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Abstract: A layered gradient aluminum foam was prepared by powder sintering with sodium
thiosulfate (Na2S2O3) particles as the cell-forming agent. By cutting, polishing and observing under
a microscope, it was found that the aluminum powder particles were not completely melted after
sintering but were only combined by surface melting. Based on the quasi-static compression test and
the macroscopic diagram of the sample during deformation, the mechanical properties of gradient
aluminum foam were studied, and their deformation characteristics and mechanism were analyzed
and discussed.

Keywords: gradient aluminum foam; compression properties; failure mechanisms; two-layered
structure; powder metallurgy method

1. Introduction

Foamed metallic materials (FMM) are materials that have a foam structure and contain
a large of number of cells in the base metal materials. Owing to the abundant cells, foamed
metallic materials possess unique functional properties, such as light weight, damping,
energy absorption, heat dissipation, colation, etc., therefore drawing significant attention
from the industrial field [1–8]. In particular, Al and Al alloys are typically used for foamed
metallic materials due to their excellent castability and industrial significance [6]. Extensive
studies have been conducted to investigate the mechanical property, energy absorption
capability and damping property of uniform Al foams [9–18]. To optimize the functional
properties of foams, functionally graded foams have been widely studied for higher
performance and effectiveness [4,6,19–23] instead of uniform foam. The graded foams
consist of a gradual change in their property from one location to another.

Introducing a gradient to foam materials may alter deformation modes and result
in various mechanical properties. Many methods for preparing uniform metal foams can
be used to prepare metal foams with a gradient structure. According to the cell structure,
gradient metal foams can be divided into open-cell structure metal foams [22,23], metal
matrix syntactic foams [6,24,25] and closed-cell structure metal foams [20,21,26–28]. At
present, a gradient is usually introduced to foam materials by changing the relative density
distribution. Therefore, the relative density of the gradient foam is not uniform. Cell size
and cell-wall thickness are two important parameters to adjust the relative density of foam
materials. Some researchers have changed the cell size distribution and cell-wall thickness
gradients to study the gradient effect on the mechanical properties of foams [21–23,26–29].
Changes in cell size and cell-wall thickness are mainly used to study the effect of density
gradient of foam materials on performance. Meanwhile, functionally graded Al foams with
both open-cell structures and closed-cell structures have also been prepared and researched.
However, there have been few studies on size gradient aluminum foams with open-cell
structures and uniform relative densities. Al foams with open-cell structures have good
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filtration characteristics and heat-release properties. Therefore, cell-size gradient Al foams
with open-cell structures and uniform relative densities are worth to study.

In this study, two-layered cell-size gradient Al foams (SGAF) with open-cell structures
and uniform porosity were prepared by the sintering dissolution method. Urea [30,31] and
salt (NaCl) [32] have often been selected as a spacer to prepare Al foam for a space holder.
However, these spacers have weak corrosion, which will corrode the Al base and reduce the
mechanical properties of Al foam. Moreover, the residual urea in the sintering process will
decompose to produce ammonia gas, which pollutes the environment. Sodium thiosulfate
(Na2S2O3) was selected as the spacer in this study. Its solution is non-toxic, soluble in
water and easily removed from aluminum foam. Meanwhile its solution is neutral, which
produces no corrosion on aluminum metal and little environmental pollution. In this
paper, the porosity of SGAF was fixed at 70%. The Al foams with cell-size gradients were
produced. In this paper, the cell sizes of gradient Al foams include 4 mm, 3 mm, 2 mm,
(i.e., 4-3, 4-2 and 3-2). 4-3, 4-2 and 3-2 refer to two-layered gradient Al foams with cell sizes
of 4 mm and 3 mm, 4 mm and 2 mm, 3 mm and 2 mm, respectively. The effects of cell size
on the quasi-static compressive behavior of SGAF have been investigated. After evaluation
of the compressive properties, deformation and failure mechanisms were also discussed.

2. Experimental Procedure
2.1. Fabrication of Two-Layered Cell Size Gradient Al Foams (SGAF)

SGAF were prepared by the sintering dissolution process. Aluminum powders (techni-
cally pure 99.98%, 300 meshes) were used as base materials. Sodium thiosulfate (Na2S2O3)
was chosen as the space support; the sizes included 4 mm, 3 mm and 2 mm. The cell
size and porosity of SGAF were precisely controlled by adjusting the mass and size of
sodium thiosulfate (Na2S2O3) and aluminum powders. The two powders needed to be
mixed evenly. Before stirring, a small amount of alcohol was added. This operation was
conducive to the better adhesion of aluminum powder to the surface of the space support
to improve the uniformity of cell distribution. The mixture was poured into a cold press
mold for 10 min under a pressure of 370 MPa. Then, a cold press block with a diameter of
40 mm and a height of 30 mm was obtained. Meanwhile, the cold press block was polished
to remove the edges and burrs. The specimens were immersed in a constant temperature
water bath at 60 ◦C for over 5 h to ensure that the space bracket was completely dissolved.
After drying at 100 ◦C for 30 min, the foamed aluminum samples were sintered in a furnace
at 620 ◦C for 5 h and then cooled to room temperature in the furnace. The size of the
prepared aluminum foam sample was a cylinder with a diameter of 40 mm and a height of
30 mm, and the porosity was 70%. The diameter of the cells was the same as that of sodium
thiosulfate, i.e., 4 mm, 3 mm and 2 mm.

2.2. Structure Characterization

The specimens were cut into a semicircle with a diameter of 40 mm by using an electric
discharge machine (Longkai Technology Co., Ltd., Suzhou city, China). The specimen’s
density was determined by its weight and physical dimensions, in which the porosity of
the foam is defined as

P = 1 − ρ

ρs
(1)

where P is the porosity; ρ and ρs are the densities of the aluminum foam samples and the
cell wall material, respectively.

For observing the microstructural features, the samples were polished with sandpaper
and corroded with a 15% sodium hydroxide solution. Micrographs were taken under an
optical microscope (Keyence (China) Co., Ltd., Shanghai, China), and then the samples
were scanned under the printer LaserJet M1136 MFP (China Hewlett-Packard Co., Ltd.,
Beijing, China) with the resolution set at 1200 dpi to observe the macroscopic cells and
microstructure.
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2.3. Quasi-Static Compressive Test

Quasi-static compressive tests of the specimens were conducted at room temperature
with a crosshead speed of 3 mm/min by an Electron Universal Material Testing Machine
(UTM 5305 × 300 kN) (Suns Technology Co., Ltd., Shenzhen, China). Platform stress
is the average pressure within the range of 10–45% strain. Stress drop, a parameter to
describe cell-wall collapse when stress exceeds the yield stress and stress redistributes
during compressive process, is defined as:

S = (Su − Sl)/Su (2)

where S is stress drop rate, and Su is the high yield point stress. Sl the low yield point
stress.

3. Results and Discussion
3.1. Morphology Observation

The cell structure of SGAF is shown in Figure 1. Figure 1a–c shows the transverse
direction sectional views of the aluminum foam samples with cell size of 4 mm, 3 mm
and 2 mm. The whole cell shape was round, similar to the shape of sodium thiosulfate
particles. At the same time, with the increase of cell diameter, the thickness of the cell wall
increased, which will have a certain impact on the mechanical properties of the material.
Figure 1e–f showed the longitudinal direction sectional views of gradient aluminum foams
with different cell size gradients (4-3, 4-2, 3-2). It can be seen that all the cells were deformed
to some extent in the pressure direction, forming an elliptical shape and that the degree
of deformation decreased with the increase of the cell size. The ellipse degree of the hole
also had a certain influence on its mechanical properties. At the same time, it can be
observed that the distribution of the aluminum matrix was not uniform, with obvious
aggregation at A and weakness at B. This may have some influence on the deformation
process. In addition, there was obvious connectivity between some cells. This was due to
the deformation and friction of sodium thiosulfate particles during the compression process,
which leads to the aggregation of aluminum powder. Meanwhile, it can be observed that
the larger the cell size of the sample, the thicker the cell wall. The thickness of the cell
wall has a great influence on the mechanical properties of the samples—thicker walls
are stronger. With the same porosity, the thicker the cell wall, the higher the mechanical
properties.

Figure 2 shows the microstructure of the cell wall of SGAF after polishing and cor-
rosion under metallographic microscope. In Figure 2a,b, the boundary line between
aluminum powder particles can be clearly observed at different scales. This proved that the
aluminum powder particles were not completely melted during the preparation process. In
Figure 2c,d, the boundary line between aluminum powder particles can be clearly observed
at A. It indicated that the bond between aluminum powder particles was not very tight.
When subjected to pressure, cracks are prone to occur at this place, leading to the fracture of
the cell wall, and then the strength of aluminum foam decreases. However, the combination
of particles at B was relatively good. This was caused by the fusion of the surface of some
aluminum powder particles during sintering and adhesion to each other.



Metals 2021, 11, 1337 4 of 10
Metals 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. Macrostructure of two-layered cell-size gradient Al foams in both orthogonal direction; transverse direction: Al 
foams with cell of (a) 2 mm, (b) 3 mm, (c) 4 mm, longitudinal direction: Al foams with cell of (d) 3 mm-2 mm, (e) 4 mm-2 
mm, (f) 4 mm-3 mm, A—aggregation of aluminum powders, B—weak connection of cells. 
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different scales with of (a)100 μm, (b) 40 μm, (c) and (d) 20 μm: A—clear boundary line, B—better boundary combination. 

Figure 1. Macrostructure of two-layered cell-size gradient Al foams in both orthogonal direction; transverse direction: Al
foams with cell of (a) 2 mm, (b) 3 mm, (c) 4 mm, longitudinal direction: Al foams with cell of (d) 3 mm-2 mm, (e) 4 mm-
2 mm, (f) 4 mm-3 mm, A—aggregation of aluminum powders, B—weak connection of cells.

Metals 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. Macrostructure of two-layered cell-size gradient Al foams in both orthogonal direction; transverse direction: Al 
foams with cell of (a) 2 mm, (b) 3 mm, (c) 4 mm, longitudinal direction: Al foams with cell of (d) 3 mm-2 mm, (e) 4 mm-2 
mm, (f) 4 mm-3 mm, A—aggregation of aluminum powders, B—weak connection of cells. 

 
Figure 2. The microstructure of a two-layered gradient aluminum foamed cell wall under a metallographic microscope at 
different scales with of (a)100 μm, (b) 40 μm, (c) and (d) 20 μm: A—clear boundary line, B—better boundary combination. 
Figure 2. The microstructure of a two-layered gradient aluminum foamed cell wall under a metallographic microscope at
different scales with of (a) 100 µm, (b) 40 µm, (c) and (d) 20 µm: A—clear boundary line, B—better boundary combination.



Metals 2021, 11, 1337 5 of 10

Figure 3 shows the microstructure of an aluminum foamed cell wall under a scanning
electron microscope. In Figure 3a, it can be clearly observed that aluminum powder
particles deformed significantly after being compacted and formed. Therefore, there
were no obvious gaps between particles, making it easier for particles to combine in the
sintering process. It can be observed from Figure 3b that there was an obvious gap between
aluminum powder particles at A. This indicated that it was not sufficient to combine
the melted aluminum powder particles in the sintering process. This may be due to the
insufficient deformation of some aluminum powder particles in the deformation process,
which does not fill up the gap. Thus, the result was insufficient melting and bonding
between aluminum powder particles. The boundary at B was relatively good, and the
boundary was bent and interlocked, which is beneficial to improving the bond strength.
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3.2. Effects of Two-Layered Structure of Samples on Mechanical Properties

Figure 4 shows the compressive curves of two-layered structure Al foams with differ-
ent cell size gradients (4-3, 4-2, 3-2). It shows three obvious stages, namely, the linear elastic
deformation zone, a long plateau of plastic deformation and the compaction zone. Two
obvious deformation zones can be seen in the plateau area. These two deformation zones
are closely related to the deformation of two layers of gradient Al foams with different
cell sizes. In Figure 4, it can be observed that there was a large fluctuation in the plateau
area. This was due to the partial melting and bonding between the aluminum powder par-
ticles, which is obviously different from the aluminum foam prepared by the melt foaming
method. When the size of the sample was 4-3, 4-2, 3-2, the compaction strain increased
gradually. This is because, with the same porosity, the smaller the cell diameter, the thinner
the cell wall, and the cracked cell wall was easier to be compacted and deformed after the
collapse, and there was more compaction space.

Table 1 shows the peak stress, plateau stress and stress drop ratio of the samples with
different cell sizes during compression. It can be seen from Table 1 that, when the sample
sizes were 4-3, 4-2, 3-2, the peak stress was 6.2 MPa, 5.2 MPa and 3.5 MPa respectively. The
peak stress decreased by nearly 43.5% when the cell sizes of the samples changed from 4-3
to 3-2. This is because the larger the cell size was, the thicker the cell wall; thus, the harder
it was to be damaged. Moreover, the corresponding plateau stresses were 3.9 MPa, 3.5 MPa
and 3.5 MPa, respectively. It can be seen that the stress was relatively close in the process of
collapse. The corresponding stress drop ratio was 55.2%, 40.4% and 20.3%, and the stress
drop ratio decreased gradually. The stress drop ratio decreased by nearly 63.2% when the
cell sizes of the samples changed from 4-3 to 3-2. This is because, with the decrease of the
cell size in the samples, the collapse space of each layer of cells is relatively small in the
failure process, and then the stress fluctuation caused by the collapse process is relatively
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small. Therefore, the yield stress and the stress fluctuation increase with the increase of the
cell diameter of the sample.
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Table 1. The mechanical properties of the samples with different cell sizes.

Samples
Performance Peak

Stress/MPa
Plateau

Stress/MPa
Stress Drop

Rate/%
4-3 6.2 3.9 55.2

4-2 5.2 3.5 40.4

3-2 3.5 3.5 20.3

3.3. Analysis of Deformation Process of Two-Layered Sample

Figure 5 shows the macroscopic diagram of the deformation process of two-layered
gradient Al foams with a cell size of 4-3. Figure 5a shows the deformation of two-layered
gradient Al foams with a cell size of 4-3 in the elastic stage of the deformation process. It
can be observed that the cell diameter of the upper part is 4 mm, and the cell diameter
of the lower part is 3 mm, and there is no damage as a whole. From the deformation
in Figure 5b–d, it can be observed that shear deformation occurred at the initial stage of
collapse, as shown in A. In addition, an obvious brittle fracture can be observed in the
cells, which is different from the ductile fracture of aluminum foam prepared by the melt
foaming method. Therefore, the compression curves had obvious fluctuation. As the
progress of compression continued, obvious local regional collapse deformation appeared
at both ends of area A, as shown in areas B and C in Figure 5c,d. Moreover, the damage
in this area gradually extended to other weak areas, as shown in area D in Figure 5c,d.
Figure 5e shows the macroscopic deformation diagram of the cell structure in the later
period of compression. It can be seen that the cell structures with a diameter of 3 mm in
Zone E and some adjacent cell structures with a diameter of 4 mm have both obviously
collapsed. In the area where the cell diameter is 4 mm in the F region, the overall cell shape
was still intact. By comparing E and F, it can be found that the structure with cell diameter
of 4 mm had higher strength than that with cell diameter of 3 mm.
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Figure 6 shows a macroscopic view of the deformation process of two-layered gradient
Al foams with cell diameter of 4-2. Figure 6a shows the deformation of two-layered gradient
Al foams with a cell diameter of 4-2 in the elastic stage during the deformation process.
In Figure 6a, the cell diameter of the upper part was 4 mm, and the cell diameter of the
lower part was 2 mm. It can be observed that the cell wall in area A was thinner than
that in area B, which belonged to the weak zone. From the deformation in Figure 6b–d, it
can be observed that compression collapse deformation occurred in region C, which was
consistent with the weak area in Figure 6a. Figure 6e shows a macroscopic view of cell
structure deformation at the late compression stage. As can be seen from the figure, the
shear deformation occurred in the area with a cell size of 4 mm. In the D area, the cell
structure with a cell diameter of 2 mm and the adjacent part with a cell diameter of 4 mm
have obviously collapsed. In the E area, the cell structure with a cell diameter of 4 mm
remained intact as a whole. By comparing the D and E regions, the structure with a cell
diameter of 4 mm had higher strength than the structure with a cell diameter of 2 mm. It
can be seen that the deformation and collapse process occurred first in the weak link area
with a small cell diameter.
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Figure 6. A macroscopic diagram of the deformation process of two-layered gradient Al foams with a cell size of 4-2.
Deformation strain: (a) ε = 0.01, (b) ε = 0.08, (c) ε = 0.21, (d) ε = 0.38, (e) ε = 0.46; A indicates the area with thin cell wall,
B indicates the area with relatively thick cell wall, C indicates local regional collapse deformation, D indicates obviously
collapsed area, E indicates still intact overall cell shape.

Figure 7 shows a macroscopic view of the deformation process of two-layered gradient
Al foams with a cell diameter of 3-2. Figure 7a shows the deformation of two-layered
gradient Al foams with a cell diameter of 3-2 in the elastic stage during the deformation
process. It can be observed that the upper part of the cell diameter was 3 mm, and the
lower part was 2 mm. From the deformation in Figure 6b–d, the compression collapse
deformation first appeared in area A, i.e., the area with a cell diameter of 2 mm, and
then extended to the area with a cell diameter of 4 mm in the form of shear deformation.
Figure 6e shows a macroscopic diagram of cell structure deformation at the later stage of
compression. In zone A, the cell structure with a cell diameter of 2 mm and some adjacent
cell structures with a cell diameter of 4 mm have undergone obvious collapse. In the area
with a cell diameter of 4 mm, the cell was still intact as a whole.
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Deformation strain: (a) ε = 0.01, (b) ε = 0.08, (c) ε = 0.21, (d) ε = 0.38, (e) ε = 0.46; A indicates the obvious collapse area.

Combined with the analysis in Figures 5–7, the layered gradient aluminum foams
prepared by a powder sintering method had obvious brittle deformation. When the cell
diameter was 4-2 and 3-2, obvious deformation first appeared in the weak area with a
cell diameter 2 mm, and then it extended into the area with a cell diameter of 4 mm and
3 mm in the form of shearing. When the cell diameter was 4-3, the shear deformation
occurred first, and then the local collapse began at both ends of the shear deformation.
When entering the later stage of deformation, the gradient Al foams collapsed obviously
in the relatively small cell-size area, while the relatively large cell size area still kept the
complete structure. Therefore, it can be concluded that the collapse deformation process of
two-layered gradient Al foams firstly occurs in the relatively weak area of small cell size.
Then this induces the deformation of the relatively weak area of large cell size to extend
to the large cell-size area. In addition, the strength of the large cell-size area is generally
greater than that of the small cell size area. The results show that the aluminum powder
particles in the layered gradient Al foams prepared by powder metallurgy are easier to
aggregate in the large cell-diameter area. This makes the cell wall thicker in the large
cell-diameter area, and the cell wall in the area with a cell diameter of 2 mm is too thin.

4. Conclusions

The effects of cell size on the quasi-static compressive behavior of SGAF have been
investigated. Meanwhile, deformation and failure mechanisms for the compressive test
were also discussed. The conclusions were drawn as follows.

1. Gradient Al foams (i.e., the cell size of 4-3, 4-2, 3-2) were successfully prepared by the
powder metallurgy method using environmentally friendly, non-toxic and harmless
sodium thiosulfate particles.

2. In the layered gradient Al foams prepared by the powder metallurgy method, alu-
minum powder particles are easier to aggregate in the large cell-diameter area. This
makes the cell wall with the large cell-diameter thicker, while the cell wall with the
small cell-diameter is relatively thinner. This makes for better mechanical properties
of the layered gradient Al foams with a large cell diameter. When the cell sizes of the
samples were 4 mm-3 mm, 4 mm-2 mm, 3 mm-2 mm, the peak stress was 6.2 MPa,
5.2 MPa and 3.5 MPa respectively.

3. Gradient Al foams prepared by powder metallurgy show obvious brittle deformation.
This is caused by the melting and bonding characteristics of aluminum powder
particles during sintering. When the cell sizes of the samples were 4 mm-3 mm,
4 mm-2 mm, 3 mm-2 mm, the corresponding stress drop ratio was 55.2%, 40.4%,
20.3%.

4. In the process of deformation, the weak area with a relatively smaller cell diameter is
more likely to collapse and deform. Then, this leads to the deformation of the weak
area with a relatively thin cell wall in the large cell-diameter area. At the later stage of
deformation, when the area with a smaller cell diameter collapsed completely, the
area with larger cell diameter still kept a relatively complete cell structure.
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