
metals

Article

Numerical Simulation of a High-Speed Impact of Metal Plates
Using a Three-Fluid Model

Petr Chuprov 1,2, Pavel Utkin 1,* and Svetlana Fortova 1

����������
�������

Citation: Chuprov, P.; Utkin, P.;

Fortova, S. Numerical Simulation of a

High-Speed Impact of Metal Plates

Using a Three-Fluid Model. Metals

2021, 11, 1233. https://doi.org/

10.3390/met11081233

Academic Editor: Jerzy Winczek

Received: 26 June 2021

Accepted: 30 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Numerical Methods and Turbulence, Institute for Computer Aided Design of the Russian
Academy of Sciences, 123056 Moscow, Russia; petchu@mail.ru (P.C.); sfortova@mail.ru (S.F.)

2 Department of Computational Physics, Moscow Institute of Physics and Technology,
141701 Dolgoprudny, Russia

* Correspondence: pavel_utk@mail.ru; Tel.: +7-926-2766560

Abstract: The process of wave formation at the contact boundary of colliding metal plates is a funda-
mental basis of explosive welding technology. In this case, the metals are in a pseudo-liquid state at
the initial stages of the process, and from a mathematical point of view, a wave formation process
can be described by compressible multiphase models. The work is devoted to the development
of a three-fluid mathematical model based on the Baer–Nunziato system of equations and a corre-
sponding numerical algorithm based on the HLL and HLLC methods, stiff pressure, and velocity
relaxation procedures for simulation of the high-speed impact of metal plates in a one-dimensional
statement. The problem of collision of a lead plate at a speed of 500 m/s with a resting steel plate
was simulated using the developed model and algorithm. The problem statement corresponded to
full-scale experiments, with lead, steel, and ambient air as three phases. The arrival times of shock
waves at the free boundaries of the plates and rarefaction waves at the contact boundary of the plates,
as well as the acceleration of the contact boundary after the passage of rarefaction waves through it,
were estimated. For the case of a 3-mm-thick steel plate and a 2-mm-thick lead plate, the simulated
time of the rarefaction wave arrival at the contact boundary constituted 1.05 µs, and it was in good
agreement with the experimental value 1.1 µs. The developed numerical approach can be extended to
the multidimensional case for modeling the instability of the contact boundary and wave formation
in the oblique collision of plates in the Eulerian formalism.

Keywords: metal plate; high-speed impact; three-fluid model; Baer-Nunziato equations; HLLC
method

1. Introduction

A significant number of studies have been devoted to the problem of a high-speed
impact of metal plates, both from the point of view of fundamental issues of wave formation
and the development of instability of the contact boundary [1–3], and from the practical
point of view of optimizing the explosion welding process [4–7]. A historical overview of
fundamental studies on the phenomenon of wave formation that occurs during the oblique
high-speed impact of metal plates can be found in [1,2].

At the initial stage of the impact process, metals behave as immiscible pseudo-
liquids [8], so it is appropriate to consider this problem using a heterogeneous media
mechanics approach or a diffuse interface approach. There are few such studies available
in the literature [9,10], and this paper is intended to partially fill this gap. The problem
of high-speed impact of metal plates, in general, is at least a three-phase or three-fluid
problem (material of one plate, material of another plate, ambient medium) when each
phase is compressible, and its volume fraction ranges from zero to one. So, the diffuse
interface models for the impact problem are generally based on the Baer–Nunziato (BN)
system of equations [11], although other multiphase models can also be used [12,13]. There
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are two main classes of the three-fluid models for the BN equations that take their origin
from the papers [14,15].

The multiphase nature of the process also makes it hard to study the development of
the instability of the contact boundary in comparison with common single-phase phenom-
ena. For example, one of the first models of wave formation during high-speed impact was
proposed in [16]. The model considered the oblique interaction of a liquid jet with a moving
surface covered with soft silicon putty, that is, actually the two-fluid model in the current
terminology. As another example, in [17], the development of the Richtmayer–Meshkov
instability was studied when a shock wave (SW) interacted with the contact surface, not
between pure gas components, but with the curved interphase surface of a dense particle
cloud.

It is worth noting that the problems of the high-speed collision were historically solved
in the Lagrangian formalism, or, at least at some stage of the numerical algorithm, there
was a Lagrangian stage [18]. In the diffuse interface methods within the framework of
the Eulerian formalism, the key element is the calculation of parameters in the so-called
“mixture cells”, in which various interacting materials are simultaneously present. In an
early method of diffuse boundaries from [18], when describing the procedure for calculating
parameters in “mixture cells”, the concept of the volume fraction of the phase was not
introduced at all. The method was described as a set of heuristic numerical rules that
operated with the donor and acceptor cells. The procedures for the stable calculation of
“mixture cells” theoretically correspond to the stage of pressure relaxation procedure in the
methods for solving the BN equations [9]. The Eulerian model can describe, for example,
the generation of new interfaces without having to re-mesh the domain or at least destroy
and create cells as in Lagrangian models [10]. The need to manipulate the computational
grid complicates the use of Lagrangian techniques in the multidimensional case. It is the
Eulerian methods that are of interest to us in this work because the further development
of the methods of this work will be associated with the study of the instability of the
interphase boundary, its possible significant deformations, which can create problems
for Lagrangian methods due to the complexities of grid rearrangement. However, as
was noted in [10], with the thickness of “the mixture region” being increased in time, the
diffuse interface methods can only be used for short times. Hence, high-velocity processes
(impacts, explosive phase transitions, etc.) are a natural application of such methods.

So, this paper continues our previous studies [19–21] and has two main goals. First,
the goal is to develop a three-fluid model based on the BN system of equations and
the computational algorithms Harten–Lax–van Leer (HLL) and Harten–Lax–van Leer-
Contact (HLLC) (the latter method is particularly preferred because of much more accurate
description of the interfacial boundaries) for the Eulerian simulation of the plates collision
process. Secondly, the aim of the work is to qualitatively reproduce the main features of the
full-scale experiment [8] on the high-speed normal impact of two metal plates. Note more
recent studies on the planar impact of metal plates. For example, in [22], the collision of
0.4-mm-thick aluminum flyer plates with velocities of 600–700 m/s and aluminum samples
with a thickness of 2.85–3 mm was considered. Our attention to the results from [8]
was connected to the interesting and important mechanical effect of the development of
interfacial boundary instability, reported in [8]. This effect is in close connection with the
wave formation process underlying explosive welding technology.

2. Physical Statement of the Problem

We shall consider the interaction of a lead plate with the thickness hlead and initial
density ρlead,0 = 11300 kg/m3 with a steel plate with the thickness hsteel and initial density
ρsteel,0 = 7900 kg/m3. The lead plate is thrown in the direction of the steel one normal to the
contact surface with a velocity of 500 m/s. Metal plates are surrounded by a layer of air
2 mm thick (Figure 1). It is assumed that at the initial stage of the impact during roughly
the first 10 µs, the metals behave as pseudo-fluids [8] so the material of each plate can be
considered as a compressible fluid (as well as the surrounding air) in a three-fluid BN-like
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model. With such a multiphase flow model, the same equations are solved everywhere
with the same numerical scheme. This is achieved by adding a negligible quantity of the
other phase in pure phases. The initial pressure is 105 Pa everywhere.

Figure 1. Schematic of the problem about a high-speed normal impact of two metal plates.

3. Mathematical Model

The mathematical model is based on the approach [14] and describes a flow of three
immiscible compressible fluids:

Ut + Fx(u) = H(U, (αair)x, (αsteel)x) + P, (1)

U =



αair
αairρair

αairρairvair
αairρairEair

αsteel
αsteelρsteel

αsteelρsteelvsteel
αsteelρsteelEsteel

αleadρlead
αleadρleadvlead
αleadρleadElead



, F =



0
αairρairvair

αair(ρairv2
air + pair)

αairvair(ρairEair + pair)
0

αsteelρsteelvsteel
αsteel(ρsteelv2

steel + psteel)
αsteelvsteel(ρsteelEsteel + psteel)

αleadρleadvlead
αlead(ρleadv2

lead + plead)
αleadvlead(ρleadElead + plead)



, (2)

H =



−vi(αair)x
0

pi(αair)x
pivi(αair)x
−vi(αsteel)x

0
pi(αsteel)x

pivi(αsteel)x
0

pi(αlead)x
pivi(αlead)x



, P =



µ(pair − plead)
0

λ(vlead − vair)
λvi(vlead − vair)− µpi(pair − plead)

µ(psteel − plead)
0

λ(vlead − vsteel)
λui(vlead − vsteel)− µpi(psteel − plead)

0
λ(vair − vlead)

λui(vair − vlead)− µpi(plead − pair)



, (3)

αair + αsteel + αlead = 1, Ek =
v2

k
2

+ ek(pk, ρk) =
v2

k
2

+
pk + γkP0k
ρk(γk − 1)

, (4)
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pi =
3

∑
k=1

αk pk, vi =
3

∑
k=1

αkρkvk/
3

∑
k=1

αkρk. (5)

Here U denotes the vector of “conservative” variables, F is the differential flux vector,
H is the differential source term, and P is the algebraic source term, connected to the
relaxation processes. The notation is conventional: t is the time, x is the spatial coordinate,
α is the volume fraction, ρ is the true density, v is the velocity, p is the pressure, e is the
specific internal energy, and E is the specific total energy. Parameters with indexes k = 1, 2,
3 correspond to the air, steel, and lead phases, respectively. Further, we use either these
indexes or direct subscripts “air”, “steel”, and “lead” for clarity. Pressure and velocity with
the “i” index correspond to the parameters at the fluid interfaces.

For each phase, the stiffened gas equation of state (EOS) with the parameters γ and
P0 is used. In general, the properties of the metals EOS are extremely important for
quantitatively and even qualitatively correct simulation of the characteristics of the impact
process especially if the parameters of the impact imply, for instance, phase transitions.
In [23], the hypervelocity impact problem was simulated using three different EOSs for
lead that provided the effects of melting in strong SWs, evaporation in rarefaction waves
(RW), and spallation. The specific features in the simulation results with the use of different
EOSs were discussed. For the BN-type models, Mie–Gruneisen EOS (more general than
stiffened gas EOS) can be applied [9,24,25] and the influence of this type of EOS on the
simulation results is the subject of further study.

Parameter µ is responsible for pressure relaxation, and λ is for velocity relaxation. In
the present work, we assume the instantaneous pressure and velocity equilibrium at the
interface boundaries:

pair = plead = psteel , (6)

vair = vlead = vsteel . (7)

Conditions (6) and (7) correspond to the stiff relaxation assumption µ→+∞, λ→+∞ [9,11]
(see Sections 4.3 and 4.4).

4. Numerical Algorithm
4.1. Splitting Scheme

The computational algorithm was based on the Strang splitting principle:

Un+1
j = LpLvLhUn

j . (8)

We denote vector grid function by the same letter U as an unknown function in the
defining system (1) – (5) but with the spatial index j and the time index n. At the hyperbolic
stage of the algorithm denoted in (8) as operator Lh, the defining system of Equations (1)–(5)
was solved with P = 0. After that, a velocity relaxation procedure Lv was implemented.
Finally, a pressure relaxation procedure Lp was carried out. Consider each of the stages in
more detail.

4.2. Hyperbolic Step

The computational domain was a one-dimensional segment, which was divided into
N uniform cells. The size of the computational cell was ∆x. Two approaches for the
hyperbolic step were implemented, namely HLL and HLLC schemes.

4.2.1. HLL Method

Consider the HLL method for the three-fluid model first [9,14]. To begin with, the
initial system (1)–(5) is formally divided into the first and fifth equations and the remaining
sub-system:

ut + fx(u) = h(u, (αair)x, (αair)x), (9)
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u =



αairρair
αairρairvair
αairρairEair
αsteelρsteel

αsteelρsteelvsteel
αsteelρsteel Esteel

αleadρlead
αleadρleadvlead
αleadρleadElead


, f =



αairρairvair
αair(ρairv2

air + pair)

αairvair(ρairEair + pair)

αsteelρsteelvsteel
αsteel(ρsteelv2

steel + psteel)

αsteelvsteel(ρsteel Esteel + psteel)

αleadρleadvlead
αlead(ρleadv2

lead + plead)

αleadvlead(ρleadElead + plead)


, h =



0
pi(αair)x

pivi(αair)x
0

pi(αsteel)x
pivi(αsteel)x

0
pi(αlead)x

pivi(αlead)x


. (10)

Finite-volume approximations of the detached equations and the system (9), (10) are
the following:

(αk)
n+1
h,j = (αk)

n
j − ∆tn

∆x

[
(vi)

n
j

(
S+

j+1/2(αk)
n
j −S−j+1/2(αk)

n
j+1

)
+S+

j+1/2S−j+1/2

(
(αk)

n
j+1−(αk)

n
j

)
S+

j+1/2−S−j+1/2
−

−
(vi)

n
j

(
S+

j−1/2(αk)
n
j−1−S−j−1/2(αk)

n
j

)
+S+

j−1/2S−j−1/2

(
(αk)

n
j −(αk)

n
j−1

)
S+

j−1/2−S−j−1/2

]
, k = 1, 2,

(11)

un+1
h,j = un

j −
∆tn

∆x

[
fj+1/2

(
un

j , un
j+1

)
− fj−1/2

(
un

j , un
j+1

)]
+h

(
un

j , ∆(αair)x, ∆(αsteel)
)

. (12)

The numerical flux fj+1/2 in (12) is calculated using the HLL scheme:

fj+1/2

(
un

j , un
j+1

)
=

S+
j+1/2f

(
un

j

)
− S−j+1/2f

(
un

j+1

)
+ S+

j+1/2S−j+1/2

(
un

j+1 − un
j

)
S+

j+1/2 − S−j+1/2
, (13)

S+
j+1/2 = max

k=1,2,3

(
0, (vk)

n
j + (ck)

n
j , (vk)

n
j+1 + (ck)

n
j+1

)
, S−j+1/2 = min

k=1,2,3

(
0, (vk)

n
j − (ck)

n
j , (vk)

n
j+1 − (ck)

n
j+1

)
, (14)

where c is the speed of sound:

ck =

√
γk

pk + P0k
ρk

, k = 1, 2, 3. (15)

Spatial derivatives of αair and αsteel in the non-conservative term in (12) are approxi-
mated as:

∆(αk)x =
1

∆x

(
S+

j+1/2(αk)
n
j − S−j+1/2(αk)

n
j+1

S+
j+1/2 − S−j+1/2

−
S+

j−1/2(αk)
n
j−1 − S−j−1/2(αk)

n
j

S+
j−1/2 − S−j−1/2

)
, k = 1, 2. (16)

The latter approximation, consistent with the approximation of the divergent part of
the system (9), (10) ensures the so-called “p-v” condition [26]. This condition claims that a
multiphase system, uniform in velocity and pressure, should remain uniform through its
evolution.

The time step is calculated dynamically from the condition:

∆tn = CFL ·mink,j

 ∆x∣∣∣(vk)
n
j

∣∣∣+ (ck)
n
j

, (17)

where CFL is a coefficient between 0 and 1.
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4.2.2. HLLC Method

To improve the quality of simulations, the HLLC method from [27,28] was extended
for the three-fluid model. From the general point of view, the methods in [27,28] are less
accurate than later developments [24,25,29] because they are actually a straightforward gen-
eralization of the common HLLC for the Euler equations (meanwhile, the approximation
of non-conservative differential terms and equations for the volume fractions evolution
are of great importance) and do not use the elements of the Riemann problem solution for
the BN equations. However, the methods in [27,28] are much easier to implement and to
extend to the three-fluid case.

Again as for the HLL method (11)–(17), we shall consider approximations of the first
and the fifth equations of the system (1) and sub-system (9). Equations of volume fraction
evolution are approximated as:

(αk)
n+1
h,j = (αk)

n
j −

∆tn

∆x

[
ϕk,j+1/2 − ϕk,j−1/2

]
, k = 1, 2, (18)

ϕk,j+1/2 =

{
(αk)

n
j , if (vi)

n
j ≥ 0,

(αk)
n
j+1, else.

(19)

The general finite-volume scheme (12) for the sub-system (9), (10) remains the same.
The numerical flux fj+1/2 is calculated using the HLLC scheme:

fj+1/2

(
un

j , un
j+1

)
=



f
(

un
j

)
, if S−j+1/2 ≥ 0,

f
(

un
j

)
+ S−j+1/2

(
qn

j − un
j

)
, if S−j+1/2 < 0 and S∗j+1/2 ≥ 0,

f
(

un
j+1

)
+ S+

j+1/2

(
qn

j+1 − un
j+1

)
, if S∗j+1/2 < 0 and S+

j+1/2 ≥ 0,

f
(

un
j+1

)
, if S+

j+1/2 ≤ 0.

(20)

S+
j+1/2 = max

k=1,2,3

(
(vk)

n
j + (ck)

n
j , (vk)

n
j+1 + (ck)

n
j+1

)
, S−j+1/2 = min

k=1,2,3

(
(vk)

n
j − (ck)

n
j , (vk)

n
j+1 − (ck)

n
j+1

)
, (21)

S∗j+1/2 =
(pi)

n
j+1 − (pi)

n
j + (ρi)

n
j (vi)

n
j

(
S−j+1/2 − (vi)

n
j

)
− (ρi)

n
j+1(vi)

n
j+1

(
S+

j+1/2 − (vi)
n
j+1

)
(ρi)

n
j

(
S−j+1/2 − (vi)

n
j

)
− (ρi)

n
j+1

(
S+

j+1/2 − (vi)
n
j+1

) , (22)

ρi = ∑ αkρk, (23)

qn
j =

 qn
j,air

qn
j,steel

qn
j,lead

, qn
j+1 =

 qn
j+1,air

qn
j+1,steel

qn
j+1,lead

, (24)

qn
j,k =

 Cj,k
Cj,kS∗j+1/2

Cj,k

[
(pk)

n
j /(ρk)

n
j +

(
S∗j+1/2 − (vk)

n
j

)(
S∗j+1/2 + (pk)

n
j /(ρk)

n
j /
(

S−j+1/2 − (vk)
n
j

))]
, k = 1, 2, 3, (25)

qn
j+1,k =

 Cj+1,k
Cj+1,kS∗j+1/2

Cj+1,k

[
(pk)

n
j+1/(ρk)

n
j+1 +

(
S∗j+1/2 − (vk)

n
j+1

)(
S∗j+1/2 + (pk)

n
j+1/(ρk)

n
j+1/

(
S+

j+1/2 − (vk)
n
j+1

))]
, k = 1, 2, 3, (26)

Cj,k =
(αk)

n
j

[
S−j+1/2 − (vair)

n
j

]
S−j+1/2 − S∗j+1/2

, Cj+1,k =
(αk)

n
j+1

[
S+

j+1/2 − (vair)
n
j+1

]
S+

j+1/2 − S∗j+1/2
, k = 1, 2, 3. (27)
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Spatial derivatives of αair and αsteel in the non-conservative term in (12) are approxi-
mated as:

∆(αk)x =
1

∆x

(
ψk,j+1/2 − ψk,j−1/2

)
, k = 1, 2, (28)

ψk,j+1/2 =

{
(αk)

n
j , if S∗j+1/2 ≥ 0,

(αk)
n
j+1, else.

(29)

Simulations in Section 5 below show that the HLLC method (18)–(29) was less robust
than the HLL one. The initial volume fraction of air αair, i.e., the small parameter, in the
regions that corresponded to the steel and lead plates, and in the HLLC simulations, should
be tuned more carefully than in the HLL simulations. For example, the HLLC simulation
failed if αair was equal to 10–6.

4.3. Velocity Relaxation

For the velocity relaxation, the following system of ordinary differential equations
(ODE) for each phase k = 1, 2, 3 is solved in each computational cell [14]:

∂αk
∂t = 0,

∂(αkρk)
∂t = 0,

∂(αkρkvk)
∂t = λ(vm − vk),

∂(αkρkEk)
∂t = λui(vm − vk),

(30)

where m is any index not equal to k. To achieve velocity equilibrium (7), the relaxation
coefficient λ in (30) is assumed to tend to infinity. Such a proposal leads to the equation for
equilibrium velocity:

v =

∑
k
(αkρkvk)0

∑
k
(αkρk)0

, (31)

where index “0” denotes values obtained after the hyperbolic step. After that, the specific
internal energy correction is required for each phase:

ek = ek,0 +
1
2
(v− vk,0)

2. (32)

As the true densities of the phases do not change during velocity relaxation (as well
as volume fractions), the correction of the internal energies (32) leads to the correction of
phase pressures only.

4.4. Pressure Relaxation

At the pressure relaxation step, it is required to solve the following ODE system for
each phase in each computational cell [14]:

∂αk
∂t = µ(pk − pm),

∂(αkρk)
∂t = 0,

∂(αkρkvk)
∂t = 0,

∂(αkρkEk)
∂t = µpi(pk − pm),

(33)

where m is again any index not equal to k. The pressure relaxation procedure follows the
same principle as velocity relaxation. When the relaxation parameter µ in (33) tends to
infinity, all pressures after relaxation must be equal. Combining the volume fraction, mass,
momentum, and energy equation, we get [14]

∂ek
∂t

= −pi
∂

∂t

(
1
ρk

)
. (34)
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Trapezoidal approximation of (34) gives:

ek − e0
k = −1

2

(
p + p0

i

)( 1
ρk
− 1

ρ0
k

)
, (35)

where index “0” denotes values obtained after the velocity relaxation procedure, and values
with bars are the relaxed ones. So, using the EOS for each phase, saturation constraint
α1 + α2 + α3 = 1 and Formula (35) it is possible to obtain a system of non-linear equation
for variables ρair, ρsteel , ρlead, p:



2ρairρ0
air

(
p+γair P0air
ρair(γair−1) −

p0
air+γair P0air

ρ0
air(γair−1)

)
−
(

p + p0
i
)(

ρair − ρ0
air
)
= 0,

2ρsteelρ
0
steel

(
p+γsteel P0steel
ρsteel(γsteel−1) −

p0
steel+γsteel P0steel
ρ0

steel(γsteel−1)

)
−
(

p + p0
i
)(

ρsteel − ρ0
steel
)
= 0,

2ρleadρ0
lead

(
p+γleadP0lead
ρlead(γlead−1) −

p0
lead+γleadP0lead
ρ0

lead(γlead−1)

)
− (p + p0

i )(ρlead − ρ0
lead) = 0,

∑ mk/ρk − 1 = 0,

(36)

mk = α0
kρ0

k . (37)

In the two-phase case, the analogous system can be reduced to one quadratic equation
that can be solved analytically [30,31]. In the current case, as in the case of more complicated
equilibrium conditions (for example, taking into account intergranular stresses in the gas—
particles simulations [32]), the non-linear system (36)–(37) should be solved:

F(X) = 0, (38)

X =


ρair

ρsteel
ρlead

p

, F(X) =



2ρairρ0
air

(
p+γair P0air
ρair(γair−1) −

p0
air+γair P0air

ρ0
air(γair−1)

)
−
(

p + p0
i
)(

ρair − ρ0
air
)

2ρsteelρ
0
steel

(
p+γsteel P0steel
ρsteel(γsteel−1) −

p0
steel+γsteel P0steel
ρ0

steel(γsteel−1)

)
−
(

p + p0
i
)(

ρsteel − ρ0
steel
)

2ρleadρ0
lead

(
p+γleadP0lead
ρlead(γlead−1) −

p0
lead+γleadP0lead
ρ0

lead(γlead−1)

)
−
(

p + p0
i
)(

ρlead − ρ0
lead
)

∑ mk/ρk − 1


(39)

The solution of the system (38) – (39) is obtained with the Newton–Raphson method:

X(s+1) = X(s) − J−1
(

X(s)
)

F
(

X(s)
)

, (40)

J(X) =
∂F
∂X

=


Aair 0 0 Bair

0 Asteel 0 Bsteel
0 0 Alead Blead

−mair/ρ2
air −msteel/ρ2

steel −mlead/ρ2
lead 0

, (41)

Ak = −2 ·
p0

k + γkP0k

γk − 1
−
(

p + p0
i

)
, Bk =

2ρ0
k

γk − 1
−
(

ρk + ρ0
k

)
, k = 1, 2, 3, (42)

where s is a current iteration number in the repetitive process (40)–(42).

5. Simulation Results

To obtain quantitatively valid characteristics of the collision process, the parameters of
the stiffened-gas equations of state for the fluids in consideration must be calibrated using
either experimental data or the data computed using the real-life wide range metal EOS.
Parameters of the EOS for steel and lead were taken close to those found in our previous
works [19,20]. Parameters were obtained by comparing the computed characteristics of
the SWs formed at collision with the computed data obtained by the procedure described
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in [33], which used the wide range EOS for metals [34] (this procedure was implemented
in [35]). We took γ = 3.0 and P0 = 65.0 GPa for steel; and γ = 2.7 and P0 = 15.5 GPa for lead.
The maximal relative differences in SWs speed, pressure, and velocity at the contact surface
and the densities behind the SW fronts in our simulations do not exceed 7% in comparison
with the reference values. For air, the values γ = 1.4 and P0 = 0 were used.

Simulations were carried out with a spatial resolution of 2.5 µm. For example, a plate
with a thickness of 2 mm was resolved with the use of 800 computational cells. The CFL
number in (17) was equal to 0.5. We set the non-penetrating condition on both boundaries
of the computational area.

Consider the main stages of the process for the case of hsteel = 3 mm, hlead = 2 mm.
Figure 2 illustrates spatial distributions of metals’ volume fractions and pressure. The initial
impact causes the formation of two SWs propagating in the opposite directions towards
the free surfaces of the plates (see Figure 2a). At a time instant of about τsteel = 0.6 µs after
the beginning of plates interaction, SW in steel reaches a free boundary (see Figure 2b).
As a result of an SW interaction with a free boundary of the plate, RW forms. It moves
towards the interface between colliding plates (see Figure 2c). At a time instant of about
Tsteel = 1.1 µs, RW from steel reaches the interface and moves through it (see Figure 2d).
Analogous processes occur in the lead plate. The times τsteel, τlead, Tsteel, and Tlead depend
on the thicknesses of the plates. In the considered case, RW from the free boundary of
the steel plate reaches the interface boundary between the plates faster than the RW from
the free boundary of the lead plate. As is seen from Figure 2d, an RW from the steel plate
interacts with a high-pressure region in the lead plate and the time instant Tlead has no sense
in this case. As a result of an RW passing, the interface accelerates rapidly in the direction
of a free boundary of the steel plate. This acceleration together with the density gradient in
the opposite direction can cause a development of the Rayleigh–Taylor instability of the
interface. This question was studied in [21] using three-dimensional Euler equations.

Figure 3 illustrates the dynamics of the velocity and the acceleration of the interface
boundary between the plates. Both plots were obtained by numerical differentiation of the
dependency x1/2-t, where x1/2 is a “center” of the diffuse interface between the plates (the
coordinate of the computational cell center, where αsteel = αlead ≈ 1/2 are accurate within
the existence of a small amount of air, αair ≈ 10–5). The smooth region on the black curve
between time instants of about 1.1 µs and 1.3 µs corresponds to the acceleration of the
interfacial boundary between the plates due to the RW arrival. The interfacial boundary
speed increased from about 195 m/s up to 425 m/s. The orange curve at the same time
interval demonstrates a pronounced peak. Trembling of the acceleration curve up to about
1.1 µs has a numerical nature. It vanishes at the later time instants with the increase of the
interface boundary speed after the RW passing and thus with the decrease of the effect
of uncertainty of the x1/2 definition due to the spatial discretization of the computational
domain. Figure 3 gives quantitative estimations of the realized acceleration and the time
of its action. These data can be used for the estimations of the possibility of the Rayleigh–
Taylor instability development of the interfacial boundary. After the meeting of two RWs
from the free boundaries of the plates after about 1.5 µs, the simulation crashed because of
a negative pressure occurrence. The problem was not due to the numerical instability but
rather due to going beyond the limits of applicability of the gas-dynamics model of the
process in use. Large tensile forces that can lead to the formation of internal cracks in the
physical experiment demand the usage of models like [10] at the following stages of the
process of plates’ collision.

Following experiments [8], parametric simulations were performed for various thick-
nesses of a steel plate. The results in terms of time instants τ and T are presented in
Table 1. In this series of simulations, the HLL scheme was used as the results in terms of
time instants τ and T were close for both HLL and HLLC methods. The second row in
the table corresponds to the problem statement considered above (see Figure 2). A label
“–” instead of the T value means that an RW from another plate reached the interfacial
boundary first. A label “×” means that a time instant could not be measured because of
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the simulation crash after two RWs meeting. For a small thickness of the steel plate (up to
4 mm), the dynamics of the interfacial boundary motion is determined by an RW from the
steel plate side. For hsteel = 4.5 mm, time instants τsteel and τlead become almost equal. With
the following increase of the hsteel, the process is determined by an RW from the lead plate.
The experimental value of Tsteel for simulation No. 2 is available and constitutes 1.1 µs [8].
The calculated value is 1.05 µs and it is very close to the experimental one.

Figure 2. Predicted spatial distributions of αsteel (green color), αlead (red color), and p (blue color) at the successive time
moments: (a) 0.4 µs, (b) 0.6 µs, (c) 0.9 µs, (d) 1.3 µs; hsteel = 3 mm, hlead = 2 mm. Dashed lines correspond to the HLL
simulation, solid lines correspond to the HLLC simulation.
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Figure 3. Predicted velocity (black curve) and acceleration (orange curve) of the contact boundary
between metal plates; hsteel = 3 mm, hlead = 2 mm; simulation using the HLLC method.

Table 1. Times of arrival of an SW to the free boundary of a plate (τ) and arrival of an RW to the
interfacial boundary between the plates (T) for the steel and lead plates; hlead = 2 mm; simulations
using the HLL method.

No. hsteel, mm τsteel, µs τlead, µs Tsteel, µs Tlead, µs

1 2 0.38

0.8

0.70 –

2 3 0.54 1.05 –

3 4 0.72 1.38 1.38

4 4.5 0.82 – 1.38

5 5 0.91 – 1.38

6 10 1.85 – 1.38

7 20 × – 1.38

6. Discussion

Let us compare the results of simulations using the HLL scheme (11)–(17) and the
HLLC scheme (18)–(29) on the hyperbolic step. Figure 2a shows that SWs in both simu-
lations are described almost identically. As expected, maximal differences were obtained
in the description of the interfacial boundaries—between two plates and between free
surfaces of the plates and ambient air. The non-moving free surface of the steel plate up to
the moment of the SW arrival was not smeared at all in the HLLC simulation (see Figure 2a).
This important property, valid for the HLLC method for the Euler equations solution, was
inherited by the HLLC method for the BN equations [27,28]. Moving interfacial boundaries
are smeared by both HLL and HLLC methods, but the HLL diffuse interface is an order of
magnitude greater than the HLLC diffusive interface. Apparently, it is one of the reasons
that the RW that occurs after SW arrives at the free boundary of the plate is described in
the simulation using the HLL scheme with very large errors, compared with the HLLC
approach. The pressure to the left of the tail of the RW in steel in Figure 2c,d does not fall
to 1 atm in the HLL simulation. The RW is not localized with a long non-physical tail. On
the contrary, the RW in the HLLC simulation has a profile close to the SW, which is typical
for wave processes in condensed media.
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Our further goal was to develop a two- and three-dimensional algorithm for studying
the development of the instability of the interfacial boundary of the metal plates during
oblique collision using a three-fluid model. The developed one-dimensional model of
the process and the computational algorithm allows such extensions, for example, using
a multidimensional algorithm from [14]. A two-dimensional three-fluid HLL approach
was realized. Figure 4 demonstrates preliminary statement and simulation results for
the problem of the oblique impact of the plates. The initial velocity of the lead plate was
equal to 500 m/s and was directed normally to its surface (see Figure 4a). The initial
angle between the surfaces of the plates was equal to 5◦. All boundaries were free. The
computational grid was uniform with a cell size equal to 10–2 mm. Figure 4b demonstrates
non-planar SWs, originating after an oblique impact, and the very beginning of the wave
formation process at the interfacial boundary between the plates. The major problem we
have faced in the two-dimensional simulation was the motion of the air in the gap between
the plates being too fast due to the velocity relaxation procedure (30)–(32). Apparently, this
part of the model was not very relevant to the real process in the multi-dimensional case.
Note the up-to-date studies of such types of flow due to the body impact [36,37]. It was
reported in [36] that the flow between a base and a cladding plate can affect the process of
explosive welding. Further multi-dimensional simulations require the use of the HLLC
scheme, at least an order of magnitude more detailed computational grids, and, probably,
another problem formulation with the resolution of the angle of the lead plate for a more
correct description of the dynamics of the contact point between the plates.

Figure 4. Preliminary two-dimensional simulation of the oblique impact: (a) Schematic of the problem; (b) predicted spatial
distribution of pressure and steel density isolines, time instant 0.3 µs.

7. Conclusions

Thus, we adapted a multiphase model [14] from the class of diffuse interface ap-
proaches for the consideration of the problem of a high-speed collision of metal plates,
which is a theoretical foundation for the problem of explosive welding. In addition to the
common HLL method for solving BN equations [9], we adapted the HLLC method [27,28]
for the three-phase case, which showed qualitatively better results than the HLL method.
Nowadays, the most developed numerical approaches for the high-speed impact simu-
lations include Arbitrary Lagrangian–Eulerian (ALE) methods [38], molecular dynamics
methods [39,40], and smoothed particle hydrodynamics (SPH) methods [3,38]. As noticed
in [38], a traditional pure Lagrangian analysis, such as in [1], is not able to accurately model
the impact process due to excessive computational cells or elements in the finite element



Metals 2021, 11, 1233 13 of 15

analysis (FEA) distortion near the contact zone. However, generally, the SPH method is
less accurate than the pure Lagrangian FEA method especially when the deformation is
not severe. However, only using the SPH method, in contrast to ALE, the authors of [38]
focused on the jetting phenomenon (regarding a jet moving ahead of the collision point
during the oblique impact of the plates) and the composition of the jetted material able to
be simulated. These conclusions were confirmed in [3] where SPH simulations in Ansys
Autodyn allowed authors to accurately reproduce the formation of the wave boundary,
vortex zones, as well as the formation of a jet moving ahead of the collision point in the
oblique impact of metal plates. In [39,40], the wave formation process during explosive
welding was carried out using a LAMMPS molecular dynamics simulator. Apparently, the
molecular dynamics method is the most physically relevant one, but the size of the bodies
simulated by the molecular dynamics method is 4–5 orders of magnitude less than the
size of the plates that are used in explosive welding experiments [40]. Additional scaling
procedures should be used. So, in this paper, we studied the principal possibility of the
simulation of the impact of the plates using the shock-capturing, algorithmically uniform,
and thus attractive Eulerian three-phase diffuse interface method.

The proposed approach was applied to the problem of a planar impact of steel and
lead plates of different thicknesses. The problem follows previous experimental studies [8].
The dynamics of shock and rarefaction waves in the samples were analyzed. Quantitative
estimation of the acceleration of the interfacial boundary due to the passage of the rar-
efaction wave from a free boundary of one of the plates was obtained. For the case of the
3-mm-thick steel plate and the 2-mm-thick lead plate, the simulated time of the rarefaction
wave arrival at the contact boundary constituted 1.05 µs, and it was in good agreement
with the experimental value of 1.1 µs.

The preliminary results of the two-dimensional simulation of the oblique impact of
the metal plates using the proposed approach are presented. The results are encouraging
from the point of view of subsequent simulation of the wave formation process during the
oblique impact.
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Nomenclature

α volume fraction µ pressure relaxation parameter
ρ density λ velocity relaxation parameter
v velocity air subscript for the air parameters
p pressure steel subscript for the steel parameters
E specific total energy lead subscript for the lead parameters
e specific internal energy i subscript for the interfacial parameters
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