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Abstract: At present, metallic glasses are evaluated as alternative reinforcements for aluminum
matrix composites. These composites are produced by powder metallurgy via consolidation of
metallic glass-aluminum powder mixtures. In most studies, the goal has been to preserve the glassy
state of the reinforcement during consolidation. However, it is also of interest to track the structure
evolution of these composites when partial interaction between the matrix and the metallic glass is
allowed during sintering of the mixtures. The present work was aimed to study the microstructure
and mechanical properties of composites obtained by spark plasma sintering (SPS) of Al-20 vol.%
Fe66Cr10Nb5B19 metallic glass mixtures and compare the materials, in which no significant interaction
between the matrix and the Fe-based alloy occurred, with those featuring reaction product layers
of different thicknesses. Composite materials were consolidated by SPS at 540 and 570 ◦C. The
microstructure and mechanical properties of composites obtained by SPS and SPS followed by
forging, composites with layers of interfacial reaction products of different thicknesses, and metallic
glass-free sintered aluminum were comparatively analyzed to conclude on the influence of the
microstructural features of the composites on their strength.

Keywords: metallic glass; metal matrix composite; interfacial reaction; reinforcement; mechanical
properties

1. Introduction

A traditional metal matrix composite is a metal matrix in which ceramic particles or
fibers are distributed [1]. A large difference between the coefficients of thermal expansion
of the phases and low wettability at the interface are problems common to this class of ma-
terials. Recent years have seen active research in the area of aluminum matrix composites
directed at evaluating the suitability of alternative (non-ceramics) reinforcements. In novel
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composites, particles of intermetallics [2,3], quasicrystals [4], high-entropy alloys [5,6], or
metallic glasses [7–14] are used as the reinforcing elements. These composites are usually
produced by powder metallurgy via consolidation of mixtures of the matrix metal and
metallic alloy powders.

Two types of amorphous alloy-containing composites can be designed: with a crys-
talline metal matrix or an amorphous alloy matrix. If the matrix phase is glassy, the addition
of crystalline particles causes a decrease in strength and an increase in ductility [15]. If the
matrix is crystalline, the addition of glassy particles causes an increase in strength. The
advantages of metallic glass particles as a reinforcing phase are the high strength of metallic
glass and its better wettability by the matrix metal than the wettability of ceramic particles
by the same metal. Furthermore, if consolidation of the powder mixture occurs within the
supercooled liquid region of the metallic glass, the latter acts as a binder, efficiently filling
the pores [10,11].

In most studies dealing with metallic glass-aluminum mixtures, the goal has been to
preserve the glassy state of the reinforcement during the formation of the bulk material.
Composites have been obtained, in which the layers forming at the metal matrix/metallic
glass interface possess very small thicknesses (in the nanometer range) [12,14]. When a
particle introduced into a matrix starts chemically interacting with it, a core-shell struc-
ture forms upon partial consumption of the particle material. Core-shell particles are
also attracting interest as possible reinforcements with a unique mechanical behavior [16].
The formation of particles of core-shell structure in metallic glass particle-reinforced alu-
minum matrix composites was given particular attention in ref. [17]. The composites were
obtained by spark plasma sintering (SPS) followed by hot rolling In those composites,
Fe50Cr25Mo9C13B3 metallic glass particles were embedded in aluminum and partially
reacted with it. The reinforcement content was varied, while the processing conditions
were the same for the studied series of composites. The authors suggested that a certain
degree of crystallization on the surface of metallic glass particles may lead to stronger
interfacial bonding.

When the quantity of the FeAl3 intermetallic, the product of the interaction of the Al matrix
and the Fe-based metallic glass, is limited and its distribution is discontinuous, the ductility of
the composites will not be affected. It should be noted that FeAl3 itself can serve as a reinforcing
phase stable in an Al matrix. For example, an Al-FeAl3 composite containing 16 vol.% of FeAl3
showed an increased yield strength in compression (190 MPa) [2].

Fe-based metallic glasses are known for their high hardness and corrosion resis-
tance [18]. Fe66Cr10Nb5B19 amorphous alloy powders are easily obtained by gas atom-
ization using commercial alloys as raw materials [13]. This makes Fe66Cr10Nb5B19 alloy
powders with a glassy structure attractive for the reinforcing purposes. In the Fe-Al sys-
tem, interdiffusion of the metals occurs during alloying [19,20]. So, in Al-Fe66Cr10Nb5B19
composites, bonding at the interface may be possible through the formation of transition
zones caused by diffusion of iron along with other components of the metallic glass into
aluminum and aluminum into the metallic glass.

Our previous study reported the hardness of composites obtained by SPS of Al-
Fe66Cr10Nb5B19 mixtures and the microhardness of separate phases [13]. The present work
was aimed to study the microstructural features and mechanical properties of composites
obtained by SPS of Al-20 vol.% Fe66Cr10Nb5B19 mixtures and compare composites, in
which no significant interaction between the matrix and the Fe-based alloy occurred, with
those featuring reaction product layers of different thicknesses.

2. Materials and Methods

In the present study, gas-atomized powders of Fe66Cr10Nb5B19, <45 µm fraction [13]
and aluminum were used. The Al powder had a purity of 99.9% (PAD-6, average particle
size 6 µm, “VALKOM-PM”, Volgograd, Russia). Al–Fe66Cr10Nb5B19 mixtures containing
20 vol.% of the glassy alloy were prepared by mixing in a custom-made horizontal low-
energy device (a plastic container with steel balls).
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Sintering of the powders was carried out using a SPS Labox 1575 apparatus (SINTER
LAND Inc., Nagaoka, Japan) in forevacuum at a uniaxial pressure of 40 MPa. SPS was
selected for its ability of rapid heating and consolidation of powders containing metastable
phases [21]. The tooling consisted of a graphite die of 20 mm inner diameter and graphite
punches. Al–Fe66Cr10Nb5B19 mixtures were subjected to SPS at 540 and 570 ◦C. The heating
rate was 50 ◦C·min−1. The holding time at the maximum temperature was 3 min. Samples
were also obtained without the soaking stage at the maximum temperature. The aluminum
powder was sintered by heating up to 540 ◦C without soaking at this temperature to
produce a reference material. For forging, a 10 mm diameter Al–Fe66Cr10Nb5B19 cylinder
was first sintered using a 10 mm graphite die. The cylinder had a height of 12 mm. It was
further processed in a 20 mm diameter die: the applied force was increased from 3 to 10 kN
in a stepwise manner, while the temperature was increased up to 450 ◦C. The holding time
at this temperature was 3 min, after which the current was switched off. The final load
of 10 kN was maintained during the cooling stage. The total forging operation time was
30 min. The forged sample has a diameter of 20 mm.

The morphology of the powders and microstructure of the sintered samples was
studied by scanning electron microscopy (SEM) using a TM-1000 Tabletop microscope
(Hitachi, Tokyo, Japan), a Carl Zeiss EVO 50 XVP microscope (Oberkochen, Germany), and
a S-3400N (Hitachi, Tokyo, Japan) microscope. Energy-dispersive spectroscopy (EDS) was
conducted using a NORAN Spectral System 7 (Thermo Fisher Scientific Inc., Waltham, MA,
USA). X-ray diffraction (XRD) patterns of the samples were recorded by a D8 ADVANCE
diffractometer (Bruker AXS, Karlsruhe, Germany) with Cu Kα radiation.

The porosity of the sintered materials was determined from the cross-sectional images
of the samples using ImageJ software (https://imagej.nih.gov). The volume contents of
the matrix in the composites sintered at 540 and 570 ◦C for 3 min were reduced relative
to that in the initial powder mixture. The matrix contents in those composites were also
determined using ImageJ software. For that purpose, 15 images of the cross-sections of the
composites recorded at ×500 magnification were analyzed.

Samples for compression tests were cut from the sintered disks to 3 × 3 × 6 mm3

dimensions. The compression tests were conducted using a Zwick/Roell Z100 device (Ulm,
Germany) at a crosshead speed of 0.1 mm·min−1. The compression direction of the sample
was normal to the pressing direction during SPS. The average values of the offset yield
strength and ultimate strength of the composites were determined from three measurements.

3. Results and Discussion

Figure 1 shows the morphology of Fe66Cr10Nb5B19 and aluminum powders and
the XRD pattern of the Fe66Cr10Nb5B19 powder. The particles of both powders possess
spherical shape. The XRD pattern of the Fe66Cr10Nb5B19 powder demonstrates a halo
between 40◦ and 50◦ (2θ), indicating the presence of an amorphous phase. Indeed, the
Fe66Cr10Nb5B19 powder is predominantly amorphous: the concentration of the crystalline
phase (body-centered cubic iron) is ~5 wt.%, as determined in our previous work [22]. The
glass transition temperature and crystallization temperature of the glassy phase in the
Fe66Cr10Nb5B19 alloy is 521 and 573 ◦C, respectively [13].

https://imagej.nih.gov
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Figure 1. (a) Scanning electron microscopy (SEM) image of the Fe66Cr10Nb5B19 metallic glass powder, back-scattered
electron (BSE) image, (b) SEM image of the aluminum powder, back-scattered electron image, (c) X-ray diffraction (XRD)
pattern of the Fe66Cr10Nb5B19 metallic glass powder. The minor phase in the alloy is body-centered cubic iron (bcc-Fe).

The composites were obtained by sintering at two temperatures (540 and 570 ◦C)
to produce reaction product layers of different thicknesses. The forging operation was
attempted to break the oxide film present on the particle surfaces and improve the inter-
particle bonding.

Figure 2 shows the XRD patterns of the sintered composites. As seen in Figure 2a,
reflections of aluminum are present in the patterns of composites obtained by SPS at 540 ◦C
without holding and SPS followed by forging. No reflections of the reaction products
between the metallic glass and aluminum are observed. Enlarged portions of the XRD
patterns (35–50◦, 2θ) are shown in Figure 2b,c. A diffraction halo between 40◦ and 50◦

overlapping with a reflection of aluminum indicates the presence of an amorphous phase
in the sintered material. Therefore, in these composites, the glass phase of the Fe-based
alloy was preserved after consolidation.
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Figure 2. XRD patterns of composites obtained from Al-20 vol.% Fe66Cr10Nb5B19 mixtures: (a) spark
plasma sintering (SPS) at 540 ◦C, no holding, and SPS at 540 ◦C, no holding/forging at 450 ◦C; (b,c)
enlarged portions (30–50◦) of the XRD patterns of samples shown in (a); (d) SPS at 540 ◦C, 3 min, and
SPS at 570 ◦C, 3 min; (e,f) enlarged portions (30–50◦) of the XRD patterns of samples shown in (d).

In the pattern of the sample held for 3 min at 540 ◦C, a broad reflection belonging to
the FeAl3 phase appears (Figure 2d). Reflections of FeAl3 are much more pronounced in the
pattern of the sample sintered at 570 ◦C for 3 min. Along with reflections of FeAl3, those of
Fe2Al5 are detected. In the enlarged portions of the XRD patterns (Figure 2e,f), a diffraction
halo can also be distinguished (overlapping with reflections of the crystalline phases),
pointing to the presence of an amorphous phase in the sintered composites, possibly in
reduced concentrations relative to composites sintered at 540 ◦C.

The microstructure of the material sintered at 540 ◦C without holding and that ob-
tained by SPS/forging are similar (Figure 3a,b). No reaction layer is seen at the interface
between the matrix and the reinforcement. The spherical particles of the Fe-based alloy do
not show any grain boundary structure, which agrees with results of the XRD analysis of
these samples. Holding of the sample at 540 ◦C for 3 min resulted in the growth of the reac-
tion product layer around the spherical particles of the alloy (Figure 3c and enlarged image
in Figure 4a). After sintering at 570 ◦C for 3 min, the layer grew even further (Figure 3d
and enlarged image in Figure 4b).

The EDS profiles show that, in the composite sintered at 540 ◦C without holding, the
concentrations of Al, Fe, and Cr change rapidly with distance when the particle/matrix
boundary is crossed (Figure 5). The product layer formed after sintering at 540 ◦C for
3 min has a gradient structure (Figure 6). If extrapolated, the Fe and Cr downhill lines
corresponding to the reaction product layer intersect the x-axis almost at the same point, so
the ratio of the Fe and Cr concentrations in this layer remains constant. Guan et al. [17]
used transmission electron microscopy to study the structure of the interfacial layers in
composites consolidated from Al-Fe50Cr25Mo9C13B3 mixtures. Three areas were detected:
amorphous regions containing diffused Al atoms, crystallized regions containing Al atoms,
and FeAl3 intermetallic.

The formation of pores in the metallic systems during heat treatment due to the
Kirkendall effect is a known phenomenon [23–25]. When an Al matrix composite with
embedded Cu particles was heat-treated, pores formed in the Cu particles due to the
Kirkendall effect [23]. When aluminum is surrounded by iron, pores form in the locations
of aluminum particles [24,25]. Studying the Kirkendall effect in Al-Fe66Cr10Nb5B19 requires
carrying out model experiments under conditions that are not necessarily optimal for
making composites with attractive mechanical properties. Therefore, this issue was not
addressed in the present work and will be dealt with in a separate investigation.
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Figure 3. Microstructure of composites obtained from Al-20 vol.% Fe66Cr10Nb5B19 mixtures: (a) SPS at 540 ◦C, no holding,
(b) SPS at 540 ◦C, no holding, and forging, (c) SPS at 540 ◦C, 3 min, (d) SPS at 570 ◦C, 3 min. BSE images.
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The compression true stress-true strain curves are presented in Figure 7. The sintered
and sintered/forged Al-20 vol.% Fe66Cr10Nb5B19 composites having no reaction layer and
the composite having a thin reaction layer showed similar mechanical behavior and close
values of the offset yield strength (110–140 MPa). They were very ductile, allowing for
more than 50% true strain in compression (Table 1). The same values of yield strength
of the sintered unreinforced aluminum and the Al-20 vol.% Fe66Cr10Nb5B19 composite
obtained at 540 ◦C without holding (110 MPa) indicate that strengthening is not efficient
with these microstructural parameters. After forging, a composite with a higher yield
strength (140 MPa) was obtained. This increase in the yield strength can be caused by
disruption of continuity of the oxide films present on the particle surfaces upon forging.



Metals 2021, 11, 1457 9 of 12

During the forging operation, the material experiences both compression and shear. The
broken oxide films may act as reinforcing elements ensuring oxide particle contribution to
strengthening. The yield strength of the composite having a thin reaction product layer
(SPS at 540 ◦C, 3 min) is 130 MPa, which is higher than that of the composite, in which
no reaction layer was detected by SEM (110 MPa). At the same time, the yield strength of
the latter is higher than that of the Al-20 vol.% Fe74Mo4P10C7.5B2.5Si2 composite (81 MPa)
obtained in ref. [7]. This can be due to a finer aluminum powder used in the present
work. A finer powder usually contains a higher concentration of oxide, which serves as an
additional reinforcement, as noted above.
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Table 1. Processing conditions, porosity, matrix content, and mechanical properties of composites obtained from the
Al-Fe66Cr10Nb5B19 powder mixture and sintered aluminum. Average values of the offset yield strength and ultimate
strength are reported along with standard deviations.

Powder
Processing

Conditions of
Powders

Porosity, %
Al Matrix
Volume

Fraction, %

Offset Yield
Strength
σ0.2, MPa

Ultimate
Strength, MPa Strain

Al SPS, 540 ◦C,
0 min <1 100 110 ± 5 - Plastic strain

>50%

Al-20 vol.%
Fe66Cr10Nb5B19

SPS, 540 ◦C,
0 min <1 80 110 ± 5 - Plastic strain

>50%

Al-20 vol.%
Fe66Cr10Nb5B19

SPS, 540 ◦C,
0 min, forging <1 80 140 ± 5 - Plastic strain

>50%

Al-20 vol.%
Fe66Cr10Nb5B19

SPS, 540 ◦C,
3 min <1 67 130 ± 5 - Plastic strain

>50%

Al-20 vol.%
Fe66Cr10Nb5B19

SPS, 570 ◦C,
3 min <1 37 - 780 ± 10 Deformation at

fracture 2%

The composite sintered at 570 ◦C for 3 min featured a thick reaction product layer
and contained only 37 vol.% of residual aluminum (Table 1). This material showed a high
compressive strength (790 MPa) and a fracture strain of 2%. The product of the interaction
between aluminum and the metallic glass (FeAl3) acts as a reinforcing element via a load
transfer mechanism, contributing to an increased strength of the composite. The fracture
surface of this composite shows areas of the Fe-based alloy particles (bright areas) and
reaction product layer (light-gray areas), which fracture in the brittle mode (Figure 8a).
Areas of the matrix (dark-gray areas) showed a dimple fracture surface (Figure 8a). A
higher magnification image of a Fe-based alloy particle surrounded by a layer of the
reaction products is presented in Figure 8b. Noteworthy is the absence of debonding at the
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Fe-based alloy particle/reaction product interface. The Fe-based alloy particles were not
pulled out of the matrix. Rather, they experienced fracture, which indicates strong bonding
at the interface. The cores of the reinforcing particles show fracture surface morphologies
that are characteristic to amorphous materials.
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4. Conclusions

The microstructure and mechanical properties of composites obtained by SPS of Al-
20 vol.% Fe66Cr10Nb5B19 mixtures were examined. The sintering conditions were selected
such that composites without significant interaction between the matrix and the Fe-based
alloy as well as composites with reaction layers of different thicknesses were produced.
The SEM/EDS investigations showed that the product layer formed after SPS at 540 ◦C
for 3 min has a gradient structure with Fe/Cr ratio remaining constant across the layer
thickness. The sintered and sintered/forged Al-20 vol.% Fe66Cr10Nb5B19 composites
having no reaction layer and the sintered composite having a thin reaction layer showed
similar mechanical behavior and close values of yield strength (110–140 MPa). They were
very ductile, allowing for more than 50% true strain in compression. The composite sintered
at 570 ◦C for 3 min featured a thick reaction product layer and contained only 37 vol.% of
residual aluminum. This material showed a very high compressive strength (780 MPa) and
a fracture strain of 2%. The product of the interaction between aluminum and the metallic
glass (FeAl3) acted as a reinforcing element via a load transfer mechanism, contributing to
an increased strength of this composite.

Author Contributions: Conceptualization, D.V.D., V.I.K. and K.G.; Methodology, I.S.B., M.A.E. and
A.A.M.; Investigation, B.B.B., M.A.L., A.N.N., D.V.D. and V.I.K.; Writing—original draft preparation,
V.I.K. and D.V.D.; Writing—review and editing, G.Y.K., B.B.B. and A.V.U.; Supervision, A.G.A. and
A.M.J.J.; Project administration, D.V.D.; Funding acquisition, D.V.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was partially funded by the Ministry of Science and Higher Education of the
Russian Federation, project 075-15-2020-781.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Metals 2021, 11, 1457 12 of 12

References
1. Chawla, K.K. Composite Materials: Science and Engineering, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998; 483p.
2. Lee, J.-M.; Kang, S.-B.; Sato, T.; Tezuka, H.; Kamio, A. Microstructures and mechanical properties of Al3Fe reinforced aluminum

matrix composites fabricated by a plasma synthesis method. Mater. Trans. 2002, 43, 2487–2493. [CrossRef]
3. Himmler, D.; Randelzhofer, P.; Körner, C. Formation kinetics and phase stability of in-situ Al3Ti particles in aluminium casting

alloys with varying Si content. Results Mater. 2002, 7, 100103. [CrossRef]
4. Shadangi, Y.; Sharma, S.; Shivam, V.; Basu, J.; Chattopadhyay, K.; Majumdar, B.; Mukhopadhyay, N.K. Fabrication of Al-Cu-Fe

quasicrystal reinforced 6082 aluminium matrix nanocomposites through mechanical milling and spark plasma sintering. J. Alloys
Compd. 2020, 828, 154258. [CrossRef]

5. Yuan, Z.; Tian, W.; Li, F.; Fu, Q.; Hu, Y.; Wang, X. Microstructure and properties of high-entropy alloy reinforced aluminum matrix
composites by spark plasma sintering. J. Alloys Compd. 2019, 806, 901–908. [CrossRef]

6. Yuan, Z.; Tian, W.; Li, F.; Fu, Q.; Wang, X.; Qian, W.; An, W. Effect of heat treatment on the interface of high-entropy alloy particles
reinforced aluminum matrix composites. J. Alloys Compd. 2020, 822, 153658. [CrossRef]

7. Wang, Z.; Scudino, S.; Stoica, M.; Zhang, W.; Eckert, J. Al-based matrix composites reinforced with short Fe-based metallic glassy
fiber. J. Alloys Compd. 2015, 651, 170–175. [CrossRef]

8. Kotov, A.D.; Mikhaylovskaya, A.V.; Mochugovskiy, A.G.; Medvedeva, S.V.; Bazlov, A.I. Aluminum alloy matrix composite
reinforced with metallic glasses particles using hot-roll bonding. Rus. J. Non-Ferrous Metals 2020, 61, 297–302. [CrossRef]

9. Perrière, L.; Champion, Y. Phases distribution dependent strength in metallic glass–aluminium composites prepared by spark
plasma sintering. Mater. Sci. Eng. A 2012, 548, 112–117. [CrossRef]

10. Dudina, D.V.; Georgarakis, K.; Aljerf, M.; Li, Y.; Braccini, M.; Yavari, A.R.; Inoue, A. Cu-based metallic glass particle additions to
significantly improve overall compressive properties of an Al alloy. Compos. Part A 2010, 47, 1551–1557. [CrossRef]

11. Aljerf, M.; Georgarakis, K.; Louzguine-Luzgin, D.; Le Moulec, A.; Inoue, A.; Yavari, A.R. Strong and light metal matrix composites
with metallic glass particulate reinforcement. Mater. Sci. Eng. A 2012, 532, 325–330. [CrossRef]

12. Wang, Z.; Georgarakis, K.; Nakayama, K.Y.; Li, A.; Tsarkov, G.; Xie, D.; Dudina, D.; Louzguine, A.R. Yavari, Microstructure and
mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 2016, 6, 24384. [CrossRef]

13. Dudina, D.V.; Bokhonov, B.B.; Batraev, I.S.; Amirastanov, Y.N.; Ukhina, A.V.; Kuchumova, I.D.; Legan, M.A.; Novoselov, A.N.;
Gerasimov, K.B.; Bataev, I.A.; et al. Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma
sintering. Mater. Sci. Eng. A 2021, 799, 1–13. [CrossRef]

14. Li, Z.; Zhang, M.; Li, N.; Liu, L. Metal frame reinforced bulk metallic glass composites. Mater. Res. Lett. 2020, 8, 60–67. [CrossRef]
15. Zhang, L.; Narayan, R.L.; Fu, H.M.; Ramamurty, U.; Li, W.R.; Li, Y.D.; Zhang, H.F. Tuning the microstructure and metastability of

β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites. Acta Mater. 2019, 168,
24–36. [CrossRef]

16. Zhang, X.; Chen, T.; Ma, S.; Qin, H.; Ma, J. Overcoming the strength-ductility trade-off of an aluminum matrix composite by
novel core-shell structured reinforcing particulates. Compos. Part B 2021, 206, 108541. [CrossRef]

17. Guan, H.D.; Li, C.J.; Gao, P.; Prashanth, K.G.; Tan, J.; Eckert, J.; Tao, J.; Yi, J.H. Aluminum matrix composites reinforced with
metallic glass particles with core-shell structure. Mater. Sci. Eng. A 2020, 771, 138630. [CrossRef]

18. Suryanarayana, C.; Inoue, A. Iron-based bulk metallic glasses. Int. Mater. Rev. 2013, 58, 131–166. [CrossRef]
19. Salamon, M.; Mehrer, H. Interdiffusion, Kirkendall effect, and Al self-diffusion in iron–aluminium alloys. Z. Für Met. 2005, 96,

4–16. [CrossRef]
20. Karfoul, M.K.; Tatlock, G.J.; Murray, R.T. The behaviour of iron and aluminium during the diffusion welding of carbon steel to

aluminium. J. Mater. Sci. 2007, 42, 5692–5699. [CrossRef]
21. Olevsky, E.A.; Dudina, D.V. Field-Assisted Sintering: Science and Applications; Springer International Publishing: Cham, Switzerland,

2018; 425p.
22. Kuchumova, I.D.; Batraev, I.S.; Ukhina, A.V.; Borisenko, T.A.; Bulanova, U.E.; Ulianitsky, V.Y.; Dudina, D.V.; Shikalov, V.S.;

Kosarev, V.F.; Bataev, I.A.; et al. Processing of Fe-based alloys by detonation spraying and spark plasma sintering. J. Therm. Spray
Tech. 2021, 30, 1692–1702. [CrossRef]

23. Yadav, D.; Bauri, R. Development of Cu particles and Cu core-shell particles reinforced Al composite. Mater. Sci. Technol. 2015, 31,
494–500. [CrossRef]

24. Gao, H.; He, Y.; Shen, P.; Zou, J.; Xu, N.; Jiang, Y.; Huang, B.; Liu, C.T. Porous FeAl intermetallics fabricated by elemental powder
reactive synthesis. Intermetallics 2009, 17, 1041–1046. [CrossRef]

25. Gao, H.Y.; He, Y.H.; Shen, P.Z.; Jiang, Y.; Liu, C.T. Effect of pressure on pore structure of porous FeAl intermetallics. Adv. Powder
Technol. 2015, 26, 882–886. [CrossRef]

http://doi.org/10.2320/matertrans.43.2487
http://doi.org/10.1016/j.rinma.2020.100103
http://doi.org/10.1016/j.jallcom.2020.154258
http://doi.org/10.1016/j.jallcom.2019.07.185
http://doi.org/10.1016/j.jallcom.2020.153658
http://doi.org/10.1016/j.jallcom.2015.08.098
http://doi.org/10.3103/S1067821220030098
http://doi.org/10.1016/j.msea.2012.03.100
http://doi.org/10.1016/j.compositesa.2010.07.004
http://doi.org/10.1016/j.msea.2011.10.098
http://doi.org/10.1038/srep24384
http://doi.org/10.1016/j.msea.2020.140165
http://doi.org/10.1080/21663831.2019.1695684
http://doi.org/10.1016/j.actamat.2019.02.002
http://doi.org/10.1016/j.compositesb.2020.108541
http://doi.org/10.1016/j.msea.2019.138630
http://doi.org/10.1179/1743280412Y.0000000007
http://doi.org/10.3139/146.018071
http://doi.org/10.1007/s10853-006-0742-z
http://doi.org/10.1007/s11666-021-01237-4
http://doi.org/10.1179/1743284714Y.0000000644
http://doi.org/10.1016/j.intermet.2009.05.007
http://doi.org/10.1016/j.apt.2015.03.002

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

