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Abstract: At present, the commonly used hot rolling model is only applicable to the static rolling
process. However, to study the dynamic rolling process, a dynamic rolling model with roll vertical
movement velocity parameters is required. In this study, the influence of the vertical movement
velocity of the rolls on the rolling process is considered, and a dynamic rolling process model is
proposed when the roll gap is reduced during the hot rolling dynamic rolling process. Mathematically,
the model is based on the upper limit method. The model considers the influence of the dynamic
rolling process on the length of the deformation zone, establishes a dynamic velocity field model and
an average deformation rate model, and then solves the total power of the rolling process. Finally,
the dynamic rolling force equation is given. Compared with the experimental results, the dynamic
rolling model in this paper has high accuracy with an average error of 4%. In addition, the influence
of roll vertical velocity on rolling parameters is discussed, which provides a basis for the study of the
dynamic rolling process.

Keywords: metal forming; dynamic rolling; hot rolling

1. Introduction

An accurate rolling model is a key to producing high-quality steel products. At
present, the research on the static rolling process has been relatively complete. However,
when the rolls have vertical velocities, the plate thickness, strip velocity, rolling force, and
other parameters are affected. The changing law of the parameters is also different from
static rolling, referred to as the dynamic rolling process. The model established based
on the static rolling process is not suitable for the dynamic rolling process. It is difficult
to predict the parameters of the dynamic rolling process accurately. Therefore, a clearly
defined mathematical model must be established to study the dynamic rolling process
comprehensively. The typical dynamic rolling mainly includes the vibration phenomenon
during the rolling process, variable thickness rolling, etc. The establishment of the dynamic
model provides more accurate predictions for the dynamic rolling process and enriches the
rolling model.

In the past few decades, the research of rolling models has always been a hot spot
in compressive bulk forming processes. In order to better understand the rolling process,
a large number of models have been established. Orowan [1] described the pressure
distribution of the roller contact arc through a differential equation, taking into account the
non-uniform deformation of the strip, and believed that there is no relative sliding between
the strip and the surface of the roll. However, the Orowan model is not easy to solve. Based
on the differential equation of contact arc unit pressure established by Orowan, Sims [2]
simplified the Orowan model. They put forward the stress state coefficient and finally
established the rolling force solution model. Because it better reflects the characteristics of
hot rolling, the model was widely used. Li et al. [3] established the rolling force model by
the method of fluid mechanics. The non-uniform deformation is considered in the model,
which is more straightforward in form. However, relative velocity and factor of relative
visibility in the model can not be calculated directly, which makes it difficult to solve
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the model. The friction state of the contact arc in the hot rolling process is complicated.
Chen et al. [4] established a rolling force model in the hot rolling process. The model
is considered based on the von-Kalman equation, the sliding zone, adhesion zone, and
stagnation zone of the strip surface friction.

In addition, the energy method is also widely used in rolling modeling. Oh et al. [5]
obtained the analytical solution of the rolling torque by establishing a three-dimensional
velocity field and assuming that the friction force during the rolling process is constant.
This model considers the influence of shear deformation on the rolling torque, but the
rolling force is not discussed. Sezek et al. [6] used the upper bound method to analyze the
strip rolling process. Unlike other researchers, the plastic deformation boundary function
at the entrance and the strip width extension function was first set by this study. The
velocity field was obtained through the dual-stream function. Finally, the total power of
the deformation process was obtained. Zhang et al. [7] established a rolling force model for
predicting the rolling process of ultra-thick plates. The model adopted the two-dimensional
velocity field, and the shear deformation of the strip in the thickness direction was also
considered. In addition, the deformation permeability coefficient (it has to do with the
through-thickness strain heterogeneity) is introduced into the model. In order to facilitate
the calculation of the model, the yield function is simplified. Liu et al. [8] established an
exponential velocity field. They considered the characteristics of hot rolling, so the friction
force was assumed to be a constant value and then established a rolling model for the hot
rolling process. This model does not consider the non-uniform deformation in the thickness
direction of the strip, and the MY yield criterion is adopted, which reduces the difficulty of
solving. Li et al. [9] established an analytical model for the rolling force of hot rolling, and
this model adopted the three-dimensional sinusoidal velocity field. However, this study
also did not consider the non-uniform deformation of the strip thickness direction.

However, the rolling process models established by the researchers as mentioned
above are all static models, and the influence of the vertical movement velocity of the
roll on the rolling is not considered, which makes it impossible to predict the parame-
ters of the dynamic rolling process accurately. The dynamic rolling model established
by Hu et al. [10] considered the influence of the moving velocity of the roll in the vertical
and horizontal directions on the rolling process. Meanwhile, the strip is considered uni-
formly deformed, and the friction between the roll and the strip is the shear deformation
resistance. Consequently, it is more suitable for predicting the hot rolling process. However,
in this model, only the change in the length of the deformation zone caused by the velocity
of the roll is considered. Gao et al. [11] conducted research on the vertical vibration of a
cold rolled strip and established the dynamic unit rolling force balance differential equation
in the deformation zone. The dynamic model only considered the influence of the vertical
movement of the roll on the length of the deformation zone. Cao et al. [12] established a
dynamic rolling force model for the vertical vibration process of cold rolling and separately
analyzed the roll gap increase and roll gap reduction process. It is assumed that the strip
is assumed to be in a uniformly deformed state. However, the model only considers the
influence of the dynamic process on the length of the deformation zone. Hu et al. [13]
established an enhanced version of the dynamic rolling force model, which introduced the
roll motion velocity into the model according to the plastic flow equation. Therefore, the
influence of the roll motion velocity of the model on the length of the deformation zone
and the rate of plastic deformation is considered simultaneously, and the dynamic rolling
process is fully described. This model is more complete than the previous model and fully
considers the characteristics of dynamic rolling. Yang et al. [14] proposed a dynamic rolling
force model when the roll gap increases. The model adopts the energy method to establish
the strip deformation velocity field during the dynamic rolling process, and successfully
introduces the vertical motion velocity of the roll into the rolling model. The influence of
the velocity of the roll movement on the length of the deformation zone and the rate of
plastic deformation are both considered. However, the velocity field, boundary conditions,
and integral limit of the strip deformation are different in reducing the roll gap and the
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increase of the roll gap. Consequently, if the same deformation conditions are used for
analysis and modeling, it is unreasonable and inaccurate. Therefore, the model cannot
calculate the roll gap reduction process.

Unfortunately, no well-defined mathematical model is describing the dynamic rolling
process of roll gap reduction. This paper aims to establish a dynamic rolling model based
on the energy method of the roll gap reduction process. The effects of plastic deformation
rate and dynamic boundary conditions are included compared with the experimental
results of dynamic hot rolling.

2. Dynamic Rolling Process Model

The process of roll gap reduction during dynamic rolling is shown in Figures 1 and 2.
The moving velocity of the top work roll is h′c in the negative direction of the y-axis, and
the bottom work roll moves in the opposite direction. In addition, when the dynamic roll
gap is reduced, the exit position will move to the x-direction, and additional deformation
zone II will appear. When the strip width-to-thickness ratio is greater than 10, it can be
considered that the rolling deformation process is a plane strain problem. The coordinate
system is a static coordinate system with a fixed space. The origin is at the midpoint of
the straight line connecting the centers of the two work rolls. The deformation zone is
symmetrical; therefore, the geometric model only considers a quarter. The work roll is
assumed to be a cylinder with radius R. The roller surface equation and its first derivative
equation of deformation zone I are respectively expressed as:

hx = hc + R−
√

R2 − x2

h′x = x√
R2−x2 = − tan θ

x = −R sin θ

(1)

Figure 1. Roll bite geometry during dynamic rolling.
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Figure 2. Definition sketch of the bite zone.

The roller surface equation and its first derivative equation of deformation zone II are
respectively expressed as: 

hx = hc + R−
√

R2 − x2

h′x = x√
R2−x2 = tan θ

x = R sin θ

(2)

2.1. Strip Dynamic Velocity Field Model

According to literature [14], in the dynamic rolling process, the principle of conserva-
tion of metal mass is affected by the vertical velocity of the rolls, which makes the principle
of conservation of metal mass in static cannot be applied. As shown in Figure 3, it is
assumed that the metal horizontal velocity on the vertical cross section is the same, and
the strip is considered to be deformed in the plane to ignore the widening. Obviously, the
volume of metal flowing in the shaded part is equal to the volume of metal flowing out.
Therefore, the principle of conservation of metal mass in the entire deformation zone can
be expressed as:

v0h0 + h′c(x + x0) = vxhx (3)

Figure 3. Conservation of metal mass in dynamic deformation zone.
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Considering the influence of the vertical velocity of the roll, the vertical velocity of the
strip surface in the deformation zone can be expressed as:

vy

∣∣∣y=hx = vxh′x − h′c (4)

It is assumed that the velocity from the center of the strip to the surface of the
strip changes linearly in the vertical direction. And substituting the roller surface curve
Equation (1) of zone I into Equations (3) and (4), the velocity field expression of zone I can
be written:  vx = v0h0+h′c(x+x0)

hc+R−
√

R2−x2

vy = − vx tan θ+h′c
hx

y
(5)

Similarly, the velocity field expression of zone II can be written: vx = v0h0+h′c(x+x0)

hc+R−
√

R2−x2

vy = vx tan θ−h′c
hx

y
(6)

According to Equations (5) and (6), the strain rate of the strip in the deformation zone
I and II can be obtained respectively:{

ε′x = vx tan θ+h′c
hx

ε′y = −h′c−vx tan θ
hx

(7)

{
ε′x = h′c−vx tan θ

hx

ε′y = vx tan θ−h′c
hx

(8)

Obviously ε′x + ε′y = 0 in Equations (7) and (8), Therefore, the dynamic velocity field
model established in this paper is the kinematically admissible velocity field.

2.2. Dynamic Boundary Condition Model

The biggest difference from the static rolling process is that an additional deformation
zone (deformation zone II) will appear when the roll gap is dynamically reduced.

As shown in Figure 4, at the strip exit position in the deformation zone, the strip
thickness no longer decreases, so the vertical velocity must be zero, vy|x=x1 = 0. According
to Equation (6):

v1 tan θ1 − h′c
h1

y = 0 (9)

Equation (9) is simplified as:

tan θ1 =
h′c
v1

=
x1√

R2 − x2
1

(10)

Substituting Equation (6) into Equation (10) can be obtained:

h′c(hc + R)
√

R2 − x2
1 − h′c

(
R2 − x2

1

)
= x1

(
v0h0 + h′cx0

)
+ h′cx2

1 (11)

Since x1 is much smaller than R, Equation (11) can be simplified to be written as:

h′cRhc + h′cR2 − h′cR2 + h′cx2
1 = x1

(
v0h0 + h′cx0

)
+ h′cx2

1 (12)

Then the expression of strip exit position can be written as:

x1 =
h′chcR

v0h0 + h′cx0
(13)
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Furthermore, the dynamic deformation zone length can be expressed as:

l = x0 + x1 =

√
2R(h0 − hc)− (h0 − hc)

2 +
h′chcR

v0h0 + h′cx0
(14)

The model illustrates the effect of the roll vertical velocity on the exit position and
length of the deformation zone.

Figure 4. Changes of velocity and velocity components on the surface of the strip in the
deformation zone.

3. Total Power Function of Dynamic Rolling

The total power equation during strip rolling is:

WT =
y

V

kΓdV −
x

SF

FividS (15)

The integral limit is shown in Figure 5. The vertical movement of the roll causes the
rolling force to do work during the dynamic rolling process. The total power function can
also be written as:

WT = Wp + W f + Ws + WF (16)

3.1. Plastic Deformation Power Function

The plastic deformation power is:

WP = 4
y

V

kΓdV (17)

where

Γ =

√
2
3

√
(ε′x − ε′y)

2 + (ε′y − ε′z)
2 + (ε′z − ε′x)

2 +
3
2
(ε′2xy + ε′2yz + ε′2zx) (18)

Γ =
√

4ε′2x + ε′2xy (19)

The von-Mises yield criterion is adopted, ε′xy is not zero, but it has little effect on the
final result and can be ignored. The specific proof has been placed in Appendix A. Under
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the assumption of plane deformation and uniform deformation, the shear strain strength
equation can be simplified as:

Γ = 2ε′x (20)

Figure 5. Integral limit of deformation zone.

In the process of roll gap reduction, the phenomenon of additional deformation zone
(deformation zone II) appears, and the deformation rate, boundary conditions, and integral
limits of deformation zones I and II are different, so they need to be solved separately. The
plastic deformation power function can be written as:

WP = WPI + WPII (21)

In deformation zone I, the plastic deformation power is:

WPI= 4
∫ ∫ ∫

VI

2kε′xdV = 8
∫ B

0

∫ 0

−x0

∫ hx

0
kε′xdxdydz

= 8kB
∫ 0

−x0

(
h′c + vx tan θ

)
dx = 8kBh′cx0 + 8kB

∫ 0

−x0

vx tan θdx

= 8kBh′cx0 + 8kB
∫ 0

−x0

v0h0 + h′c(x + x0)

hx
tan θdx

= 8kB
[

h′cx0 −
(
v0h0 + h′cx0

)
ln

hc

h0
− h′c

∫ 0

−x0

x tan θ

hx
dx
]

= 8kB
[

h′cx0 −
(
v0h0 + h′cx0

)
ln

hc

h0
− h′cZ

]
(22)

where
ZI =

√
2A1h0 − h2

0 − A2 + A1

[
π
2 − arcsin

(
A1−h0

R

)]
−
√

A2

[
arcsin

(
A1h0−A2

Rh0

)
+ π

2

] (23)

A1 = R + hc (24)

A2 = h2
c + 2Rhc (25)
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In deformation zone II, the plastic deformation power is:

WPII= 4
y

VII

2kε′xdV = 8
∫ B

0

∫ x1

0

∫ hx

0
kε′xdxdydz

= 8kB
∫ x1

0

(
h′c − vx tan θ

)
dx = 8kBh′cx1 − 8kB

∫ x1

0
vx tan θdx

= 8kBh′cx1 − 8kB
∫ x1

0

v0h0 + h′c(x + x0)

hx
tan θdx

= 8kB
[

h′cx1 −
(
v0h0 + h′cx0

)
ln

h1

hc
− h′cZII

]
(26)

where
ZII =

√
2A1h1 − h2

1 − A2 + A1

[
π
2 − arcsin

(
A1−h1

R

)]
−
√

A2

[
arcsin

(
A1h1−A2

Rh1

)
+ π

2

] (27)

According to Equation (21), the plastic deformation power can be obtained as:

WP = 8kB
[

h′c(x0 + x1)−
(
v0h0 + h′cx0

)
ln

h1

h0
− h′cZ

]
(28)

where
Z =

√
2A1h0 − h2

0 − A2 +
√

2A1h1 − h2
1 − A2

−
√

A2

[
π + arcsin

(
A1h1 − A2

Rh1

)
+ arcsin

(
A1h0 − A2

Rh1

)]
+A1

[
π − arcsin

(
A1 − h0

R

)
− arcsin

(
A1 − h1

R

)] (29)

3.2. Friction Power Function

The friction power of deformation zone I and deformation zone II also need to be
solved separately; the friction power is:

W f = W f I + W f II (30)

As shown in Figure 6, in the deformation zone I, the velocity components of the rolls
in the horizontal and vertical directions are respectively:{

vrx = vr cos θ
vry = −vr sin θ − h′c

(31)

In the deformation zone I, the velocity difference between the surface of the strip and
the roll is: {

∆vx = vr cos θ − vx
∆vy = vr sin θ − vx tan θ

(32)

Using the friction factor model proposed by Wanheim et al. [15] is:

τf = mk (33)

The friction power of deformation zone I is:

W f I = 4
∫ 0

−x0

∫ B

0
τf

∣∣∣∆v f

∣∣∣dF = 4
∫ 0

−x0

∫ B

0

(
τf x|∆vx|+ τf y

∣∣∆vy
∣∣) dF (34)

where τf x = mk cos θ, τf y = mk sin θ.
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Figure 6. Dynamic rolling deformation zone.

The differential element is:

dF =

√
1 + h′2xdxdy = sec θdxdy (35)

According to Equations (32), (34) and (35), the friction power of deformation zone I is:

W f I= 4mk
∫ 0

−x0

∫ B

0

(
|∆vx| cos θ +

∣∣∆vy
∣∣ sin θ

)
sec θdxdy

= 4mkB
∫ 0

−x0

(
|∆vx|+

∣∣∆vy
∣∣ tan θ

)
dx

= 4mkB(DI1 + DI2)

(36)

where

DI1 =
∫ 0

−x0

|∆vx|dx (37)

DI2 =
∫ 0

−x0

∣∣∆vy
∣∣ tan θdx (38)

The location of the neutral point must be discussed. The length of deformation
zone II is much smaller than the length of deformation zone I. If the neutral point is in
deformation zone II, the entire zone I is the backward slip zone, which is easy to cause
slipping. Therefore, to ensure the stability of the rolling process, the neutral point is in
deformation zone I when the process parameters are set reasonably.
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After the neutral point position is determined, Equation (37) can be expressed as:

DI1=
∫ −xn

−x0

(vr cos θ − vx)dx−
∫ 0

−xn
(vr cos θ − vx)dx

= Rvr

(
θ0

2
− θn +

sin 2θ0 − 2 sin 2θn

4

)
+
(
v0h0 + h′cx0

)
(θ0 − 2θn)

−2A1(v0h0 + h′cx0)√
A2

[
arctan

(√
A3 tan

θ0

2

)
− 2 arctan

(√
A3 tan

θn

2

)]
+h′c

[
R(1 + cos θ0 − 2 cos θn) + A1 ln

(A1 − R cos θ0)hc

(A1 − R cos θn)
2

]
(39)

where
A3 =

hc + 2R
hc

(40)

Similarly, Equation (38) is expressed as:

DI2 =
∫ −xn

−x0

(vr sin θ − vx tan θ) tan θdx−
∫ 0

−xn
(vr sin θ − vx tan θ) tan θdx

=Rvr

(
θ0

2
− θn −

sin 2θ0 − 2 sin 2θn

4

)
−
(
v0h0 + h′cx0

)
(θ0 − 2θn)

−R(v0h0 + h′cx0)

A1
ln

tan
(

π+2θ0
4

)
tan2

(
π+2θn

4

) − h′cR(1 + cos θ0 − 2 cos θn)+

2(v0h0 + h′cx0)
√

A2

A1

[
arctan

(√
A3 tan

θ0

2

)
− 2 arctan

(√
A3 tan

θn

2

)]
−h′c A1 ln

(A1 − R cos θ0)hc

(A1 − R cos θn)
2 +

h′cR2

A1

[
ln

(A1 − R cos θ0)hc cos2 θn

(A1 − R cos θn)
2 cos θ0

]

(41)

Finally, the friction power in deformation zone I can be obtained as:

W f I =4mkB

vrR(θ0 − 2θn)−
R(v0h0 + h′cx0)

A1
ln

tan
(

π+2θ0
4

)
tan2

(
π+2θn

4

) −
2R2(v0h0 + h′cx0)

A1
√

A2

[
arctan

(√
A3 tan

θ0

2

)
− 2arctan

(√
A3 tan

θn

2

)]
+

h′cR2

A1

[
ln

(A1 − R cos θ0)hc cos2 θn

(A1 − R cos θn)
2 cos θ0

]}
(42)

Similarly, the horizontal and vertical velocity components of the roll in the deformation
zone II are respectively: {

vrx = vr cos θ
vry = vr sin θ − h′c

(43)

The velocity difference between strip and rolls is:{
∆vx = vx − vr cos θ
∆vy = vx tan θ − vr sin θ

(44)
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According to Equations (34), (35), and (43), the friction power of deformation zone II
can be obtained as:

W f II= 4mk
∫ x1

0

∫ B

0

(
∆vx cos θ + ∆vy sin θ

)
sec θdxdy

= 4mkB
∫ x1

0

(
∆vx + ∆vy tan θ

)
dx

= 4mkB(DII1 + DII2)

(45)

where
DII1 =

∫ x1

0
∆vxdx (46)

DII2 =
∫ x1

0
∆vy tan θdx (47)

Equation (46) can be expressed as:

DII1 =
∫ x1

0
(vx − vr cos θ)dx

=
2A1(v0h0 + h′cx0)√

A2
arctan

(√
A3 tan

θ1

2

)
−
(
v0h0 + h′cx0

)
θ1

−Rvr

(
2θ1 + sin 2θ1

4

)
+ Rh′c(cos θ1 − 1) + A1h′c ln

(
A1 − R cos θ1

hc

) (48)

Similarly, Equation (47) is expressed as:

DII2 =
∫ x1

0
(vx tan θ − vr sin θ) tan θdx

=
(
v0h0 + h′cx0

)
θ1 +

R(v0h0 + h′cx0)

A1
ln tan

(
π + 2θ1

4

)
−2A1(v0h0 + h′cx0)√

A2
arctan

(√
A3 tan

θ1

2

)
− Rvr

(
2θ1 − sin 2θ1

4

)
−h′cR(cos θ1 − 1)− h′c A1 ln

(
A1 − R cos θ1

hc

)
+

h′cR2

A1
ln
(

A1 − R cos θ1

hc cos θ1

)
(49)

Finally, the friction power in deformation zone II can be obtained as:

W f II = 4mkB
[

R(v0h0+h′cx0)
A1

ln tan
(

π+2θ1
4

)
− Rvrθ1

+ 2R2(v0h0+h′cx0)
A1
√

A2
arctan(

√
A3 tan θ1

2 )+
h′cR2

A1
ln
(

A1−R cos θ1
hc cos θ1

)] (50)

According to Equation (30), (42), (50), the frictional power during dynamic rolling is:

W f =4mkB

R(v0h0 + h′cx0)

A1
ln

tan
(

π+2θ1
4

)
tan2

(
π+2θn

4

)
tan
(

π+2θ0
4

)
+Rvr(θ0 − 2θn − θ1)−

2R2(v0h0 + h′cx0)

A1
√

A2

[
arctan

(√
A3 tan

θ0

2

)
− arctan

(√
A3 tan

θ1

2

)
− 2 arctan

(√
A3 tan

θn

2

)]
+

h′cR2

A1

[
ln

A1 − R cos θ0

cos θ0
− 2 ln

A1 − R cos θn

cos θn
+ ln

A1 − R cos θ1

cos θ1

]}
(51)
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3.3. Shear Power Function

The velocity discontinuity surface only exists at the entrance of the strip, and the
velocity discontinuity value at the entrance is:

vy

∣∣∣∣x=−x0 = −v0 tan θ0 + h′c
h0

y (52)

According to Equation (52), the shear power at the entrance of the strip is:

Ws= 4k
∫ h0

0

∫ B

0

∣∣vy|x=−x0

∣∣dydz

= 4kB
∫ h0

0

(
v0 tan θ0 + h′c

h0
y
)

dy

= 2kBh0
(
v0 tan θ0 + h′c

)
(53)

3.4. Rolling Force Power Function

In static rolling, the rolling force does not do work. In dynamic rolling, the roll has a
vertical velocity and participates in work. The rolling force power function is:

WF = −2Fh′c (54)

3.5. Rolling Force Power Function

Substituting Equations (28), (51), (53), (54) into Equation (17), the total power of the
dynamic rolling process is:

WT =4kB
{

2h′c(x0 + x1)− 2
(
v0h0 + h′cx0

)
ln

h1

h0
+

h0

2
(
v0 tan θ0 + h′c

)
+

R(v0h0 + h′cx0)

A1
ln

tan
(

π+2θ1
4

)
tan2

(
π+2θn

4

)
tan
(

π+2θ0
4

) − 2h′cZ−

2R2(v0h0 + h′cx0)

A1
√

A2

[
arctan

(√
A3 tan

θ0

2

)
− 2 arctan

(√
A3 tan

θn

2

)
− arctan

(√
A3 tan

θ1

2

)]
+ Rvr(θ0 − 2θn − θ1)+

h′cR2

A1

[
ln

A1 − R cos θ0

cos θ0
− 2 ln

A1 − R cos θn

cos θn
+ ln

A1 − R cos θ1

cos θ1

]}
−2Fh′c

(55)

Under the premise of known reduction rate, roll velocity, strip size, roll gap reduction
velocity, roll radius, WT is only the function of neutral angle. According to the first principle,
the true solution of the neutral angle minimizes the total power value, as follows:

WTmin = WT(θnreal) (56)

The rolling torque and rolling force are respectively:

M =
R0

(
WP + W f + Ws

)
2vr

(57)

F =
M

ψ
√

2R∆h
(58)

where ψ is the arm factor.
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Substituting Equations (57) and (58) into Equation (56) can be obtained:

WTmin= WT(θnreal)

=
(

WP + W f + Ws + WF

)
min

=

(
1− h′R0c

vrψ
√

2R∆h

)(
WP + W f + Ws

)
min

=

(
1− h′R0c

vrψ
√

2R∆h

)[
WP(θnreal) + W f (θnreal) + Ws(θnreal)

]
(59)

According to Equation (58), when the neutral angle is a real solution, the sum of
WP, Wf, and WS is the smallest. The actual solutions of rolling torque and rolling force
are respectively:

Mmin =
R0

(
WP + W f + Ws

)
min

2vr
(60)

Fmin =
Mmin

ψ
√

2R∆h
(61)

The actual roll radius during the rolling process is:

R = R0

(
1 + 2.2× 105 Fmin

4B
(√

h0 + h1 − 2hc +
√

h1 − hc
)2

)
(62)

The roll radius needs to be calculated iteratively with the rolling force until the
accuracy is met.

4. Results

To verify the accuracy of the dynamic rolling force model. When the roll gap is
reduced, a dynamic hot rolling experiment was carried out. The experiment was carried
out on a laboratory two-high rolling mill with a roll radius of 40 mm, The rolling mill
equipment is shown in Figure 7a. The rolling mill adopts an electric pressing device
equipped with a pressure sensor and a contact-type velocity measuring device, measuring
the rolling force and roll velocity. At the same time, the rolling mill can control the velocity
of roll gap change, the control interface of the rolling mill is shown in Figure 7b. Experiment
with strips that meet the assumption of plane deformation. Use a resistance heating furnace
to heat for 30 min, then take out the strip, use a temperature measuring gun to measure the
temperature before and after rolling and take the average value. After the strip is cooled,
measure the thickness of the strip after rolling. Three different reduction rates were used
for the experiments. When rolling each strip, perform static rolling first, after the rolling is
stable, start variable thickness rolling, and finally the static rolling ends. The experimental
material is 5052 Al, the experimental material is 5052 Al, the rolling temperature is 250 ◦C,
the strip thickness is 2 mm, and there is no lubrication. Electronic Vernier calipers measure
the thickness of the strip after rolling. The specific rolling parameters are shown in Table 1.

Table 1. Experimental parameters of dynamic rolling.

Parameters Strip 1 Strip 2 Strip 3

Entrance thickness (mm) 2 2 2
Width (mm) 20.85 20.84 20.75

Thicker zone exit thickness (mm) 1.816 1.813 1.83
Thinner zone exit thickness (mm) 1.64 1.581 1.57
Roll gap change velocity (mm/s) 0.035 0.047 0.065
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Figure 7. (a) Two-high asynchronous variable thickness experimental rolling mill; (b) Mill control interface.

The model of deformation resistance for the 5052 Al used in the calculation is deter-
mined by Wang [16]:

σs = 180.73 exp[−0.733(T − 1)]

(
ε′

10

)0.012+0.043T(
1.048

( ε

0.2

)0.243−0.128T
− 0.048

ε

0.2

)
(63)

where T = t/300,The unit of t is ◦C, σs =
√

3k, ε′ is the average deformation rate
during rolling.

During dynamic rolling, the deformation rate in the deformation zone is directly
affected by the roll vertical velocity. The existing average deformation rate calculation
model cannot fully reflect the law of metal deformation during dynamic rolling. Therefore,
this paper adopts a new calculation model as follows:

ε′x =
1

(x0 + x1)

(∫ 0

−x0

vx tan θ + h′c
hx

dx +
∫ x1

0

h′c − vx tan θ

hx
dx
)

(64)

There are few studies on the moment arm factor model. Pietrzyk [17] obtained
a regression model of the force arm coefficient and the average thickness and contact
arc length based on experimental research. This paper adopts the model form. Using
Klarin et al. [18] hot rolling Al strip arm factor data, the final regression model of the arm
factor of the hot rolling Al strip is:

ψ = 0.6673

(
h
l

)0.3133

(65)

Figure 8 shows the comparison between the calculation results of the dynamic model
in this paper and the experimental results. Figure 8a shows shows the comparison result
when the roll gap reduction velocity is 0 mm/s, which is a static rolling. The maximum
error between the model calculation result and experimental result is 6.72%. Figure 8b–d
are the comparison results when the roll gap reduction velocity is 0.035 mm/s, 0.047 mm/s,
and 0.065 mm/s, respectively; they are the dynamic rolling process. The maximum error is
9.37%, and the average error is only 3.8%. The dynamic model can predict static rolling
force and dynamic rolling force simultaneously, which is consistent with the experimental
results, indicating that the model has high accuracy.
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Figure 8. Comparison of theoretical model results and experimental results. The roll gap change velocity are respectively:
(a) 0 mm/s; (b) 0.035 mm/s; (c) 0.047 mm/s; (d) 0.065 mm/s.

5. Discussion

As shown in Figure 9, the influence of the rolling velocity and roll gap reduction
velocity on the dynamic rolling force is analyzed when the exit thickness is 1.816 mm
(No change in thickness during analysis and calculation). When the roll gap reduction
velocity is 0 mm/s, the rolling force increases with the increase of the rolling velocity. This
phenomenon is mainly because the average deformation rate increases with the increase
of the rolling velocity. At the same time, the deformation resistance increases with the
increase of the average deformation rate. The rolling force increases with the increase of the
deformation resistance. This shows that the rolling force increases with the increase of the
average deformation rate. When the rolling velocity is constant, the rolling force increases
with the increase of the roll gap reduction velocity, which is also due to the increase in
the average deformation rate of the metal in the deformation zone due to the roll gap
reduction velocity. However, when the roll gap reduction velocity is 0.04 mm/s, the rolling
force increases initially and then starts to drop with the increase of the rolling velocity.
When the roll gap reduction velocity increases to 0.06 mm/s, the rolling force gradually
decreases with the increase of the rolling velocity. This phenomenon is contrary to the law
of static rolling. When the roll gap reduction velocity exists, additional deformation zone II
will appear. The length x1 of the deformation zone II is affected by the roll gap reduction
velocity rate to the rolling velocity. When the roll gap reduction velocity is constant, the
increase of the rolling velocity will cause the decrease of x1, affecting the deformation
zone length. Therefore, the reduction of rolling force is mainly due to the reduction of the
deformation zone length.
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Figure 9. The influence of rolling velocity and roll gap reduction velocity on rolling force
(2h1 = 1.816 mm).

As shown in Figure 10, the influence of the rolling velocity and roll gap reduction
velocity on the dynamic rolling force is analyzed when the exit thickness is 1.57 mm
(No change in thickness during analysis and calculation). When the roll gap reduction
velocity is 0 mm/s, the rolling force increases with the increase of the rolling velocity.
When the rolling velocity is constant, the rolling force increases as the roll gap reduction
velocity increases. The comparison with Figure 8 shows that the rolling force increases
more extensively when the reduction amount increases significantly. It shows that when
the reduction is significant, the average deformation rate will increase more significantly
when the rolling velocity increases. When the roll gap reduction velocity is 0.04 mm/s,
the rolling force increases initially and then starts to drop with the increase of the rolling
velocity. Based on the above judgment, a higher roll gap reduction velocity is required to
reduce rolling force from occurring. When the roll gap reduction velocity is 0.08 mm/s, the
rolling force gradually decreases with the increase of the rolling velocity, but the decrease
is smaller than when the exit thickness is 1.816 mm.

Figure 10. The influence of rolling velocity and roll gap reduction velocity on rolling force
(2h1 = 1.57 mm).
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In order to determine the reason for the reduction of rolling force during dynamic
rolling, Figures 11 and 12 calculate the influence of rolling velocity and roll gap reduction
velocity on the deformation zone length when the exit thickness is 1.816 mm and 1.57 mm
(No change in thickness during analysis and calculation), respectively. As shown in
Figures 10 and 11, when the rolling velocity is constant, the deformation zone length
increases with the increase of the roll gap reduction velocity. When the roll gap reduction
velocity is 0 mm/s, the deformation zone length increases slightly. Only deformation
zone I exists, which is caused by the increase in the rolling force. When there is a roll gap
reduction velocity, as the rolling velocity increases, the deformation zone length has been
significantly reduced, which is mainly due to the reduction of the deformation zone II. With
the increase of the roll gap reduction velocity, the increase in the average deformation rate
cannot offset the effect of the reduction in the deformation zone length on the reduction
of the rolling force. This indicates that the change in the deformation zone length plays
a leading role in the change of the rolling force at this time. When the roll gap reduction
velocity is 0.08 mm/s, the deformation zone length decreases sharply with the increase of
the roll velocity, which further shows that the reduction of the rolling force is caused by the
reduction of the deformation zone length.

Figure 11. The influence of rolling velocity and roll gap reduction velocity on the deformation zone
length (2h1 = 1.816 mm).

Figure 12. The influence of rolling velocity and roll gap reduction velocity on the deformation zone
length (2h1 = 1.57 mm).



Metals 2021, 11, 1346 18 of 22

Through the analysis of Figures 9–12 and the mathematical expression of the dynamic
rolling force model shows that the roll gap reduction velocity directly affects the average
metal deformation rate and the deformation zone length and finally affects dynamic rolling
force. Therefore, the dynamic model was modified to study the contribution of these
two factors to the dynamic rolling force value. The dynamic boundary model modifies
Equations (54) and (64) in this model, which ignores the effect of roll gap reduction velocity
on the average metal deformation rate. The dynamic plastic deformation model only
modifies Equation (14) in this model to x1 = 0, which ignores the effect of roll gap reduction
velocity on the deformation zone length. The static rolling force model is to modify
Equation (14) in this model to x1 = 0 and modify Equations (54) and (64) simultaneously.
At this time, it is the static rolling.

According to Figure 13, the dynamic rolling model is compared with the calculation
results of three modified models under different roll gap reduction velocities and exit thick-
nesses. By comparing the static model and dynamic model, the two factors significantly
influence the dynamic rolling force. The influence of these two factors in the dynamic
model is almost the same order of magnitude. In addition, this will depend of course on
the alloy rolled and its strain rate sensitivity in particular.

Figure 13. The contribution of the average metal deformation rate and dynamic boundary conditions to the dynamic rolling
force value. The strip exit thickness and rolling velocity are respectively: (a) 1.816 mm, 12.5 mm/s; (b) 1.57 mm, 12.5 mm/s;
(c) 1.816 mm, 20.5 mm/s; (d) 1.57 mm, 20.5 mm/s.

As shown in Figures 14 and 15, the influence of roll gap reduced velocity and rolling
velocity on the neutral point position is analyzed when the exit thickness are 1.816 mm
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and 1.57 mm in dynamic rolling. When roll gap reduction velocity is 0 mm/s, the neutral
point position is almost unchanged. When the rolling velocity is constant, the range of the
neutral point moving to the exit position increases with the increase of the rolling velocity.
When roll gap reduction velocity is constant, as the rolling velocity increases, the position
of the neutral point moves to the exit position. The range of movement increases with
the increase of the roll gap reduction velocity. Moreover, it can also be seen that under
reasonable rolling parameters, the neutral point will not appear in deformation zone II,
indicating that the assumptions of this model are correct.

Figure 14. The influence of roll gap reduction velocity and rolling velocity on the position of neutral
point (2h1 = 1.816 mm).

Figure 15. The influence of roll gap reduction velocity and rolling velocity on the position of neutral
point (2h1 = 1.57 mm).

6. Conclusions

(1) A new dynamic rolling model in roll gap reduction in the dynamic hot rolling pro-
cess was established. This model successfully introduced the roll vertical velocity
parameter into the rolling model, taking into account the influence of the roll vertical
velocity on the deformation zone length and the plastic deformation rate. Compared
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with the dynamic rolling experiment, the average error of the model is 4%, which has
high accuracy.

(2) In the dynamic rolling, when the rolling velocity is constant, the rolling force increases
with the increase of the roll gap reduction velocity. There is a critical value for the
rolling reduction velocity. The critical value will increase with the increase of the
reduction. When the critical value is reached, the rolling force will decrease with the
increase of the rolling velocity, which is contrary to the law of static rolling.

(3) When the roll gap reduction velocity is constant, the length of the deformation zone
decreases significantly with the increase of the rolling velocity, which is mainly caused
by the reduction of the deformation zone length II.

(4) The change of the deformation zone length and the change of the metal deformation
rate have a significant influence on the dynamic rolling force. When the reduction
amount is small, the metal deformation rate changes and the contribution rate to the
dynamic rolling force is comparatively large. When the reduction is significant, the
deformation zone length changes and the contribution rate to the dynamic rolling
force is more significant.

(5) As the roll gap reduction velocity increases, the position of the neutral point gradually
moves to the exit direction. However, when the rolling parameters are within a
reasonable range, the position of the neutral point is located in deformation zone I.
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Appendix A

In Equation (19), ε′xy is not zero, but it has little effect on the final result and can be
ignored. A proof is now provided. Since the length of deformation zone I is much longer
than that of deformation zone II, and the proof steps are the same, only deformation zone I
is used as an example to prove it.

According to the definition ε′xy can be written as:

ε′xy =
∂vy

∂x
+

∂vx

∂y
(A1)

Substituting Equation (5) into Equation (A1) can be obtained:

ε′xy = ∂
∂x

(
vxh′ x−h′ c

hx
y
)

=

(
ε′xh′ xhx+vxh′′ xhx−vxh′2x+h′ ch′ x

h2 x

)
y

=

(
ε′xh′ x

hx
+ vxh

′′

hx
+ h′ c−vxh′ x

h2
x

h′ x

)
y

=
(

ε′xh′ x
hx

+ vxh′′ x
hx

+ ε′xh′ x
hx

)
y

(A2)
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where h′′ x is the second derivative of the roller surface curve, and the expression is:

h′′ x = 1√
R2−x2 +

x2

(
√

R2−x2)
3

= 1+h′2x√
R2−x2

(A3)

According to formula (A2), ε′xy is related to y. Using the median theorem, the average
value of ε′xy on the same x section is:

ε′xy =
ε′xh′x + vxh′′ x + ε′xh′x

2
(A4)

In order to make Equation (19) become an equation only related to ε′x, define parame-
ter λ as:

λ =

∫ 0
−x0

ε′xydx∫ 0
−x0

ε′xdx
(A5)

where λ is a coefficient that has nothing to do with the variable x, and its expression is:

λ =
h′c ln hc

h0
+ (v0h0+h′cx0)

2h2
c

(
θ0 +

1−2Rh′c
3 θ3

0

)
− Rh′c

8h2
c

(
2θ2

0 − θ4
0 − 2Rθ4

0
)

R(v0h0+h′cx0)

2h2
c

θ2
0 +

Rh′c
h2

c

(
hcθ0 −

θ3
0
3

) (A6)

At this time, the relationship between ε′xy and ε′x can be approximated by λ:

ε′xy ≈ λε′x (A7)

Substitute Equation (A7) into Equation (19), then divide by Equation (20), we can get:

η =

√
4ε′2x + λ2ε′2x√

4ε′2x

=

√
4 + λ2

2
(A8)

ηWp is the result when considering ε′xy.
Taking the experimental parameters in this article as an example, ηWp is only increased

by 1% or less than Wp, and the error reflected in the rolling force is even smaller. So, it can
be ignored.
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