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Abstract: Three C-Si-Mn Q&P steels with different V addition after one-step and two-step quenching
and partitioning (Q&P) processes were investigated by means of optical microstructure observation,
X-ray diffraction (XRD) measurement, transmission electron microscopy (TEM) characterization and
particle size distribution (PSD) analysis. The effect of V addition on strength and ductility of the steels
was elucidated by comparative analysis on the microstructure and mechanical properties as functions
of partitioning time and temperature. For one-step Q&P treatment, the mechanical properties were
mainly controlled by the tempering behavior of martensite during partitioning. V addition was
helpful to mitigate the deterioration of mechanical properties by precipitation strengthening and
grain refinement strengthening. For two-step Q&P treatment, the satisfying plasticity was attributed
to the transformation-induced plasticity (TRIP) effect of retained austenite maintaining the high work
hardening rate at high strain regime. The higher volume fraction of retained austenite with high
stability resulted from the refined microstructure and the promoted carbon partitioning for the steel
with 0.16 wt% V addition. However, the carbon consumption due to the formation of VC carbides
led to the strength reduction of tempered martensite.

Keywords: V microalloyed Q&P steel; microstructure; mechanical properties; precipitate size distribution;
work hardening rate

1. Introduction

Quenching and partitioning (Q&P) steel provides excellent mechanical properties
required for automotive applications [1–4]. The Q&P heat-treatment consists of fully
austenizing or intercritical annealing followed by quenching below Ms temperature and
partitioning at the same quenching temperature (one-step Q&P process) or at a higher
temperature (two-step Q&P process) [5,6]. The strong carbide forming elements like V, Nb,
and Ti have been added into the Q&P steels to improve the mechanical properties.

In Q&P steels [7–10], V addition can increase the strength and work hardening expo-
nent by VC carbides precipitating in ferrite and martensite. Moreover, a fewer difference in
the strength of ferrite with VC precipitation and tempered soften martensite can obtain a
better plasticity. Besides, V-added Transformation-Induced Plasticity (TRIP) steels were
reported to obtain a good combination of strength and elongation [11–13]. Vanadium in so-
lution may improve the strength and increase the volume fraction of retained austenite [14].
The V-alloying can increase both strength and ductility of medium Mn steel simultaneously.
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The mechanical stability of austenite grains results from the competition between grain
refinement and reduced C content, both of which are governed by V-alloying. By refining
the grain size and enhancing the austenite stability, V addition improves the ductility of
steels [15–18].

Due to the strong grain refinement strengthening and precipitation strengthening of
niobium and titanium, Nb/Ti-microalloyed steels exhibit high product of strength and
elongation [19,20]. However, the carbon consumption due to the formation of carbides
might result in lower volume fraction and carbon concentration of retained austenite [21,22].
Furthermore, care must be taken in hot rolling of Nb-containing steels because of its
effect on deformation resistance and stability of rolling forces [23]. High content of Ti
might significantly decrease the mechanical stability of reverted austenite and leads to the
decrease in elongation and impact toughness due to insufficient TRIP effect [24].

As mentioned above, the addition of vanadium is beneficial to improve the mechanical
properties of automobile steel sheet, but the effect of V concentration on C-Si-Mn Q&P
steels has been obscure. In the present work, the microstructure and mechanical properties
of three Q&P treated steels with different V content were investigated in order to elucidate
the strengthening and plasticity mechanisms.

2. Experimental Procedure

To study the effects of V addition, three experimental steels were designed and
heat-treated based on thermodynamic calculation using Thermo-Calc software (Thermo-
Calc 2020b, Thermo-Calc Software AB, Solna, Sweden) with TCFE9 database [25] and
Mucg83 program (MAP_STEEL_MUCG83, Mathew Peet and H.K.D.H. Bhadeshia, Cambridge,
UK) [26]. The chemical compositions and the critical temperatures (A1, A3, and Ms) of the
three experimental steels are presented in Table 1. The equilibrium phase diagrams of the
three steels are shown in Figure 1. The enlarged section in the lower right corner illustrates
the mole fraction of VC, i.e., FCC_A1#2. It can be observed that the precipitation of VC
carbides occurs in 0.16V steel above 900 ◦C which is the general temperature range of final
hot rolling. Ingots were prepared by purity raw material and vacuum induction melting
at 10−1 Pa vacuum value. Slabs with 40-mm thickness were hot rolled after reheating to
1200 ◦C to produce a 4-mm thick sheet. The hot-rolled sheets were then pickled and cold
rolled to a 60% reduction.

Table 1. Chemical compositions (wt%) and critical temperatures (◦C) of the three experimental steels.

Steels C Si Mn V A1 A3 Ms

0V 0.24 1.50 1.90 0 715 823 373
0.03V 0.24 1.47 1.88 0.03 716 826 373
0.16V 0.24 1.52 1.83 0.16 715 840 370

The heat-treatment cycle is schematically shown in Figure 2. All the specimens were
austenized at 850 ◦C for 200 s before quenching in a salt bath. One-step and two-step Q&P
heat-treatment partitioned at 320 ◦C and 400 ◦C, respectively, were processed for 90 s and
200 s before air cooling to room temperature.

The uniaxial tensile test was conducted with the standard specimen (according to
the GB/T228.1-2010 standard, gauge length: 50 mm, width: 12.5 mm, thickness: 1.5 mm),
of which the tensile direction was parallel to the rolling direction. The tests were per-
formed by MTS C45.305E electromechanical universal testing machine (MTS Systems
Corp., Eden Prairie, MN, USA) with a strain rate of about 1 × 10−3 S−1 at room tempera-
ture. And an extensometer was used to measure the strain of gauge length of the samples.
The experimental results were determined by the average value of three samples. The
microstructure was analyzed by optical microscope (OM) and scanning electron micro-
scope (SEM) after etching in 4% nital. Thin foils and carbon replicas were observed by
transmission electron microscope (TEM). Foil specimens were prepared by electropolishing
in a twin-jet polisher using 12.5% perchloric acid in alcohol at −30 ◦C. To characterize the



Metals 2021, 11, 1306 3 of 15

precipitation of carbides, carbon extraction replica approach was used. The surface of the
specimen was mechanically ground and polished before etching in 4% nital. Then, carbon
was evaporated onto the etched surface. Next, the surface was scored to ~3 mm squares
and etched again in 10% nital. Finally, the extracted replicas were rinsed with distilled
water and placed on the copper grid and dried. The TEM micrographs of carbon extraction
replica specimens were processed using Adobe Photoshop software to manually identify
the precipitates. The precipitate size distribution (PSD) was determined using Image J
software (ImageJ 1.52V, Wayne Rasband, Bethesda, MD, USA).
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The volume fraction of retained austenite (RA) was measured via X-ray diffraction
(XRD) with CuKα radiation operated at 40 kV and 200 mA. Specimens were scanned from
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40◦ to 100◦ at a scanning rate of 2◦/min. The volume fraction of RA, Vγ, was calculated by
using the following equation:

Vγ = 1.4Iγ/(Iα + 1.4Iγ) (1)

where Iγ and Iα are the integrated intensities of austenite and ferrite, respectively. In
the present work, the diffraction lines of (200)α, (211)α, (200)γ, (220)γ, and (311)γ were
employed to determine the value of Vγ [27].

3. Results
3.1. Mechanical Properties

Table 2 lists the mechanical properties (engineering stress and strain) including ul-
timate tensile strength (UTS), yield strength (YS), total elongation (TE), and product of
strength and elongation (PSE) of the three experimental steels subjected to the Q&P process.
Comparisons of the mechanical properties were further plotted in Figure 3. The “Sample
ID” of “1ST/2ST_90/200” means “one-step/two-step” Q&P process with the partitioning
time of “90 s/200 s”.

Table 2. Mechanical properties of the three experimental steels subjected to the Q&P treatment.

Sample ID UTS (MPa) YS (MPa) TE (%) PSE (GPa.%)

0V-1ST_90 1430.8 ± 4.4 907.8 ± 6.4 10.6 ± 0.2 15.2
0V-1ST_200 1374.8 ± 5.4 878.2 ± 4.6 9.2 ± 0.1 12.6
0V-2ST_90 1201.0 ± 5.4 959.0 ± 17.5 13.6 ± 1.5 16.3

0V-2ST_200 1168.7 ± 5.5 981.1 ± 8.6 12.6 ± 1.4 14.7
0.03V-1ST_90 1419.0 ± 1.8 953.1 ± 15.7 8.2 ± 0.0 11.6

0.03V-1ST_200 1407.8 ± 10.7 989.6 ± 14.9 7.8 ± 0.0 11.0
0.03V-2ST_90 1141.1 ± 12.5 883.9 ± 17.1 12.8 ± 0.1 14.6

0.03V-2ST_200 1193.2 ± 8.4 945.9 ± 13.2 12.1 ± 1.0 14.4
0.16V-1ST_90 1405.1 ± 9.4 886.5 ± 16.0 8.6 ± 0.4 12.1

0.16V-1ST_200 1404.6 ± 3.3 973.8 ± 4.0 8.7 ± 0.3 12.2
0.16V-2ST_90 1175.8 ± 4.5 867.8 ± 12.0 12.8 ± 0.3 15.1

0.16V-2ST_200 1154.7 ± 7.1 946.1 ± 13.7 14.9 ± 1.0 17.2
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For the one-step Q&P-treated specimens partitioned at 320 ◦C, the values of UTS and
TE decrease with increasing partitioning time. A slower decreasing trend with V addition
is observed. When partitioned for 200 s, 0.03V and 0.16V steels have the higher UTS values.
However, the lower TE and PSE values of V microalloyed steels are shown.

Two-step Q&P treatment partitioned at 400 ◦C obtains lower UTS but higher TE and
PSE than one-step Q&P treatment. The UTS, TE, and PSE values of 0V steel decrease with
increasing partitioning time. 0.03V steel displays a slight decrease of TE and strongly
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increased UTS with an approximate PSE. Despite a small decrease of UTS, 0.16V steel
obtains a greatly improved TE and PSE. After this Q&P treatment, V microalloyed steels
show the relatively lower PSE except for 0.16V-2ST_200 specimen which exhibits the highest
PSE among all the Q&P-treated specimens.

3.2. Microstructure Observation

Figures 4–8 show the OM and SEM micrographs of the cold-rolled and Q&P-treated
microstructure. 0.16V steel characterizes a finer microstructure after Q&P process. The
refined microstructure of 0.16V steel can be attributed to the pinning effect of VC carbides
on grain boundaries during hot rolling as designed by the thermodynamic calculation
presented in Figure 1.
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After Q&P process, the microstructure mainly consists of tempered martensite and
RA. A block-like morphology of martensite/austenite (M/A) islands in 0.16V steel can be
observed which are more elongated in 0V and 0.03V steels. Stronger martensite tempering
happens for each steel with increasing partitioning time and temperature, which also
happens with increasing V addition during the same Q&P heat-treatment as shown in
Figures 7 and 8.

XRD, TEM, and carbon extraction replica experiments were further performed on
some specific Q&P-treated specimens to conduct a comparative investigation.

3.3. XRD Measurement and Analysis

The XRD patterns of Q&P-treated specimens are presented in Figure 9. The measured
volume fractions of RA are listed in Table 3. From the results in Table 3, it is concluded that
the higher volume fraction of RA can be obtained after two-step Q&P process. The higher
volume fraction of RA is obtained in 0.16V steel.
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Table 3. Measured volume fractions of RA of the experimental steels after Q&P treatment.

Sample ID Vγ (%)

0V-2ST_90 8.4
0.03V-1ST_200 5.6
0.03V-2ST_200 8.0
0.16V-1ST_90 3.8

0.16V-1ST_200 4.3
0.16V-2ST_90 10.3

0.16V-2ST_200 9.9

3.4. TEM Characterization

Bright-field and dark-field TEM images along with the selected area electron diffrac-
tion (SEAD) patterns as shown in Figure 10 confirm the existence of film-like RA with a
face-centered cubic structure after Q&P treatment. Figure 11 shows the typical microstruc-
ture of 0.16V-2ST_200 specimen which presents the best combination of strength and
ductility among all the Q&P-treated specimens. Both carbon-depleted lath martensite (LM)
and carbon-enriched twin martensite (TM) exist. The dislocation tangles as well as the
dislocation networks in matrix and the interactions between dislocations and precipitates
can be observed.
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3.5. Particle Size Distribution Analysis

Figure 12 shows the TEM micrograph of VC precipitate with a face-centered cubic
structure confirmed by SEAD pattern. To quantitatively study the precipitation behavior of
VC, the PSD was analyzed based on more than ~200 VC precipitates for the specific Q&P
heat-treatment. TEM micrographs of carbon extraction replica specimens for PSD analysis
are presented in Figure 13. A comparison of the determined size distribution of VC in
specimens 0.03V-2ST_200, 0.16V-2ST_90 and 0.16V-2ST_200 is shown in Figure 14. Table 4
lists the corresponding information of minimum, maximum, average diameters (Dmin,
Dmax, Davg) and density of VC precipitates (number of VC/µm2). The average diameter of
VC in 0.03V-2ST_200 specimen is quite small with most of the carbides distributed within
the size range of 10 nm–20 nm. The larger size of VC in 0.16V steel can be observed. Apart
from the small carbides, the bigger ones (30–40 nm) also account for a certain proportion in
0.16V-2ST_90 specimen. With partitioning time from 90 s to 200 s, the average diameter
of carbides in 0.16V steel increases with decreasing density implying the growth and
coarsening of VC precipitates.
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Table 4. Measured Dmin , Dmax , Davg (nm), and density of VC precipitates (number/µm2) in
Q&P-treated steels.

Sample ID Dmin Dmax Davg Density

0.03V-2ST_200 5.0 83.5 15.5 20 ± 8
0.16V-2ST_90 3.6 82.3 23.2 25 ± 9

0.16V-2ST_200 7.4 70.7 28.7 17 ± 5

4. Discussions

Combined with the optical microscopy, SEM and XRD analysis, it was shown that after
quenching from the austenizing temperature at 850 ◦C, the microstructure consisted of lath
martensite and untransformed austenite existed mainly in the form of film-like. The blocky
austenite and island-like martensite/austenite existed as well. During the subsequent
partitioning stage, two main processes were ongoing simultaneously, carbon partitioning
from initial martensite to adjacent austenite and tempering behavior of initial martensite.
The carbon-enriched austenite with sufficient stability was retained after quenching to
the room temperature. In the present Q&P treatment, quenching from the austenizing
temperature instead of intercritical annealing temperature was applied. Thus, the higher
volume fraction of filmy RA is anticipated which was confirmed by TEM observation. The
tempering behavior of initial martensite during partitioning is characterized by formation of
transition carbide or cementite in 0V steel and vanadium carbide instead in V microalloyed
steels. As no cementite was observed by SEM and TEM, V addition was confirmed to
effectively suppress cementite formation. With increasing partitioning temperature, the
stronger martensite tempering was observed. The accelerated carbon partitioning was
confirmed by the increase in Vγ values. Meanwhile, the growth and coarsening of VC
carbides were also promoted.

In order to have a clear understanding of the relationship between microstructural evo-
lution during Q&P process and the mechanical properties, the work hardening behaviors
of the specimens were further analyzed.

The criterion for necking [28] is shown as Equation (2). When the work hardening rate
is equal to the true stress, necking should begin.

dσ

dε
= σ at ε = εU (2)

where dσ
dε is the work hardening rate, σ is the true stress and ε is the true strain, εU is the

uniform true strain where necking begins.
The three typical comparisons of work hardening behavior changing with partitioning

time were observed as illustrated in Figure 15. The work hardening rate as a function of
true strain (solid line) along with the corresponding true strain–stress curve (dotted line)
are presented. The work hardening rates of all the one-step Q&P-treated specimens and
two-step Q&P-treated 0V steel decrease with increasing partitioning time as shown in
Figure 15a,b. For specimen 0.03V-2ST_200, the work hardening rate is higher at low strain
(plotted in the upper right corner) and lower at high strain as shown in Figure 15c. The
contrary changing trend is observed for specimen 0.16V-2ST_200 as shown in Figure 15d.
Comparisons of work hardening behaviors and mechanical properties of each Q&P-treated
steel with varied partitioning time come to the conclusion that a high work hardening rate
at low strain regime corresponds to a high UTS while a high one maintained at high strain
regime corresponds to a high TE. The present conclusion is consistent with the work of
Matlock and Speer [29].

As for one-step Q&P-treated specimens, the low volume fractions of RA were deter-
mined as listed in Table 3. As the dominating phase, the tempering behavior of initial
martensite during partitioning is reasonably regarded as the controlling factor of mechani-
cal properties. The decreased dislocation density and carbon supersaturation weaken the
strength of tempered martensite [21,30]. The smaller number of dislocation–dislocation
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interactions result in the lower work hardening rate [6]. Thus, the UTS and TE decrease
with increasing partitioning time. For V microalloyed steels, the precipitation of VC can
increase the strength of tempered martensite [6,9] which explains the higher UTS values
with 200 s of partitioning time. Meanwhile, the refined martensitic laths have a better
combination of strength and plasticity [23]. Thus, the effect of martensite tempering can
be offset to some extent contributing to a slower decreasing trend of UTS and TE with
increasing V content.
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After two-step Q&P treatment, the higher degree of martensite tempering and carbon
depletion greatly reduce the strength and increase the plasticity of tempered martensite [21].
The lower UTS and higher TE values were then obtained. Besides, the higher volume
fraction of RA and the promoted growth and coarsening of VC carbides might have more
pronounced effects on mechanical properties of two-step Q&P treated specimens. As
shown in Figure 15b–d, the three steels display the quite differentiated work hardening
behaviors with increasing partitioning time. Further comparative analysis on the three
steels after the same Q&P treatment is shown in Figure 16. The low-strain sections were
enlarged to display the work hardening behavior in the early stage of deformation and the
yielding stage, respectively. The dramatic increase in work hardening rate at low strain for
0.03V steel might be caused by the high density of small-sized VC carbides performing the
strong precipitation strengthening effect. However, the higher work hardening rate at low
strain results in reaching the instability criterion in Equation (2) at lower strain values, i.e.,
lower ductility [29].
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The precipitation strengthening can be estimated using Ashby-Orowan equation [31].

σp =
0.538Gb f 1/2

X
ln
(

X
2b

)
(3)

where σp is the yield strength increase (in MPa), G is the shear modulus (in MPa), b is the
Burgers vector (in mm), f is the volume fraction of particles, and X is the real (spatial)
diameter of the precipitates (mm).

The growth and coarsening of VC carbides in 0.16V steel with prolonged partitioning
time occurred. The lower volume fraction of larger-sized carbides leads to the weaker
precipitation strengthening effect according to Equation (3). In addition, the carbon con-
sumption in tempered martensite caused the reduction of strength. Thus, the low work
hardening rate at low strain as well as low UTS and YS were observed and presented in
Figure 16c,d for 0.16V-2ST_200 specimen. The 0.16V steel is characterized by the greatly
refined Q&P microstructure which effectively promotes the carbon diffusion from tem-
pered martensite to austenite during partitioning [32]. Thus, the higher volume fraction
of carbon-enriched austenite was retained as listed in Table 3. Figure 16a,c show that the
high work hardening rate maintains at high strain regime for 0.16V steel which should
be attributed to the transformation from RA to martensite performing the TRIP effect. As
demonstrated in Figure 16a,b with 90 s of partitioning time, 0.16V steel presents the highest
UE. However, a quick failure after necking happens resulting in the lower TE than 0V steel
which might be attributed to the lower strength of tempered martensite. With prolonged
partitioning time of 200 s, the stability of RA is greatly enhanced by carbon partitioning
and the refined microstructure [7,9,33]. The TRIP effect performed by highly stabilized RA
increases the work hardening rate and maintains the high value in a large strain regime
which contributes to the high strength and plasticity of 0.16V-2ST_200 specimen.
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5. Conclusions

1. In this work, quenching from the austenizing temperature instead of intercritical
annealing temperature was applied. V addition up to 0.16 wt% greatly refines the
microstructure by the pinning effect of undissolved vanadium carbides during the
hot rolling process. Two main processes, martensite tempering and carbon partition-
ing, were ongoing simultaneously during the partitioning stage. In V microalloyed
steels, the precipitation, growth, and coarsening of VC carbides were observed. The
Q&P microstructures consist of tempered martensite and retained austenite, while V
addition inhibits the cementite formation.

2. After one-step Q&P treatment, a low volume fraction of retained austenite was
obtained. The mechanical properties changing with partitioning time are mainly con-
trolled by the tempering behavior of the dominating phase, i.e., tempered martensite.
The decreasing dislocation density and carbon supersaturation in tempered marten-
site with increasing partitioning time result in the decrease in martensite strength
and work hardening rate. The corresponding decrease of UTS, TE, and PSE values is
obtained. In V microalloyed steels, the precipitation strengthening as well as grain
refinement strengthening can offset the effects of martensite tempering contributing
to a slower decreasing trend.

3. Compared to one-step Q&P treatment, a high volume fraction of retained austenite
and highly tempered martensite after two-step Q&P treatment present the lower
UTS, higher TE and PSE values. During partitioning at 400 ◦C, the more sufficient
carbon partitioning as well as the promoted carbide growth and coarsening leads
to the quite differentiated changes in mechanical properties with partitioning time.
With V addition of 0.03 wt%, the precipitation strengthening effect performed by the
high density of small-sized VC carbides greatly increases the UTS value. However,
the higher V content of 0.16 wt% demonstrates an obvious growth and coarsening
of VC carbides and the resultant carbon consumption in tempered martensite. The
weakened precipitation strengthening effect and the reduction of martensite strength
decrease the UTS and YS values. In addition, the refined microstructure of 0.16V
steel can effectively promote the carbon partitioning. The more sufficient carbon-
enriched small-sized retained austenite with high stability can perform the TRIP effect
to maintain the high work hardening rate at high strain regime which contributes to
the higher plasticity.
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