

− 6y

(y + z)2 +
4y2

(y + z)3 (12)

The Nb dissolution from the Nb container is equal to the dissociation of Nb atoms
from IMC layer to the IMC layer-TiAl melt interface and the mass transfer of Nb atoms
through the adjacent boundary layer to the bulk TiAl melt. Straumal et.al’s [58] research
indicated that pressure had a significant influence on grain boundary wetting and solute
concentration in it. Normal to the GB (z direction), on the other hand, a pressure P (the
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interfacial stress) would be in equilibrium with it if a segment of surface with an isolated
curvature K based on the Gibbs-Thompson formula:

ln(
p
p0

) = K · γsΩ
kT

(13)

where p0 is the vapor pressure when K = 0 (a plane surface), Ω is the molecular volume,
γs is the surface-free energy per unit area, k is Boltzmann’s constant and T is the absolute
temperature. Therefore, the stress normal to the surface will therefore be coupled with the
surface curvature. At the beginning, we can assume that the depth of the groove is only a
few atoms distance, Equation (7a) can be approximated:

∆p
p0

= K · γsΩ
kT

(14)

According to the kinetic theory of gases [59], the flux of atoms emitted by segment of
surface with curvature K is:

JNb
N =

∆p√
2πMkT

= K · p0γsΩ

(2πM)
1
2 (kT)

3
2

(15)

where M is the weight of a molecule.
Yost et al. [60] demonstrated that a normal stress during GB thermal diffusion given by:

σn(z, t1) = σ0

[
1 + β exp(− z

a
)
]

(16)

where β = 1–2 is the stress concentration factor. The distribution of forces was consistent
with Klinger et al.’s work [51].

Compared with Figure 5, some differences of diffusion flux can be found in U-type
GB but flux along the GB (y direction), as shown in Figure 6.
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Figure 6. Illustration of diffusion of Al, Ti and Nb atoms along the U-type GB in the solid IMC phase
for steady-state dissolution controlled by diffusion. The diffusion concentration in the GB has a
subscript gb, and those of in surface with a subscript s and in TiAl melt with a subscript l, respectively,
x: distance from solid surface. δ: effective thickness of diffusion layer.

For a certain point along the flat, free grain boundary surface, the local chemical
potential is:

µ(x, t) = σb(x, t)Ω (17)
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and the atom diffusion flux per unit out-of-plane thickness there is:

j(x, t) = − δbDb
kTΩ

· ∂µ(x, t)
∂x

(18)

Combining Equations (9) and (10),

j(x, t) =
δbDb
kT
· ∂σb(x, t)

∂x
(19)

On the other hand, the diffusion flux is proportional to the gradient of its concentration,
it is assumed that the steady-state rate of dissolution is controlled by diffusion.

j(x, t) =
Db
δb
· (Cs

i − Cb
i ) (20)

∂σb(x, t)
∂x

=
kT
δ2 (C

s
i − Cb

i ) (21)

σb(x, t) =
kT
δ
(Cs

i − Cb
i ) (22)

Therefore, based on Equation (10), the lateral (x direction) flux of elements can be gotten,

JNb
gb = − δNbDNb

kTΩ
·
[

∂µ(x, t)
∂x

]
(x=δNb)

(23)

JTi+Al
s = − δTi+Al DTi+Al

kTΩ
·
[

∂µ(x, t)
∂x

]
(x=δTi+Al)

(24)

And the lateral stresses caused by diffusion can be obtained according to Equation (14):

σn =
kT

δAl+Ti
(CAi+Ti

gb − CAi+Ti
s ) (25)

σb =
kT
δNb

(CNb
s − CNb

gb ) (26)

Similarly, assuming that µ
(gb)
r = µ

(s)
r at groove root, we can acquire:

σr = γsKr (27)

where γs is the surface free energy at IMC layer and K is the curvature. In addition, the
interfacial vector flux at the groove root,

∆J = Jgb
r − Js

r (28)

where Jgb
r means the component into the root and Js

r out of the root.
Theoretically, self-induced internal corrosion stress is mainly affected by chemical

potential gradient, interface curvature variation and interfacial diffusion. Combined with
the above analysis, the stress in the V-groove is mainly associated with the chemical
potential gradient and the change of the interface curvature, and that of in U-groove is
mainly involved in the curvature variation and the GB diffusion.

4.2. Crack Mechanism Coupling with Diffusion in Dynamic Grooves

Taking diffusion is driven by chemical potential (concentration) gradients and pressure
into consideration according to Section 4.1, the diffusion flux J can be written as:

J = −DX
i
(∇CX

i
) + JX

N + ∆J, [(i = GB, l, S), (X = Al + Ti, Nb)] (29)
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where DX
i is the corresponding diffusion coefficient of X in i at temperature T, CX

i is the
concentration of X in i.

Based on the Equation (29), the local stresses caused by concentration and pressure
gradient play a significant role in the diffusion process from both grain boundaries and
adjacent grains. However, it is hard to obtain the related parameters (the pressure factor and
diffusivities) in diffusing process. It can be only assessed qualitatively from experimental
to understand the relationship between mechanical and material transport, the symmetric
boundaries and the identical concentration value at the external boundaries are taken into
account in dynamic grooves.

4.2.1. Mechanical Interaction and Crack Mechanism in V-Grooves

Figure 7 shows the SEM micrograph of a V-groove (such as in Figure 2a) and SEM-
EDS lines scanning of the relevant elements. It can be seen that the penetration of Ti
and Al elements along the GBs is an of intrusive nature accompanying with an obvious
curvature K1, resulting in a drift of the neighboring grains away from each other, as shown
in Figure 7a. Figure 7c,g reveal that Al and Ti elements have positive concentration gradient
along line 1, 2, 3 (in Figure 7b), a negative for Nb. Hence, JAi+Ti

l > JNb
l > 0 can be obtained

based on Equation (8) and (9), and γGB > 2γlb. Therefore, a stress driven diffusion flux
of both types of atoms into the GB owing to a large concentration difference at groove
interface. Figure 7d,f,h depict that the concentration gradient of Al, Nb, Ti elements can
be gotten from the V-groove center to both sides along the lines 4, 5, 6 (in Figure 7b), and
the largest concentration gradient is near the crack. A positive concentration gradient
for Al and Ti elements indicating they diffuse into the boundary and corrode it, that
of Nb is negative showing it is dissolved. It is logically inferred that JAi+Ti

s > 0 and
JNb
gb > 0 coupling with σn and P based on Equations (14) and (16), respectively. It should be

noted that a small concentration gradient and short transporting period can be considered
at GB surface owing to a relatively small curvature K1, causing a localized corrosion stress.
Compared Figure 7d with Figure 7f, it can be found that the center concentration of Al
element decreases firstly from line 4 to line 5, and then increases from line 5 to line 6. The
biggest concentration of Ti occurs at the mouth of the V-groove, then decreasing gradually,
while that of Nb almost has an opposite trend. This process represents diffusional drift
under the condition of JAi+Ti

l � JNb
l > 0 coupling with a large γGB > 2γlb. It is concluded

that the interaction of internal stress will occur at the boundaries of V-grooves under the
driving of chemical gradient or thermal diffusion.

Consequently, the mechanical interaction coupling with GB diffusion can be derived
and the stress concentration area can be obtained based on the previous analysis, as shown
in Figure 8a. It is logically uncovered the stress concentration area is located in 0.63 depth
of the V-groove where the crack is preferentially initiated and traverses the grain boundary
and the columnar as illustrated in Figure 8b. This is indirect coincident and consistent with
Klinger’s opinion, the maximum tensile stress is located in 0.62 depth of the V-groove [51].
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To elucidate the mechanism which is responsible for the formation of crack in the
wetting channels (such as in Figure 2b), EPMA was employed to analyze the map distri-
bution of the relevant elements, as presented in Figure 9. A clear crack traverses through
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0.82 times the depth of the wetting channels and columnar δ+σ-IMC grains and elongates
paralleling to the interface, as shown in Figure 9a. The crack deflects slightly when it en-
counters the Nb-rich phase near the wetting channel based on Figure 9a,d JAi+Ti

l > JNb
l > 0

can be obtained combining with the diffusion of Ti, Al and Nb along the GB based on
Equation (8) and (9), indicating diffusional drift under the condition of JAi+Ti

l >> JNb
l

coupling with a larger, which is similar with that of V-groove. The reason is that Ti, Al
atoms diffuse into the Nb container wall (Figure 9b,c), and Nb atoms have an opposite
direction (Figure 9d). It is implied that the solid material can be dissolved at penetration
front. Otherwise, the two-dimensional compositional contour map across the interface
reveals that an overt elements concentration gradient of Al and Nb elements exist while
that of Ti elements is ambiguous on account of a low solubility of Ti elements in Nb-Al
compounds [61]. This proves that the IMC layers generated in situ at the interface have
a component concentration gradient, which is supportive for Figure 4 experimentally
again. Based on lateral diffusion of Ti atoms in Figure 9b, JAi+Ti

s > 0 and JNb
gb > 0 coupled

with σn and σb, respectively, resulting in widening the groove channels. Otherwise, other
experimental studies have shown that the layer thickness of the wetting channel is very
small, exhibiting a weak curvature (K < 0) with an opening angle at the tip of the pene-
tration front in bicrystal [62], resulting in a pressure P based on Equation (14). Taking an
approximate treatment, the wetting angle is wedge-shaped feature, as expected. Therefore,
the mechanical interaction coupling with GB diffusion as shown in Figure 10a. The stress
level is higher than the prior situation on account of a bigger curvature K2 at which the
GB can hardly endure excessive stresses and crack. It is logically concluded that the stress
concentration area is located in 0.82 depth of the wetting channels where the crack is
preferentially initiated and traverses the GB and the columnar, as revealed in Figure 10b.
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Based on the previous experimental analysis, it is demonstrated that the nucleation
and extension of the crack can be directly related to the depth of the V-grooves.

4.2.2. Mechanical Interaction and Crack Mechanism in U-Grooves

The SEM micrograph of crack in a U-groove (such as in Figure 2c) and the relevant
SEM-EDS lines scanning of the relevant elements along the dot lines shown in Figure 11.
It can be seen that the transgranular crack without any branches extends continuously
between K1 and K2 paralleling to the interface and deflects slightly near the GB, as portrayed
in Figure 11a. Otherwise, it is worth to note that the width of the crack at the boundary
appears to be wider than that of in IMC grains and interior of the groove, implying the
crack source is in the boundary. The concentration of Al, Ti elements deceasing along
the GB (Figure 11c,g), respectively, and that of Nb has an opposite trend (Figure 11e),
demonstrating JAi+Ti

l > JNb
l > 0 and γGB − 2γlb > 0. It is worthy of noting that the

concentration of Nb element along line 1 and line 4 are obviously larger than those of
line 2 and line 3, showing that Nb atoms enter the TiAl melt along the interface directly.
An obviously decreasing concentration gradient for Ti and Al elements can be obtained
during the lines (Figure 11c,g) along the GB, while a stable concentration gradient for Nb
element (Figure 11e). It can be logically inferred that a stable boundary layer has been
formed near the interface. Additionally, the crack cuts right across the plane where the
curvature of GB has a transition, therefore, the crack initiates at points where the curved
section (K = 0) with two pressures (P1, P2). The lateral concentration gradient still exists
at the range of 0.5–2 µm based on Figure 11d,f,h. According to Equations (23) and (24),
JAi+Ti
s > JNb

gb > 0, σn > 0, σb > 0. The center concentration of Al element increases firstly
from line 5 to line 7, and then decreases from line 7 to line 8, while that of Nb and Ti
decreases from line 5 to line 6, then increases suddenly and decreases again by comparing
Figure 11d,f,h. It is demonstrated that the concentration gradient of Al, Nb and Ti are the
largest in the proximity of the crack where is the stress concentration area. What’s more,
the concentration of Al and Ti elements along line 5 seems to be higher than those of line 6,
revealing ∆J > 0 at the groove root and σr > 0.

The mechanical interaction coupling with GB diffusion can be obtained based on
the analysis of Figure 11, as shown in Figure 12a. It is logically induced that the stress
concentration area is located in the boundary layer region of K = 0 between K1 and K2.
Compared with Figure 11, the stress level is higher resulting from GB surface diffusion
which results in three different curvatures. Figure 12b reveals that the crack initiates
preferentially at the boundary region of K = 0 between K1 and K2 and traverses the grain
boundary.
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Figure 13 shows the SEM micrograph of U-groove with bigger diameter to depth
ratio (such as in Figure 2d) and SEM-EDS lines scanning of the relevant elements. The
transgranular crack without any branches extends continuously paralleling to the interface,
slightly crack deflections can be found at the GB and inside the groove, as portrayed in
Figure 13a. Otherwise, it is note-worthy that the crack has a bigger width at the boundary
where the curved section (K2 < 0, P2 > 0) at root meets the flat walls (K1 = 0) than that
of in IMC grains and interior of the groove, demonstrating the crack source is located
in the boundary and at a point where the curved section (K2 < 0) meet the flat walls
(K1 = 0). The concentration of Al, Ti elements deceasing along the GB Figure 13c,g from
1.5 to 0 µm, respectively, and that of Nb has an opposite trend (Figure 13e), indicating
JAi+Ti
l > JNb

l > 0, γGB − 2γlb > 0. Compared with Figure 13, the concentration of Al, Ti
elements has a slight reduction from 5 to 1.5 µm along the GB, while that of Nb is almost a
constant, revealing the U-groove has two flat boundaries paralleling to each other in the
range of 1.5 to 5 µm. This confirms K1 = 0 and a stable boundary layer is formed near the
flat wall experimentally. In contrast, the lateral concentration gradient still exists at the
range of 1.5–2.75 µm based on Figure 13 c, e, g. According to Equations (23), (24) and (26),
JAi+Ti
s > JNb

gb > 0, σn > 0. Additionally, the central concentration of Al element increases
from line 5 to line 7, while that of Nb and Ti almost has a opposite trend by comparing
Figure 13c,e. It is shown that no atomic enrichment zone at the U-groove root, implying
∆J ≈ 0 and γGB − 2γlb > 0 but less than those of in Figure 11. As per reference [63], the
stresses in GB are connected directly with a difference of superfacial tension and that can
be estimated by ∆σ ≈ ∆γ

a = γb−2γlb
a (Where α is the width of GB) which decreases with

the increase of α. The concentration evolution of Ti element is in accordance with that of
Al, as shown in Figure 13g. The mechanical interaction coupling with GB diffusion can be
obtained, as shown in Figure 14a. The bigger K2 than in Figure 12, the larger JAi+Ti

s coupled
with a greater P2 + σn. Therefore, the stress concentration area is located in the curved
section (K2 < 0) where the crack initiates preferentially and traverses the grain boundary
and the IMC columnar, as presented in Figure 14b. Which matches the experiment perfectly,
as shown in Figure 2d or Figure 13a.
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Experimentally, the nucleation and extension of the crack can be indirectly analyzed
coupling with the GB diffusion, which is consistent with theoretical analysis in Section 4.1.
It is concluded that the cracks nucleate at the boundary and then propagate to both sides
to form transgranular cracks whatever the morphology of the grooves evolves.

4.3. Passivation and Crack Prediction

As discussed in the previous section, the stress concentrates at the bottom of the
U-groove finally when the curvature Kr reducing, leading to the U-groove root is passi-
vated. However, JAi+Ti

s > 0 increases sharply with K2 increasing rapidly, coupling with a
large P2 based on the analysis of Figure 14. As a consequence, the groove shape will be
changed, especially, at the bottom of the groove. This will cause the location of the stress
concentration area to change, namely the crack nucleation area and extension path.
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For a long corrosion, however, the curvature Kr of groove root continues to decrease.
Based on Equation (27), Kr may become too small to be neglected, resulting in a passivated
U-groove tip on account of the grooves have great difficulty in grooving into the materials
and from the flat. The dissolution rate of the δ+σ-IMC layer can be described by Nernst-
Einstein relation [64]:

v = −Ds

kT
· ∂µ

∂s
= −DsγΩ

kT
∂K
∂s

(30)

Based on Equation (30), the dissolution rate of the δ+σ-IMC layer is significantly
reduced, which indicates the groove tip is passivated again. Additionally, this situation
may cause the grain boundary pinning. Eventually, a steady state will be reached and
the penetration rate will be controlled by the slower diffusing species. Therefore, it can
be inferred that the two new wedges formed at the U-groove root under the condition
of JAi+Ti

s > 0 coupling with P + σn when Kr ≈ 0, establishing a stress concentration
zone between the new grooves, as shown in Figure 15a. In this case, the concentrated
forces P + σn directs outwards at the ends of the new V-groove root, which approves
approximately crack propagation by the insertion of a wedge. Thermodynamically, the
variation of the energy balance for crack extension in this short section of the GB will permit
the crack to spread into this region [65]. It is demonstrated that the concentrated local stress
may lead to preferred nucleation and accelerated growth of crack. This inference supports
the experimental phenomenon perfectly, as portrayed in Figure 2e. Which is accordance
with void nucleation in steel [66]. It is concluded that the growth of the V-groove is
driven by reducing the curvature of U-groove root edge profile. The crack nucleates at
the interfacial stress concentration area and multiplies along both sides of the interface, as
presented in Figure 15b. we can draw a conclusion that the change of curvature in grooves
has a very important influence on the initiation of grain boundary cracks. Consequently,
the synergy of GB diffusion and stress concentration pave a way to a near surface crack
and it propagates in a transgranular cracking manner, especially, when the environmental
corrosion is notable.
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and propagation.

5. Crack Mechanism Map

By analyzing the interaction of the forces coupled with the GBW and GBD (containing
the curvature variation of the U-groove tip and the concentration change near the flat wall
of it.) in previous section, we can acquire a crack mechanism map, as shown in Figure 16.
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It can be seen from the map that three main crack zones can be obtained, namely 0.63 L
zone (A zone in Figure 16), 0.82 L zone (B zone in Figure 16) and the bottom crack zone
(including C, D and E zones in Figure 16), and the location of crack nucleation depends
on the variable curvatures and the relative intensity of GBW and GBD. In A zone, owing
to an unstable curvature existed at GB, the wetting angle decreases sharply (the hollow
asterisks in Figure 16) with the increase of corrosion time coupling with γgb > 2γs, resulting
in the crack is preferentially initiated at the interface of 0.63 depth of the V-groove and the
main controlling factors for the cracks is GBW. Then entering the complex B crack zone,
the occurrence of cracks is mainly induced by GBW and GBD. As the wetting angle at
the bottom of the newly formed U-groove increases (the solid asterisks in Figure 16), the
curvature K2 also increases, the crack area is located in 0.82 depth of the wetting channels
and the cracks controlling factor will transfer from GBW to GBD. Compared with A and
B zones, the generation of cracks is mainly controlled by GBD in C, D and E zones. By
contrast, the generation of the crack in the C zone is still affected by a weakened GBW
owing to the curvature of the U-groove root (Kr) and wall (K1) decreases as the wetting
angle increases and the crack nucleation area is located in the boundary layer region of
K = 0 between K1 and K2, while in D zone the crack is almost unaffected by GBW because
of the wetting angle exceeds the theoretical maximum value, and the crack initiates at GB
where K2 < 0. As the wetting angle exceeds 150◦, it seems to the effect of dewetting appears
instead of GBW, the crack nucleation is at the bottom of U-groove where K2 < 0 and is only
affected by GBD. As per Figure 16, it can be concluded that the change in the curvature
variation of the U-groove root caused by GBD has a very important effect on the nucleation
of the crack. Consequently, based on the crack mechanism map, the crack nucleation
position and the main factors affecting crack nucleation can be inductively obtained and
distinguished. This will play a significant role in understanding and exploiting the GBW
and GBD in engineering processes, such as welding and evaporation of liquid. A low
degree of GBD and GBW (the wetting angle > 90◦) are required in welding process as
shown in yellow part of A zone in Figure 16 where a short interaction time is demonstrated,
otherwise, welding cracks will occur. Another example is evaporation of liquid in the GBs
in which the liquid should be de-wetted (the wetting angle > 140◦) from GBs, a long time
and a big GBD are required as shown in E zone in Figure 16.
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6. Summary

This study proposes an approach to investigate self-induced internal corrosion stress
transgranular cracking by synergize GBW and GBD, which is very distinguished from
the general SCC. The dynamic self-induced internal corrosion stress is indirectly analyzed
coupling with diffusion flux theoretically and experimentally. The transgranular failure
mechanism has been discovered for the material exposed to high temperature melt corro-
sion, and two types of crack initiation modes are recognized and distinguished as V-grooves
and U-grooves fracture. The experimental results designate a tendency that self-induced
internal corrosion stresses interact at GB interface to form a stress concentration zone where
the crack initiates preferentially, then the crack propagates along both sides of the interface
and traverses the columnar IMC grains. The source of stresses is mainly caused by GBW
and the interface curvature variation in the V-grooves. In contrast, the stresses largely
coupled with the GB diffusion and variation of the interface curvature in the U-grooves.
The corrosion stress transgranular cracking studied here may provide some new insights
into the fracture mechanisms, a mechanism map is established to reveal crack nucleation
and growth with synergy of GBW, GBD and interface curvature variation. The projected
framework will be protracted to a grain boundary wetting and diffusion engineering.
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