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Abstract: The ability of a metal to be subjected to forming processes depends mainly on its plastic
behavior and, thus, the mechanical properties belonging to this region of the stress–strain curve.
Forming techniques are among the most widespread metalworking procedures in manufacturing,
and aluminum alloys are of great interest in fields as diverse as the aerospace sector or the food
industry. A precise characterization of the mechanical properties is crucial to estimate the forming
capability of equipment, but also for a robust numerical modeling of metal forming processes.
Characterizing a material is a very relevant task in which large amounts of resources are invested,
and this paper studies how to optimize a multilayer neural network to be able to make, through
machine learning, precise and accurate predictions about the mechanical properties of wrought
aluminum alloys. This study focuses on the determination of the ultimate tensile strength, closely
related to the strain hardening of a material; more precisely, a methodology is developed that,
by randomly partitioning the input dataset, performs training and prediction cycles that allow
estimating the average performance of each fully-connected topology. In this way, trends are found
in the behavior of the networks, and it is established that, for networks with at least 150 perceptrons
in their hidden layers, the average predictive error stabilizes below 4%. Beyond this point, no really
significant improvements are found, although there is an increase in computational requirements.

Keywords: aluminum alloy; artificial neural network; mechanical property; UTS; machine learning;
topological optimization; metal forming

1. Introduction

Aluminum alloys are among the most widely used materials in the industry, and,
although their use is still far from being as widespread as that of steel, they have many
advantages that make them a very interesting material whose use is growing regularly [1].
There is a huge number of aluminum alloys, but few of them are typically used in the
industrial field [2], sometimes because it is difficult to find new solutions and, sometimes,
because they are special materials with optimized properties to fulfill their requirements,
according to their application [3].

Aluminum alloys are manufactured by different techniques [4]. Among its many
properties of industrial interest, it can be noted that it is a material with a high formability,
so it is especially suitable for metal forming processes. Moreover, a precise characterization
of the mechanical properties is crucial to estimate the forming capability of equipment but
also for a robust numerical modeling of metal forming processes. Among all the mechanical
properties, the ultimate tensile strength (UTS) plays a key role in the definition of the onset
of the plastic instability by tensile tension [3]. This mechanical property is closely related
to the strain hardening of the metal and, therefore, to its forming capacity under metal
forming processes. In uniaxial tension, the plastic deformation is limited by the value of
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UTS since, once it is exceeded, the onset of the plastic instability takes place, and from then
on, the behavior of the material is almost unpredictable until fracture [5].

Therefore, it is well known that aluminum alloys present a high ductility [6] because
they can withstand a lot of plastic deformation before fracture and, so, they are widely used
in metal forming operations [7]; such metals can be manufactured by metal sheet operations
and bulk forming processes, such as forging, rolling, extrusion and/or drawing [2]. Ductile
materials are able to absorb a great amount of energy before failing, otherwise known as
toughness [8].

The design and production of some industrial components rely on the knowledge of
the mechanical properties obtained and tensile testing [9]. The UTS may serve to determine
the beginning of the plastic instability and provides an insight into the initiation of the
fracture or the necking [10]. It also can be used as an input to estimate the forming force in
the conventional forming procedures such as stretch-bending or deep-drawing [10].

Metal forming is frequently employed to manufacture components. The microstruc-
ture and the mechanical properties of these parts are modified by these processes [2]. For
example, the increase in the ultimate stress and hardness observed during the A-6063
extrusion is attributed to the grain size reduction and the temperature increase [11].

In addition to UTS, the strain hardening exponent, the yield strength (YS), the process-
induced residual stresses, and the hardness are also important mechanical characteristics [1,3,10].
These properties offer an idea of the in-service behavior of the formed part. Furthermore,
their correlations help to understand the response of the component [12], i.e., knowing
the difference between UTS and YS can help the designer to predict how much additional
stress a component can withstand before failure [5] because YS defines the onset of plastic
deformation, and UTS defines the onset of plastic instability.

Knowing the expected behavior of the materials used in industrial designs is critical;
however, obtaining these data frequently requires accessing large amounts of resources,
which are normally not accessible [1]. Many tests are required to obtain relevant informa-
tion, which entail having enough time, personnel and facilities be available [13]. Character-
izing a metal comprises many tests that require non-trivial quantities of resources [8].

Although it is a relatively new technology and not as widespread in materials science
and manufacturing as in other areas [13], artificial intelligence (AI) and machine learning
(ML) techniques have been successfully used to make predictions about the metallurgical
properties of some materials [1,3,14–16].

Over recent years, AI and ML have received much attention in the field of materials
modeling, due to their outstanding ability to analyze a huge amount of data and expose
correlations between complex interrelated properties [17]. ML is, perhaps, the most relevant
branch of AI, and is the science of making computers learn and act like humans without
being explicitly programmed [18,19]. It is often used to discover hidden patterns in complex
systems through a training process in which a great amount of noisy data is furnished
as input [20,21]. ML can be classified into supervised learning (the machine learns from
labeled data) and unsupervised learning (the machine finds patterns in the data without
any external help) [20,22,23].

Among the most challenging topics in this field is the search for the best representation
of input variables in ML models, which is commonly called feature engineering and
comprises a set of activities, such as feature extraction, feature construction and feature
selection [23,24]. Feature engineering research is crucial to the application of the ML.

Within current materials science, the scale and speed of data acquisition, the accuracy
of the data and the volatility of the data are additional challenges for researchers [3]. It
raises the question of how to use and analyze these data in a useful way that supports the
decisions of developers and designers [18,23]. Material data tend to be wide in scope and,
often, shallow in depth. Here, depth should be understood as the number of observations
of the state of a system. The lack of observations is due not only to the cost and difficulty
of acquiring data (especially through experimentation), but also to the nature of the data
itself. However, fully employing the data is a key part of advanced design systems [23,25].
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In recent years, an incipient trend in materials science research is the combination of
existing experimental and numerical modeling methodologies with AI techniques [26–28].
In general, materials science advances thanks to accumulated experience and already
established rules [29,30]. New advances in numerical modeling facilitate the methodical
acquisition of large amounts of data, while complicating analysis, hypothesis formulation
and pattern prediction. The rise of AI techniques makes up for this deficiency to a great
extent [31].

Multilayer artificial neural networks (ANN) can be considered the most remarkable
methodology of those that are included into the field of AI because they have demonstrated
their capabilities in almost all branches of knowledge and because they are currently
receiving a lot of attention from investigators [32]. A multilayer network is able to learn a
function by training on a labeled dataset that can be used to perform regressions [33]. ANN
are made up of perceptrons (neurons) that regroup forming layers (clusters of neurons)
that communicate with each other (in general, perceptrons do not communicate with
their own layer companions) [13]. For a fully connected multilayer neural network, the
time complexity of the backpropagation training is given by Equation (1). So, it is highly
recommended to minimize the number of hidden nodes to reduce the training time [1].

O
(

n ·m · o · N ·
k

∏
i=1

hi

)
, (1)

where n is the size of the training dataset, m is the number of features, o is the number of
output perceptrons, N is the number of iterations and k is the number of hidden layers
(each of them containing hi nodes).

The main objective of this work is to develop a working methodology that allows
optimizing the topology of a multilayer neural network in such a way that it is capable
of making predictions about the UTS of wrought aluminum alloys [34], maximizing the
precision and accuracy of the estimation and minimizing the computational resources [20].
Although this paper only takes into account the UTS, this same approach could be applied
to other properties that have already been mentioned, such as the YS or the elongation at
break (A).

2. Methodology

This work is developed following a three-stage scheme, and the data generated in
each of them are used as input for the subsequent one [13]. This workflow guarantees that
the data that reach each phase are correctly prepared and processed, and are ready to be
employed. Therefore, the information resulting from the entire process is a consequence of
the initial dataset.

Figure 1 schematically shows the three stages that compose the methodology of
this work: in the first stage, an initial input dataset is created; in the second stage, the
optimization process is carried out through training-prediction cycles; and in the third
phase, all available information is analyzed.

Figure 1. Overview of the methodology.
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2.1. Input Dataset Preparation

All initial data on the properties of the materials were obtained from Matmatch GmbH
(Munich, Germany) [35]. It is an online library that contains freely accessible specification
sheets about material properties [13]. These include a large number of aluminum alloys
with very heterogeneous information. The volume of data initially obtained comprises
more than 5000 materials and more than 350 properties [1,3].

After obtaining these data, each record must be read and interpreted in an automated
way. Each specification sheet contains much more information than is used during this
study, so it is necessary to discard the irrelevant data [35]. The following considerations
are taken into account to select the records that are found to be useful:

• Only datasheets that contain the value of the ultimate tensile stress (UTS) at 20 ◦C
are considered.

• Only alloys whose chemical composition is defined at more than 95% are taken into
account [13] (note that some datasheets are poorly defined).

• Only 9 chemical elements are considered to define the chemical composition of the
alloys [29]: Al, Zn, Cu, Si, Fe, Mn, Mg, Ti and Cr. The mass contribution of all other
chemical elements is regrouped as ”Other”.

• Only wrought alloys are considered in this study.
• Only the specification sheets that include the temper of the alloy are considered. This

study only considers the following tempers: F (as fabricated), O (annealed), H (strain
hardening) and T (thermally treated) [7].

After taking all these considerations into account, only 2671 materials (the obviated
records do not meet the aforementioned conditions), 11 input properties and the UTS
are considered. These alloys constitute the initial dataset on which the entire study is
developed. One of these properties is categorical (temper) and must be mapped as an
integer, while the other 11 are numerical (UTS and chemical composition) and must be
normalized to avoid bias [20,22]. Normalization is carried out using Equation (2).

x̃i =
xi − xmin

xMAX − xmin
(2)

where xi is each of the non-normalized input values, x̃i is the related normalized value
[0 . . . 1], xmin is the minimum value for that parameter and xMAX is the maximum value.

2.2. Network Optimization by Training-Prediction

The ANN topology denotes the way in which perceptrons are associated and is an
essential characteristic in the performance of the network [19]. Layers are shapeless in the
sense that all of its nodes are equally relevant, connected the same way, and lack differen-
tiators [22]. Only the initialization step and the following training make its importance
change [25].

In this study, the neural network is defined as a fully connected multilayer feedforward
topology [33], which comprises an input layer, two hidden layers and an output layer. In
this topology, all the perceptrons in each layer are only connected to all ones in the next
layer so that the information only flows in one direction, from the input layer to the output
layer [22].

The neural network receives an input vector of 11 elements (chemical composition
and temper) and returns a prediction about the value of the expected UTS [3]. Therefore,
the input layer is made up of 11 nodes, and the output layer only contains a single node.
Additionally, the network topology contains two hidden layers whose number of nodes is
to be optimized [19]. Figure 2 shows a schematic representation of the network in which
the hidden layers are represented as squares.
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Figure 2. Multilayer artificial neural network scheme.

Different topologies are tested to carry out the network optimization: the number of
nodes in both hidden layer changes in increments of 10 nodes (from 10 to 200). In this
way, 400 topologies are obtained with a number of nodes that varies between 32 and 412.
For each of these networks, 10 independent training and prediction iterations are carried
out [1,3].

Each iteration consists of four phases:

• Dataset shuffling and splitting to create a training subset (80% of records, so 2137) and
a testing subset (remaining 20%, so 534).

• ANN training, using the data contained in the training subset.
• Prediction of the properties for the records in the testing subset.
• Results and data storage for further analysis.

The training is configured as follow [1]:

• Calculation of the learning rate for each parameter using adaptive moment estimation
(ADAM) with β1 = 0.9, β2 = 0.999 (algorithm parameters), η = 0.001 (step size) and
ε = 10−8 (stability factor) [36].

• Early stopping after 20 iterations without significant changes.
• Training stops when a training error of less than 0.1 is reached.
• Maximum of 100,000 training epochs to avoid infinite loops.
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2.3. Data Analysis

The optimization process generates a large amount of data that must be processed to
generate information that allows to draw conclusions about the network performance [3,13].
For each of the considered 400 topologies, the predictive performance of the 10 iterations is
calculated and stored.

With the information obtained about the tests on these topologies, it is possible to build
a performance map of 20 × 20 cells; each of these cells represents a topology described by
the number of nodes in the two hidden layers. In each position of this data structure, it
is possible to store statistical information that allows making comparisons between the
different topologies.

Network topologies with the lowest average predictive error (highest accuracy), lowest
standard deviation of predictive error (highest precision), and shortest training time (lowest
resource usage) are preferred [20].

3. Results and Discussion

Table 1 contains some statistical metrics about the information contained in the input
dataset. It is interesting to highlight the wide range of values associated with the UTS.

Table 1. Statistical information about the input dataset.

UTS [MPa] Al [%] Zn [%] Cu [%] Si [%] Fe [%] Mn [%] Mg [%] Ti [%] Cr [%] Other [%]

Average 246.3 95.1 0.6 1.0 0.5 0.5 0.5 1.4 0.2 0.2 0.2
Std. dev. 115.1 2.6 1.3 1.6 0.6 0.2 0.4 1.4 0.2 0.1 0.3
Median 230.0 95.9 0.3 0.3 0.4 0.5 0.5 0.9 0.1 0.1 0.0
Min. 40.0 83.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 700.0 99.7 7.8 6.3 12.3 1.6 1.6 5.5 0.8 0.9 2.0

As expected, more complex topologies tend to have higher precision than those with
fewer perceptrons and, in fact, the lowest error is related to a network with 160 and
200 nodes in its two hidden layers (2.88%). Moreover, the highest error rate (95.28%) occurs
for the simplest network of those that are considered (10 and 10 nodes). More detailed
information can be found on Table A1.

Figure 3 graphically shows the average predictive error (values above 20% are trimmed
to avoid scale-related issues). A region with a very low precision (error greater than 10%)
can be seen for topologies with less than 150 perceptrons, while for more complex networks,
the error remains lower (less than 10%). It is interesting to note that, as can be seen in the
three-dimensional figure, the transition between both regions is quite abrupt, and a step
(yellow zone) is formed. This transition zone (yellow) separates an almost flat area from a
steep one.

Figure 3. Average predictive error [%] (trimmed above 20%).
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This transition can be interpreted as a frontier before which the predictions cannot be
trusted because the error is excessive and the model is very unstable (small changes in the
network produce large differences).

Figure 4 shows the value of the mean predictive error as a function of the number of
nodes in the hidden layers. It can be seen that the error asymptotically tends to a value
close to 2%. Note that the number of nodes in the hidden layers is the sum of the number
of perceptrons in both layers.

It is interesting to highlight that, for neural networks with more than 300 nodes, the
average predictive error remains, in all cases, approximately stable at around 4%. It is a very
interesting result since it establishes a boundary beyond which no significant improvement
can be seen, although there is an increase in computational requirements.

Figure 4. Predictive error [%] as a function of the amount of nodes in both hidden layers.

In view of these results, it is clear that complex topologies should be privileged over
simpler ones; however, it should also be considered that, as the number of nodes increases,
achieving significant improvements becomes very expensive in computational terms and,
in fact, it is found that a more complex topology does not always guarantee better accuracy.

On the other hand, it is not only necessary to take into account the accuracy (related to
the average predictive error) of the results, but also the precision (related to the predictive
error standard deviation).

The standard deviation of the error gives an idea of the repeatability of the estimates,
and, together with the average error, allow to identify the confidence range in which a
prediction is. In a similar way to what happened in the case of the average error, the more
complex networks are more precise (the minimum is reached for a network with 180 and
160 perceptrons, respectively), whereas the simpler ones obtain a higher standard deviation
value (the maximum is reached for a network with 30 and 10 nodes, respectively). More
detailed information can be found on Table A2.

Figure 5 graphically shows the standard deviation of the predictive error (values
above 10% are trimmed to avoid scale-related issues). The distribution of values is much
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more irregular than in the case of the average error. However, three areas can be seen: for
networks with less than 150 perceptrons, the standard deviation is high (mostly above
10%); for topologies with between 150 and 250 nodes, a very irregular transition zone is
produced with scattered high values; and, for the more complex networks (more than
250 nodes), the values are mostly kept below 5%.

Figure 5. Standard deviation of the predictive error [%] (trimmed above 10%).

As can be seen by comparing Figures 3 and 5, although the standard deviation is
distributed in a much more irregular way, the trends of both statistical metrics are similar.
For networks whose hidden layers contain 150 or more perceptrons, the accuracy and
precision stabilize, and there are hardly any significant differences in the performance of
these topologies.

4. Conclusions and Future Work

This paper studies how to optimize the topology of a multilayer artificial neural
network to carry out predictions about mechanical properties of aluminum alloys, such as
UTS, using machine learning. It is a contribution of great industrial interest since it allows
exploring how to obtain sufficiently precise estimates with minimal computational cost
and, therefore, using fewer resources. Therefore, the main conclusions of this work are
presented as follows:

• An artificial neural network with two hidden layers can predict the UTS of wrought
aluminum alloys by taking its chemical composition and temper as input. The accu-
racy of this prediction stabilizes below 4% and even reaches 2.88% in this study.

• The predictive ability of an ANN with two hidden layers to estimate the UTS of
aluminum alloys is stabilized for topologies that include 150 or more perceptrons
in both hidden layers. The precision and accuracy of these networks do not show
significant differences that allow us to affirm that one topology is really better than
the others.

• A multilayer ANN can be used as a tool to, through machine learning, make predic-
tions about the mechanical behavior of a piece of aluminum alloy subjected to forming
processes. In theory, these networks can learn to approximate any nonlinear function
if the input data set is large enough and has enough perceptrons [37].

This study presents a methodology that allows optimizing the topology of a neural
network whose task is to make predictions about the UTS using techniques based on
machine learning. In the same way, it would be possible to use this same approach with
other properties and even with other materials.

Since this scheme of work is shown to work adequately, a similar method could
be applied to test other more complex network architectures. There are a multitude of
architectures related to machine learning that allow different problems to be addressed [33].
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

ADAM Adaptive moment estimation
AI Artificial intelligence
ANN Artificial neural networks
βn ADAM algorithm parameter
ε ADAM stability factor
η ADAM step size
m ADAM first moment estimate
ML Machine learning
UTS Ultimate tensile strength
Sx Standard deviation
ν ADAM second moment estimate
x̄ Average
YS Yield strength

Appendix A. Numerical Results

Table A1 shows the average predictive error after testing each of the 400 topologies
through 10 independent training–prediction iterations.
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Table A1. Average predictive error (%) for each topology as a function of the amount of nodes in the hidden layers.

Nodes in the First Hidden Layer
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

N
od

es
in

th
e

se
co

nd
hi

dd
en

la
ye

r

10 95.28 74.79 44.11 34.89 28.74 23.07 20.56 19.26 17.96 13.79 13.98 12.86 12.55 11.70 11.60 10.48 8.68 9.42 9.86 10.62
20 57.57 39.99 36.42 29.08 22.67 21.50 16.95 15.34 15.52 14.29 12.68 11.64 10.31 9.29 8.84 9.57 8.33 8.30 9.07 6.79
30 42.92 32.07 26.03 25.78 17.93 21.18 14.82 14.81 13.20 10.38 10.37 9.57 10.06 11.14 7.34 8.08 7.89 6.37 7.00 7.13
40 38.87 28.11 21.55 20.78 15.44 14.82 13.33 12.82 11.55 9.26 12.81 9.13 9.02 8.56 8.56 8.27 8.43 6.51 7.19 5.98
50 28.26 24.81 19.79 18.44 16.25 15.39 14.40 12.23 9.71 10.05 9.91 7.86 9.37 8.64 9.63 6.74 7.10 7.23 6.11 5.38
60 26.05 22.47 19.38 16.83 14.03 13.50 11.19 10.70 10.86 8.80 9.88 9.54 7.88 6.84 5.93 6.97 7.58 7.84 6.62 4.57
70 20.21 18.32 14.56 13.78 14.48 12.19 10.22 10.15 8.95 7.93 7.88 7.48 7.53 5.79 7.67 7.12 6.13 6.05 4.50 5.42
80 18.73 16.20 16.92 14.03 10.41 10.17 8.79 7.96 10.60 8.24 9.34 6.65 8.23 6.88 6.14 4.94 4.89 6.91 4.35 5.01
90 15.90 13.50 13.71 12.51 9.33 10.43 10.02 11.50 8.80 8.42 6.31 6.61 5.62 5.11 5.77 5.78 4.36 6.28 4.35 5.51

100 15.52 13.30 14.13 9.33 11.15 9.13 9.85 8.45 7.53 6.23 5.99 7.45 5.54 4.87 5.55 4.41 4.20 4.94 5.77 3.66
110 12.05 13.74 12.86 9.58 9.39 8.33 8.94 6.42 8.33 6.91 8.19 5.26 5.82 6.77 6.43 5.26 3.94 5.08 6.09 5.51
120 13.69 12.34 10.69 10.43 10.48 7.33 7.60 8.60 6.01 6.86 7.89 6.78 4.87 4.39 6.54 6.04 5.30 5.77 5.57 4.12
130 11.45 9.94 10.87 9.45 7.13 8.46 6.68 6.78 6.49 5.03 4.85 4.52 6.30 5.10 5.17 3.74 3.60 3.54 3.66 4.19
140 10.57 8.26 9.72 8.36 8.62 7.70 6.71 6.83 6.01 6.82 5.56 6.65 6.45 5.09 6.05 5.63 4.51 4.30 3.89 3.49
150 10.13 10.59 8.20 8.53 7.54 6.26 5.77 6.43 6.93 6.59 6.98 5.13 5.06 5.76 3.64 5.47 3.31 4.23 5.18 3.08
160 8.28 9.58 8.06 7.28 7.99 6.88 6.05 7.30 6.21 5.48 7.41 5.68 5.27 5.62 3.54 5.48 3.28 4.06 3.02 3.96
170 9.19 7.77 6.65 7.98 7.59 7.16 5.01 7.28 6.32 4.14 6.29 6.13 5.38 4.24 5.82 5.23 3.31 5.39 3.03 3.78
180 9.88 7.68 8.91 7.66 6.36 5.04 6.65 4.53 5.18 3.98 3.78 5.03 4.53 5.42 3.35 3.15 4.41 4.95 3.74 2.77
190 7.01 8.05 6.31 5.50 5.01 7.55 4.65 4.24 3.95 3.89 4.87 5.72 3.72 5.47 4.10 4.05 5.12 3.22 5.01 3.64
200 8.72 7.92 5.30 7.15 4.74 5.73 5.26 6.82 3.79 4.90 5.90 4.45 3.25 5.07 4.27 2.88 3.07 4.81 3.67 3.49

Table A2 shows the standard deviation of the predictive error for each of the topologies
that are tested.

Table A2. Standard deviation of the predictive error (%) for each topology as a function of the amount of nodes in the
hidden layers.

Nodes in the First Hidden Layer
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

N
od

es
in

th
e

se
co

nd
hi

dd
en

la
ye

r

10 58.96 28.75 61.09 41.95 13.42 23.40 6.31 9.94 14.81 13.57 13.25 13.00 12.76 3.60 3.21 5.28 5.72 5.05 4.87 4.62
20 19.33 47.56 13.39 16.32 8.62 18.35 6.16 5.14 7.12 11.86 4.15 5.40 8.93 8.26 3.32 2.75 5.08 8.61 2.39 3.99
30 22.01 16.41 26.93 10.95 22.21 17.56 8.28 4.40 12.88 4.23 10.87 4.80 8.39 8.28 8.64 2.87 6.43 7.93 2.21 2.53
40 17.07 31.23 24.15 20.37 8.87 7.79 6.70 6.03 3.40 3.28 3.88 4.19 11.49 4.30 2.86 7.13 2.30 3.65 3.23 7.03
50 9.52 11.56 9.35 7.92 6.87 6.95 6.25 5.54 5.34 9.62 4.03 7.33 8.89 3.87 6.29 6.88 3.23 2.39 3.70 4.72
60 22.65 10.43 7.95 4.66 4.46 12.15 12.45 9.26 11.20 3.04 2.95 3.99 8.77 8.28 2.87 2.18 7.99 3.06 3.33 2.24
70 22.05 18.31 4.78 13.17 12.53 4.21 4.64 10.87 5.03 4.91 2.94 3.79 2.70 6.73 3.78 5.19 7.10 1.97 6.82 4.71
80 17.48 21.58 4.26 6.41 6.29 3.91 5.55 5.11 3.36 3.97 2.53 4.49 1.90 2.50 2.32 1.78 5.58 1.82 2.17 1.97
90 17.69 16.30 4.24 12.62 9.19 5.24 10.07 2.52 4.04 2.64 7.91 3.56 1.94 2.66 2.29 2.82 2.84 6.09 1.79 5.04
100 4.50 12.01 4.13 12.25 11.17 7.81 4.86 8.29 7.72 3.51 6.66 3.55 7.05 2.39 1.64 1.47 2.65 3.20 3.82 1.23
110 6.31 11.91 9.64 4.32 5.36 4.71 2.59 6.47 6.06 7.08 2.10 3.62 2.27 2.59 2.23 2.13 2.02 4.48 1.26 3.52
120 5.57 11.89 2.95 8.35 7.60 2.90 3.01 2.70 6.68 1.82 3.50 4.76 5.99 4.37 2.14 5.54 4.87 2.35 4.48 1.12
130 3.80 9.36 8.35 9.85 7.08 3.39 3.90 6.64 5.35 2.09 1.59 5.57 1.44 1.84 2.71 1.92 2.39 1.19 1.79 1.70
140 11.68 2.80 4.81 8.22 2.50 3.56 3.93 3.52 2.45 5.78 5.55 4.94 4.24 3.92 2.51 1.89 3.45 4.52 4.18 1.53
150 10.64 3.94 3.58 7.68 7.39 2.30 2.57 6.58 3.49 6.99 7.12 2.16 2.55 4.93 1.68 1.18 4.50 2.60 4.16 2.29
160 3.19 9.65 7.71 6.33 8.70 5.79 3.60 2.45 1.63 2.27 2.08 1.52 3.94 4.45 1.37 1.44 1.59 1.05 1.70 2.45
170 5.24 9.33 3.48 3.42 3.28 7.52 3.63 2.18 3.25 4.41 3.99 3.95 2.81 2.44 3.32 3.50 5.10 2.95 1.34 2.77
180 10.02 3.72 2.33 4.27 6.64 5.74 5.60 2.10 6.98 5.18 1.97 1.55 1.77 5.35 1.63 2.55 4.05 1.94 1.59 1.90
190 2.29 2.30 3.78 5.29 2.60 7.36 2.21 2.18 2.72 5.01 4.60 5.89 1.78 2.59 1.07 4.19 2.14 4.17 4.71 1.38
200 2.83 2.29 5.43 7.18 6.58 2.21 1.55 3.09 2.05 1.21 2.77 5.38 5.40 1.64 2.58 2.01 1.48 2.00 2.62 1.74
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