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Abstract: Many experiments indicated the remarkable dependence of the strength and failure behavior
of anisotropic ductile metals on the loading direction and on the stress state. These influences have
to be taken into account in accurate material models and in the numerical simulation of complex
loading processes predicting the safety and lifetime of aerospace structures. Therefore, the present
paper discusses the effect of loading direction and stress state on the damage and failure behavior of
the anisotropic aluminum alloy EN AW-2017A. Experiments and corresponding numerical analysis
with the newly developed, biaxially loaded X0 specimen have been performed and the influence of
different load ratios is examined. The formation of strain fields in critical parts of the X0 specimen is
monitored by digital image correlation. Different failure modes are visualized by scanning electron
microscopy of fracture surfaces. Stress states are predicted by finite element calculations and they
are used to explain damage and fracture processes at the micro-level. The experimental–numerical
analysis shows that the loading direction and the stress state remarkably affect the evolution of the
width and orientation of localized strain fields as well as the formation of damage processes and
fracture modes. As a consequence, characterization of anisotropic metals is highly recommended to
be based on an enhanced experimental program with biaxial tests including different load ratios and
loading directions.

Keywords: damage and failure; stress state dependence; biaxial experiments; anisotropic ductile metal

1. Introduction

Several high-quality metals and alloys have been developed during the last few
decades following requests from lightweight industry. For example, in the industrial
aerospace sector, the main demands are increased safety and lifetime, improved cost
efficiency and reduced energy consumption [1,2]. In particular, aluminum alloys have
here a growing presence thanks to their quality and considerable lightness. Based on the
optimization of material properties, it was possible to reduce the localization of irreversible
deformations as well as damage and failure in critical parts of the structural elements of
aircrafts. Damage at the micro-level can lead to ductile fracture on the macro-scale, which
can be seen as the end of life of aerospace structures [3]. Prediction of the performance
of manufactured parts is very important for aeronautical industries, where uncertainties
may cause remarkable problems. As a consequence, detailed analysis of irreversible
deformations as well as the damage and fracture behavior of these optimized metals and
alloys is one of the main issues in engineering [4], allowing the proposition of accurate and
practically applicable constitutive models [5,6]. These theoretical approaches must be based
on experiments taking into account different loading directions and a wide range of stress
states in order to be able to identify material parameters and to validate the constitutive
theories for various engineering applications [7,8]. The special focus of the experimental–
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numerical analysis discussed in this paper is on the effect of different multi-axial stress
states and of loading direction on damage and failure behavior in anisotropic metals.

Various experiments with different geometries of specimens have been presented in
the literature to analyze the occurrence of inelastic deformations as well as damage and
fracture processes at both the micro- and the macro-level. For example, unnotched and
differently notched specimens have been uniaxially loaded to investigate the influence
of stress state on inelastic strains and damage [9–11] or to examine fracture behavior in
ductile metals [12–15]. On the other hand, special geometries of specimens undergoing
shear deformation during uniaxial loading have been presented [16–18]. However, these
experiments with uniaxially loaded specimens can only cover a small band of stress triaxi-
alities, and this motivated an extended testing program with biaxially loaded cruciform
specimens [19–22]. To achieved the required stress states, optimization of their geometries
has been proposed [23–25]. In addition, further new geometries of cruciform specimens
undergoing biaxial loading conditions have been developed to study the effect of different
stress states on inelastic deformation as well as damage and fracture mechanisms in ductile
metals [7,26,27].

Aluminum alloys undergo different forming processes, such as extrusion, rolling or
deep drawing, to produce sheets for structural components in aircraft industries. In these
forming techniques, large plastic strains cause anisotropies in the material due to internal
changes in the crystallographic texture. Thus, in order to predict the mechanical behavior
of ductile metal sheets in an accurate manner, induced anisotropies have to be taken into
account in appropriate constitutive models. For example, Hill [28] proposed a quadratic
function which can be seen as the anisotropic generalization of the von Mises criterion.
However, in some applications, this yield function was not able to accurately predict both
yield stresses and r values. Therefore, enhanced criteria based on non-quadratic functions
have been used to model the anisotropic plastic behavior of metals [29–31]. Material
parameters for these yield conditions are identified from different uniaxial and equi-biaxial
tension tests. Alternatively, a quadratic yield criterion incorporating four hardening curves
taken from uniaxial tension tests along rolling, diagonal and transverse directions as well
as from equi-biaxial tests has been discussed [32]. In addition, new strategies for the
calibration of anisotropic plasticity models based on the virtual fields method have been
proposed [33,34].

During loading in various sheet metal forming operations, different stress states
may cause different damage mechanisms on the micro-scale, and their accumulation can
lead to various unexpected failure processes. Therefore, it is important to detect and to
understand in detail these micro-mechanical mechanisms and their transition to the macro-
level. Thus, a new set of experiments with the biaxially loaded X0 specimen, taking into
account various load ratios and different loading directions in anisotropic ductile metals,
is discussed in the present paper. Their influence on localized deformations as well as
on damage and failure behavior is studied in detail using a combined experimental and
numerical analysis. The investigated material is the aluminum alloy EN AW-2017A. It is a
heat-treatable wrought alloy and is characterized by high tensile strength, excellent fatigue
strength, very good corrosion resistance and machinabilty. It is used in various applications
with high-strength structural components such as in machine construction, in military
equipment, in aerospace industries as well as in transport and traffic applications. Material
properties are characterized by uniaxial tension tests with dog-bone-shaped specimens
taken from metal sheets in different directions. Results of biaxial tests with the X0 specimen
are presented, where digital image correlation visualizes the formation of strain fields.
In addition, scanning electron microscopy of the fractured surfaces reveals different damage
and fracture mechanisms at the micro-level. Furthermore, the results of corresponding
numerical simulations show stress states in critical parts of the specimens depending on
loading directions and load ratios.
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2. Material and Methods
2.1. Constitutive Model

The theoretical framework of the elastic–plastic deformation behavior of anisotropic
ductile metals is mainly based on experimental investigations at the macro-level. In the
proposed phenomenological model, the strain rate tensor

ε̇ij = ε̇el
ij + ε̇

pl
ij (1)

is additively decomposed into an elastic ε̇el
ij and a plastic part ε̇

pl
ij . The elastic behavior is

assumed to be isotropic and is characterized by Hooke’s law, where the stress tensor can
be expressed in the form

σij = 2G εel
ij +

(
K − 2

3
G
)

εel
kk δij (2)

with the shear and the bulk modulus, G and K, of the investigated ductile metal, and δij
denotes the Kronecker delta (components of the unit tensor). In rolled sheets, the principal
axes of anisotropy lie in the x direction of rolling (RD, 0◦), in the y direction transversely in
the plane of the sheet (TD, 90◦) and in the z direction normal to this plane. It is assumed
that the axes of anisotropy coincide with the principal axes of the stresses. In the present
paper, anisotropic plastic behavior is governed by Hill’s [28] yield criterion

f pl(σij) =

√
1
2

[
F(σy − σz)2 + G(σz − σx)2 + H(σx − σy)2 + 2L σ2

yz + 2M σ2
xz + 2N σ2

xy

]
− σ̄ = 0 (3)

where F, G, H, L, M and N are material parameters which have to be identified by different
uniaxial tests and σ̄ represents the equivalent yield stress of a chosen reference test.

Furthermore, the evolution of plastic strains is predicted by an associated flow rule
where the principal axes of the plastic strain rates coincide with those of the stresses. Thus,
the rate of the plastic strain tensor is given by

ε̇
pl
ij = ˙̄λ

∂ f pl

∂σij
(4)

where λ̄ represents a non-negative factor characterizing the amount of plastic strain incre-
ments. Equation (4) takes into account plastic incompressibility (ε̇pl

ii = 0), which is usually
observed in experiments with ductile metals [35].

In thin metal sheets, the identification of anisotropic material parameters is often
restricted to experiments with specimens cut in its plane. Assuming plane stress conditions
(σz = σxz = σyz = 0), the yield criterion (3) reduces to

f pl
s =

√
1
2

[
(G + H) σ2

x − 2H σx σy + (F + H) σ2
y + 2N σ2

xy

]
− σ̄ = 0 (5)

whereas the corresponding plastic strain rates (4) can be written in the form

ε̇
pl
x = λ̇ [(G + H) σx − H σy]

ε̇
pl
y = λ̇ [(F + H) σy − H σx] (6)

ε̇
pl
xy = λ̇ N σxy .

Based on the assumption of incompressible plastic deformation behavior, the plastic strain
rate in the through-thickness direction is then given by

ε̇
pl
z = − (ε̇

pl
x + ε̇

pl
y ) = − λ̇ (G σx + F σy) . (7)
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For uniaxial tension tests with specimens cut at an angle α to the rolling direction of
the thin sheet, the yield stresses in the principal directions of anisotropy are

σx = σα cos2 α , σy = σα sin2 α , σxy = σα sin α cos α (8)

where σα is the tensile yield stress in the α direction. With Equations (6) and (7), this leads to

ε̇
pl
x = λ̇ σα [(G + H) cos2 α − H sin2 α]

ε̇
pl
y = λ̇ σα [(F + H) sin2 α − H cos2α]

ε̇
pl
z = −λ̇ σα (G cos2 α − F sin2α) (9)

ε̇
pl
xy = λ̇ σα N sin α cos α .

Computation of the ratios of measured plastic strain increments in tensile specimens
cut in the x and y direction of the thin sheet as well as in its diagonal direction (DD,
45◦) provide an alternative indirect method to determine the tensile and the shear yield
stresses. Transformation of the plastic strain rates to the specimen’s orientation α and the
corresponding transverse direction (α + 90◦) leads to

ε̇
pl
α = ε̇

pl
x cos2 α + ε̇

pl
y sin2 α + 2ε̇

pl
xy sin α cos α

ε̇
pl
α+90◦ = ε̇

pl
x sin2 α + ε̇

pl
y cos2 α − 2ε̇

pl
xy sin α cos α (10)

and with Equation (9), the requested plastic strain rate can be written in the form

ε̇
pl
α+90◦ = λ̇ σα [−H + (G + F − 2N + 4H) sin2 α cos2 α] . (11)

The identification of the material parameters is based on the definition of the r values
representing the ratios of the plastic strain increments in different directions (α + 90◦) and
the through-thickness direction z, which can be written with Equation (7) in the form

rα =
ε̇

pl
α+90◦

ε̇
pl
z

=
−ε̇

pl
α+90◦

ε̇
pl
x + ε̇

pl
y

. (12)

Taking into account Equations (9) and (11), the r value is given by

rα =
H + (2N − F − G − 4H) sin2 α cos2 α

F sin2 α + G cos2 α
(13)

allowing identification of the respective anisotropy parameters of the yield condition
(Equation (5)).

2.2. Material and Parameters

The investigated material is the aluminum alloy EN AW-2017A (EN AW-AlCu4MgSi)
supplied in the form of 4 mm thick sheets. The chemical decomposition is shown in Table 1.

Table 1. Chemical composition of EN AW-2017A aluminum alloy (% weight).

Material Cu Fe Mn Mg Si Zn Cr Others Al

EN AW-2017A 4.0 0.7 0.7 0.7 0.5 0.25 0.10 0.15 to balance

Specimens with different geometries are milled with high precision from these sheets.
In some cases, notches are milled in the thickness direction. Based on photos of the micro-
structures, these processes did not affect the material properties, remaining homogeneous
over the investigated sections.
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Identification of material parameters is based on tensile tests with specimens cut in
different directions (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) from the aluminum alloy sheets. The ten-
sile tests are performed in a uniaxial table test machine type inspekt Table 50-1 (produced
by Hegewald & Peschke, Nossen, Germany) shown in Figure 1. Measurement of three-
dimensional strain fields on the respective surfaces of the specimens is based on a spe-
cial camera and lighting system, schematically shown in Figure 1a, using four cameras
equipped with 75 mm lenses. Tensile tests were carried out three times for each direction,
showing a very good correlation with only marginal differences. The geometry of the
dog-bone-shaped specimen is shown in Figure 2. It is characterized by a long middle part,
where nearly homogeneous stress and strain fields are expected to occur. This geometry
has successfully been used in the lab of the authors during the last few years to identify
elastic–plastic material parameters in ductile metals. During these tests, the geometry of
the specimens remained homogeneous and necking occurred only during the last load
steps. Thus, a uniaxial stress state was present, which was used to determine the respective
true stresses.

20

60

R12.5

5

200

4

Camera 

          Light

 Specimen

(a) (b)

Figure 1. View of (a) schematic draw and (b) experimental setup for the tensile tests.

20

60

R12.5

5

200

4

Camera 

          Light

 Specimen

(a) (b)

Figure 2. Geometry of the tensile specimen (all dimensions in mm).

Based on the measured strain fields, different r values can be determined using Equation (12),
which are shown in Figure 3a. In addition, respective yield stresses σα are taken from true
stress–true plastic strain curves of the different tensile tests with the specimens cut in
the various directions α with respect to the rolling direction and are shown in Figure 3b.
The reference yield stress σ̄ is taken to be σ0◦ for the specimen cut in the rolling direc-
tion (RD).

Furthermore, the numerical simulation of different biaxial tests is based on constitutive
parameters identified by fitting the experimental equivalent stress–equivalent plastic strain
curves of uniaxial tension tests in RD, DD and TD (Figure 4a). Isotropic elastic behavior is
characterized by Young’s modulus E = 74,000 MPa and Poisson’s ratio ν = 0.3. In addition,
plastic hardening of the investigated aluminum alloy EN AW 2017 is adequately described
by the Voce law [36] for the respective current yield stresses

c = co + Roεpl + R∞

(
1 − e−b εpl

)
(14)
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with the initial yield stress co , the initial and final hardening moduli Ro and R∞, the hard-
ening exponent b as well as the equivalent plastic strain εpl .
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Figure 3. Experimental and numerically predicted (a) r values and (b) yield stresses.
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 200
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pl

ε   [-]
pl

Sim

SimExp

Figure 4. (a) Experimental and (b) numerically predicted true stress–true plastic strain curves.

For RD, DD and TD, the respective material parameters are shown in Table 2, leading
to good agreement of the numerically predicted stress–plastic strain curves (Sim) with the
experimental data (Exp) shown in Figure 4b. Deviations can only be seen at the end of the
loading process (εpl = 0.15) after the onset of necking, leading to local three-dimensional
stress states, as well as caused by damage processes that cannot be simulated by the
elastic–plastic model.

Table 2. Plastic material parameters.

co [MPa] Ro [MPa] R∞ [MPa] b

RD 313 464 147 20
DD 308 474 127 28
TD 297 445 128 25
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The Lankford coefficients in RD, DD and TD (Table 3) are used to identify the anisotropy
coefficients in the yield criterion (5). Using the results of the tensile test with the specimen
cut in RD, the yield condition (5) with σx = σ̄ and Equation (13) for α = 0◦ lead to

G =
2

1 + r0◦
(15)

and
H = 2 − G . (16)

In addition, with the results of the tensile test with the specimen cut in TD, the yield
condition (5) leads to

F =
2σ̄2

σ2
y

− H . (17)

Alternatively, based on this experiment, the anisotropy parameter F can be computed using
Equation (13) for α = 90◦:

F =
H

r90◦
. (18)

Furthermore, using the results of the tensile test with the specimen cut in DD, Equation (13)
leads to

N =

(
r45◦ +

1
2

)
(F + G) . (19)

Based on Equations (15), (16) and (18), this leads to the parameters G = 1.2523, H = 0.7477
and F18 = 1.0758, which are able to accurately predict the experimental r values (Figure 3a,
Fit 1, black curve), but leads to remarkable differences in the numerically predicted yield
stresses with the experimental data (Figure 3b, Fit 1, black curve). Thus, the parameter
F is alternatively determined with Equation (17), leading to F17 = 1.4738. However, this
leads to deviations in the numerically predicted r values (Figure 3a, Fit 2, blue curve)
compared with the experimental ones, whereas the different yield stresses are well simu-
lated. Therefore, the mean value of the respective parameters F = 1

2 (F17 + F18) based on
Equations (17) and (18) is computed, leading to acceptable numerical results for both the r
values and the yield stresses (Figure 3, Fit 3, red curves). In addition, the parameter N is
determined with Equation (19), and all anisotropy parameters are listed in Table 4, which
are used in the numerical simulations discussed in the next section.

Table 3. Lankford coefficients.

r0 r45 r90

0.597 0.783 0.695

Table 4. Anisotropy parameters.

F G H L M N

1.2747 1.2523 0.7477 3.0 3.0 3.2421

2.3. Experimental and Numerical Aspects

The biaxial experiments are performed in the test machine type LFM-BIAX 20 kN
(produced by Walter & Bai, Löhningen, Switzerland). It contains four electro-mechanically
driven actuators (Figure 5a), allowing individual tensile or compressive loading in two
orthogonal axes. The experimental technique is described in detail in the References [7,37]
and only the main aspects are briefly summarized in the present paper. In particular,
the main machine displacement u1.1 of cylinder 1.1 in axis 1 (Figure 6f) is continuously
increased by 0.004 mm/s. The same displacement is applied on the opposite side of the same
axis on the cylinder 1.2 as u1.2. In the perpendicular axis 2, the cylinder 2.1 is force-driven
to guarantee constant load ratios during the experiment. This leads in this cylinder to the
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machine displacement u2.1, and the same displacement is applied as u2.2 on the cylinder
2.2 on the opposite side of the axis 2. This technique has been shown to be remarkably
stable and allows the performance of biaxial tests with cruciform specimens covering a
wide range of requested stress states.

Before the experiments start, the specimens are clamped in the four heads of the
actuators. Three-dimensional displacement fields in selected parts of the specimens are
recorded during the tests by digital image correlation (DIC). Here, eight Allied Vision Manta
G-609B/C cameras equipped with 75 mm lenses are used (Figure 5b). The corresponding
lighting system (Figure 5) is installed in such a way that shadows and reflections are
avoided within the notched parts of the specimens. During the experiments, the data
sets of the digital image correlation system are stored with a frequency of 1.0 Hz. With
this technique, the formation of strain fields on the boundaries of the specimens can be
examined in detail, and strain localization phenomena as well as the onset of the evolution
of macro-cracking can be revealed. The biaxial tests are carried out three times for each
direction (RD, DD and TD) and each load ratio, showing a very good correlation with
only marginal differences. Furthermore, the fracture surfaces of the failed specimens
are analyzed by scanning electron microscopy (SEM) to visualize damage and fracture
mechanisms at the micro-level.

(b)(a)

Figure 5. (a) Biaxial test machine, (b) lighting system and camera equipment.

For experimental examination of inelastic deformations and the stress-state-dependent
failure behavior of ductile metals, new geometries of cruciform specimens have been
proposed [7]. In the present paper, the X0 specimen (Figure 6a) is used to analyze the
effect of anisotropic material characteristics on the multi-axial mechanical behavior of the
investigated aluminum alloy sheets. The outer dimensions of the X0 specimen are 240 mm
in both directions (b). In its center, notches in the thickness direction are milled (c), leading
here to the localization of strain fields during loading. The length of the notched parts
is 6 mm with a reduction in thickness up to 2 mm. The notch radii are 3 mm in plane
(d) and 2 mm in the thickness (e) direction. The X0 specimen is simultaneously loaded
in two perpendicular directions by F1 and F2 (f) with different proportional load paths.
Displacements of the red points shown in Figure 6f, u1.1 and u1.2 in direction 1 and u2.1 and
u2.2 in direction 2 are recorded by DIC during the experiments. They are used to determine
the relative displacements ∆uref .1 = u1.1 − u1.2 and ∆uref .2 = u2.1 − u2.2 shown in the
load–displacement curves.



Metals 2021, 11, 1214 9 of 18

(c)

(d)
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M

(f)

Figure 6. Geometry, loadings and displacements of the X0 specimen (all dimensions in mm).

On the numerical side, the finite element program ANSYS, enhanced by a user-defined
material subroutine, is used to perform the numerical simulations of the experiments with
the X0 specimens. The subroutine takes into account the plastic predictor–elastic corrector
method to efficiently integrate the rate equations. A quarter of the X0 specimen is divided
into 18,645 eight-node elements of type SOLID185 (Figure 7). Symmetry boundary condi-
tions are used in the symmetry surfaces and the displacements are applied to the nodes
at the end faces, whereas out-of-plane movements are prevented by zero displacements
of the nodes in the symmetry plane in the out-of-plane direction. Refinement of the finite
element mesh is taken into account in the notched parts of the X0 specimen to accurately
predict the stress gradients and strain localization.

1

                                                                                

Figure 7. Finite element mesh.

3. Results and Discussion

In the experimental program, different load ratios are considered. In particular, in the
first case, the X0 specimen is uniaxially loaded by F1/F2 = 1/0, where direction 1 (Figure 6f)
corresponds to the rolling direction (RD), the diagonal direction (DD) and the transverse
direction (TD), respectively. In the second case, the X0 specimen is biaxially loaded by
F1/F2 = 1/+1, leading to high tensile stresses in the notched region. Moreover, for this
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load ratio, loading direction 1 corresponds to RD, DD or TD. In the third case, the X0
specimen is biaxially loaded by F1/F2 = 1/−1, leading to shear behavior in the notches.
Again, direction 1 corresponds to RD, DD or TD.

Experimentally obtained and numerically predicted load–displacement curves are
shown in Figure 8. In particular, in the experiments with the load ratio F1/F2 = 1/0
(Figure 8a), an increase in load is observed up to F1 = 9.2 kN for loading in RD, and the X0
specimen failed at the displacement ∆uref = 1.08 mm. For loading in DD, the maximum
load reaches F1 = 8.7 kN whereas the final displacement at the onset of fracture is
∆uref = 1.36 mm For loading in TD, the load increases up to F1 = 9.0 kN and fails at
the displacement ∆uref = 1.21 mm. Thus, from the experiments with the X0 specimen
loaded by F1/F2 = 1/0, it can be clearly seen that the loading direction with respect to the
principal directions of anisotropy affects the maximum loads as well as the displacements
at the onset of fracture. The loads differ by around 5%, where loading in RD leads to the
highest load, whereas the smallest one is reached for loading in DD. The displacements
at the onset of fracture differ by around 25%, where the largest displacement is measured
for loading in DD and the smallest one for loading in RD. Therefore, these experimental
results show that for loading in RD, the behavior is more brittle, whereas loading in DD
leads to more ductile behavior.

This experimental behavior is reproduced by the numerical simulations based on
the elastic–plastic constitutive model and on the parameters taken from the uniaxial
tension tests discussed above. For loading in RD, the experimental and numerical load–
displacement curves are nearly identical, whereas small differences can be seen for loading
in DD and TD, but the main trends are well predicted. Thus, the Hill criterion (5) with the
modified parameter identification method is able to adequately simulate the elastic–plastic
deformation behavior of the investigated aluminum alloy.

In the experiments with the load ratio F1/F2 = 1/+1 (Figure 8b), similar load–displacement
curves are obtained. For F1 loading in RD, the maximum loads are F1 = F2 = 9.2 kN and the
X0 specimen failed at ∆uref .1 = 0.42 mm and ∆uref .2 = 0.45 mm, showing slightly
non-symmetric behavior caused by inhomogeneities in the specimen’s geometry and
inaccuracies in the experimental procedure. For F1 loading in DD, the loads increase up
to F1 = F2 = 8.8 kN and the displacements at fracture are ∆uref .1 = ∆uref .2 = 0.39 mm
for both cases. For F1 loading in TD, the loads reach F1 = F2 = 8.9 kN and the specimen
failed at ∆uref .1 = 0.40 mm and ∆uref .2 = 0.41 mm. Again, the F1-loading direction
with respect to the principal directions of anisotropy has an influence on load maxima and
displacements at the onset of fracture, but in the case of the load ratio F1/F2 = 1/+1, the
differences are only 5% and 10%, respectively. Taking the ratio F/∆uref as an indicator
for ductility or brittleness, no remarkable differences in ductility can be seen for the load
ratio F1/F2 = 1/+1 in RD, DD and TD. However, compared to F1/F2 = 1/0, much smaller
displacements are reached and, therefore, the behavior with respect to all loading directions
is more brittle. In addition, numerically predicted load–displacement curves are also shown
in Figure 8b, simulating very well the experimental behavior. Only a slight over-prediction
of the final loads of less than 4% can be seen but the main trends are nicely reproduced.

In the experiments with the load ratio F1/F2 = 1/−1 (Figure 8c), load–displacement
curves for the positive and the negative load paths are obtained. In all cases, the orientations
of F1 loading (RD, DD and TD) of the load maxima are nearly identical, with F1 = 5.1 kN and
F2 = −5.3 kN, respectively. However, the displacements at the onset of fracture are different.
For F1 loading in RD, the displacements are ∆uref .1 = 1.16 mm and ∆uref .2 = −1.40 mm, and
for F1 loading in DD, the final displacements are ∆uref .1 = 1.25 mm and ∆uref .2 = −1.54 mm,
whereas for F1 loading in TD, ∆uref.1 = 1.07 mm and ∆uref.2 = −1.32 mm have been mea-
sured. Thus, from these experiments with the X0 specimen loaded by F1/F2 = 1/−1, it
can be clearly seen that the F1 loading direction with respect to the principal directions of
anisotropy affects the displacements at the onset of fracture, which differ by around 17%.
They again show that the behavior for F1 loading in DD is more ductile compared to the
other loading directions. In addition, numerical simulations of these experiments have



Metals 2021, 11, 1214 11 of 18

been performed. The numerical load–displacement curves are nearly identical for RD and
TD whereas smaller loads are numerically predicted for DD. This trend agrees with the
experimental observations and the numerical analysis, which only slightly over-predicts
the experimentally measured loads with differences up to 10%. It should be noted that
the numerical simulations are based on the proposed elastic–plastic model, whereas in the
experiments, damage also takes place, leading to smaller loads.
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Figure 8. Load-displacement curves for the load ratios (a) F1/F2 = 1/0, (b) F1/F2 = 1/+1 and
(c) F1/F2 = 1/−1.

During loading of the X0 specimen, strain fields in the notched regions are monitored
by the digital image correlation (DIC) technique. At the end of the experiments, a sudden
macro-crack is shown by DIC and strain fields are analyzed in the preceding photo shortly
before fracture occurs. The first principal strain fields shortly before the onset of fracture
are shown in Figure 9 for different load ratios and for different orientations with respect to
the principal directions of anisotropy. In the left corner of each figure, the rolling direction
is shown by the black lines. In particular, for the load ratio F1/F2 = 1/0 (Figure 9a) with
loading in RD, small principal strain bands occur with a slightly diagonal orientation
from top-left to bottom-right for the horizontal notches. During the loading process, the
behavior in all four notches is nearly identical, and a few seconds before failure, a faster
increase in strains is observed in the horizontal notches with maxima ε1 = 0.35. Similar
behavior is observed in the experiments with loading in DD, but higher strain maxima
occur up to ε1 = 0.40. For loading in TD, again, small principal strain bands are formed
with later higher strain maxima up to ε1 = 0.33 in the horizontal notches. In summary,
for F1/F2 = 1/0, small principal strain bands occur with a slightly diagonal orientation and
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larger values for loading in DD, corresponding to the more ductile behavior also observed
in the load–displacement curves (Figure 8a).

0.4

0.43

0.00

0.00

0.00

RD
(a)

(b)

(c)

DD TD

0.22

1/+1

1/-1

1/0

Figure 9. First principal strain fields before fracture occurs for the load ratios (a) F1/F2 = 1/0,
(b) F1/F2 = 1/+1 and (c) F1/F2 = 1/ − 1.

Figure 9b shows the experimental results for the load ratio F1/F2 = 1/+1. For F1
loading in RD, more widespread bands of principal strains can be seen with maxima in
an elliptical shape. The maxima are ε1 = 0.22 in the horizontal notches. Very similar
distribution of principal strains is measured for F1 loading in DD, with slightly smaller
values up to ε1 = 0.20. Moreover, for F1 loading in TD, again, these widespread bands
can be seen, with strain maxima of ε1 = 0.21. In summary, for the load ratio F1/F2 = 1/+1,
for all loading directions, more widespread bands of high principal strains occur with
horizontal/vertical orientation and the maxima form an ellipse. The distributions and
the amounts of the final strains before fracture occurs only show small differences, which
correspond to the very similar load–displacement curves in Figure 8b.

For the load ratio F1/F2 = 1/−1 (Figure 9c), the principal strains are localized in small
strain bands with diagonal orientation from bottom-left to top-right for the horizontal
notches. For F1 loading in RD, the maxima are ε1 = 0.41, whereas ε1 = 0.43 is reached for
DD. In the case of F1 loading in TD, ε1 = 0.40 occurs shortly before failure happens. These
different values correspond to the different displacements at failure shown in the load–
displacement curves (Figure 8c). In summary, the distribution, localization and orientation
of principal strain bands are mainly caused by the load ratio, whereas the loading direction
affects the maximum values.

Photos of the fractured specimens are shown in Figure 10. The fracture lines correspond
to the localized bands of the maximum of the first principal strain (Figure 9), and remarkable
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inelastic deformations can also be seen in the non-failed notches, corresponding to high
values of the principal strains. In particular, for the load ratio F1/F2 = 1/0 (Figure 10a),
the fracture lines show a slightly diagonal orientation from top-left to bottom-right with
a shear-dominated fracture mode. In the case of the load ratio F1/F2 = 1/+1 (Figure 10b),
horizontal fracture lines can be seen with typical tensile-dominated fracture modes and
cup-cone behavior. For the load ratio F1/F2 = 1/−1 (Figure 10c), the fracture lines are
slightly diagonally oriented from bottom-left to top-right. The fracture modes are typical
shear-dominated ones with smooth fracture surfaces. These experimental results clearly
show that fracture lines on the macroscopic level are affected by the load ratios, whereas the
influence of the loading direction (RD, DD or TD) is marginal.

Figure 10. Fractured specimens for the load ratios (a) F1/F2 = 1/0, (b) F1/F2 = 1/+1 and
(c) F1/F2 = 1/−1.

Based on numerical simulations of the respective experiments, the stress states in
the notched parts of the tested X0 specimens can be predicted. The stress parameters are
evaluated after the last load step of the numerical analysis (see Figure 8). It should be
noted that due to the experimental loading procedure with constant load ratios, the stress
parameters remain nearly constant during the loading history in the plastic range. For
example, the stress triaxialities η (ratio of the mean stress and the equivalent stress) on the
surface (S) and in the cross-section (C) of the notches are shown in Figure 11. For the load
ratio F1/F2 = 1/0 (Figure 11a), the distribution of the stress triaxiality in the cross-section
(C) is nearly homogeneous, with small gradients on the bottom and on the top. In the center
of the notch, the stress triaxiality η = 0.20 is numerically predicted, whereas on the bottom
of the cross-section, η = 0.35 is reached, and on its top, η = 0.10 is reached. The influence
of the loading direction on the stress triaxialities for this loading case is marginal. For the
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load ratio F1/F2 = 1/+1 (Figure 11b), higher gradients of the stress triaxiality can be seen
in the cross-section (C) of the notched part of the X0 specimen. In the center of the notch,
the stress triaxiality η = 1.00 is reached, whereas on the boundaries of the cross-section (C)
and on the surface (S), it is only η = 0.40. The distribution is symmetric and, again, the
effect of the F1 loading direction is marginal. For the load ratio F1/F2 = 1/−1, the stress
triaxialities are shown in Figure 11c. In this case, the distribution of the stress triaxialiy
in the cross-section (C) of the notch is nearly homogeneous, with only small gradients on
the bottom and on the top. In the center of the notch, η = 0.00 is numerically predicted,
whereas in small regions on the bottom, η = 0.33 and on the top η = 0.11 are reached.
On the surface (S) of the notch, the stress triaxiality is also nearly homogeneous, with
η = 0.00. Again, the influence of the F1 loading direction is marginal. These numerical
results have clearly shown that the amount and distribution of the stress triaxialities in the
notches of the X0 specimen remarkably depend on the load ratio, whereas they are only
marginally influenced by the loading direction (RD, DD and TD).

-0.33

-0.33

1.00

1.00

1/+1

1/-1

RD DD TD

(b)

(c)

S C S C S C

(a)

1/0

-0.33

1.00

Figure 11. Stress triaxialities η for the load ratios (a) F1/F2 = 1/0, (b) F1/F2 = 1/+1 and (c) F1/F2 = 1/−1.

After the tests, the fracture surfaces have been analyzed by scanning electron mi-
croscopy (SEM) and the respective pictures of the center of the fracture surface are shown
in Figure 12. In particular, for the load ratio F1/F2 = 1/0 (Figure 12a) after loading in RD,
many voids and some shear mechanisms can be seen, leading to sheared dimples. For load-
ing in DD, only some small voids occur but more micro-shear-cracks and sheared voids are
visible. For loading in TD, voids and micro-shear-cracks can be seen, with small sheared
dimples. However, the stress triaxiality for all loading directions was nearly identical, with
η = 0.20 in the center of the notch (Figure 11a), and for isotropic materials, the mixed failure
mode with the simultaneous growth of voids and the formation of micro-shear cracks is
expected to occur for this moderate stress triaxiality [12,37]. In the case of the investigated
anisotropic material, the failure mode also depends on the loading direction, with more
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superimposed void growth for loading in RD and more pronounced shear mechanisms for
loading in DD.

Figure 12. Scanning electron microscopy of fracture surfaces for the load ratios (a) F1/F2 = 1/0, (b) F1/F2 = 1/+1 and
(c) F1/F2 = 1/−1.

On the other hand, for the load ratio F1/F2 = 1/+1 (Figure 12b), F1 loading in RD
leads to remarkable void growth, with large pores and clear dimples. For F1 loading in
DD, the voids are smaller but also lead to dimples, which are smaller compared to those
after loading in RD. For F1 loading in TD, again, large pores and clear dimples similar to
those observed after loading in RD can be seen. With the high stress triaxiality, η = 1.00 is
numerically predicted for this load ratio in the center of the notch (Figure 11b); for isotropic
materials, remarkable void growth is expected to occur [25]. This also happens for the
examined anisotropic material but the F1 loading direction has an influence on the size of
the voids. They are larger for loading in RD and TD, whereas smaller pores can be seen
after loading in DD.

For the load ratio F1/F2 = 1/−1, the SEM pictures are shown in Figure 12c. For F1
loading in RD, some small voids are formed, which are sheared and superimposed by
micro-shear cracks. For F1 loading in DD, nearly no voids occur and failure is caused by
the accumulation of micro-shear cracks, leading to a very smooth and flat failure surface.
For F1 loading in TD, again, some voids can be seen, which are sheared and superimposed
by micro-shear cracks. Compared to loading in RD, here, more and slightly larger voids
are visible. Based on the results for isotropic materials [25,27], namely the the numerically
predicted stress triaxiality η = 0.00 in the center of the notch (Figure 11c), micro-shear-crack
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behavior without the formation of voids is expected to occur. However, in the case of
the investigated anisotropic material, the failure mode also depends on the F1-loading
direction. The expected mode only occurs for loading in DD, whereas for loading in RD
and TD, the additional formation of small voids has been revealed by SEM. In summary,
although no dependence on the loading direction of the stress triaxiality (Figure 11) and
of the macroscopic fracture lines (Figure 10) has been detected by the experimental and
numerical analysis, the SEM pictures have shown the effect of the loading direction on the
damage and fracture mechanisms on the micro-scale. For all load ratios, there is greater
formation and growth of voids during loading in RD and TD, whereas smaller or no voids
occur during loading in DD. Thus, the SEM analysis clearly shows that for high stress
triaxialities, the influence of the loading direction on damage and failure mechanisms
at the micro-level is small; in all cases, predominant formation and growth of voids is
observed, and only the size of the voids is larger for loading in RD and TD and smaller
for loading in DD. However, for moderate and zero stress triaxialities, a remarkable effect
of the loading direction on these microscopic processes has been detected. For loading in
RD and TD, mixed failure mechanisms with simultaneous growth of voids and formation
of micro-shear cracks occurred, and their proportion depends on the stress triaxiality
(decrease in stress triaxiality leads to more micro-shear cracks). For loading in DD, at the
same level of stress triaxiality, the formation of micro-shear cracks is more predominant
and the growth of voids is lower. This loading-direction-dependent behavior can also be
seen in the load–displacement curves (Figure 8). For high stress triaxialities (load ratio
F1/F2 = 1/+1, Figure 8b), the differences in loads and displacements at the onset of fracture
are small and the behavior was brittle, corresponding to the predominant void growth.
However, for moderate (F1/F2 = 1/0, Figure 8a) and zero (F1/F2 = 1/−1, Figure 8c) stress
triaxialities, loading in DD leads to larger displacements, indicating more ductile behavior
corresponding to shear-dominated behavior at the micro-level.

4. Conclusions

In this paper, the influence of the loading direction and the stress state on the dam-
age and fracture behavior of the anisotropic aluminum alloy EN AW-2017A has been
investigated in detail. Various experiments and numerical simulations with the biaxially
loaded X0 specimen have been performed with a focus on different load ratios and loading
directions. The main conclusions are:

• The anisotropy parameters in Hill’s yield criterion are determined by a combined
method using the yield criterion and the r values. This leads to accurate prediction
of both the yield stresses and the r values measured in tension tests with different
loading directions.

• The loading direction affects the load–displacement behavior in biaxial experiments.
For load ratios leading to moderate or zero stress triaxialities, larger displacements
occur for loading in DD and smaller ones for loading in RD. Thus, for these stress
states, the deformation behavior for loading in DD is more ductile.

• The load ratio has an influence on the localization and orientation of principal strain
bands. For moderate and zero stress triaxialities, larger strains occur for loading in
DD, also indicating the more ductile behavior.

• The load ratio affects the macroscopic stresses, whereas the influence of the loading
direction is marginal. A wide range of stress states can be covered by the X0 specimen
under different biaxial loading conditions.

• Damage and fracture processes on the micro-scale are influenced by the load ratio
and the loading direction. Loading in DD leads to more micro-shear cracks, whereas
during loading in RD and TD, more voids occur.

• The experimental results reveal important information on the damage and fracture
mechanisms occurring during the loading of anisotropic materials. They can be
used to develop and to validate sophisticated constitutive models to simulate the
deformation and failure behavior of aeronautical structures.



Metals 2021, 11, 1214 17 of 18

Author Contributions: Conceptualization, M.B., S.G. and S.K.; methodology, M.B.; software, S.G.
and S.K.; validation, S.K.; formal analysis, M.B., S.G. and S.K.; investigation, S.K.; resources, M.B.,
S.G. and S.K.; data curation, S.K.; writing—original draft preparation, M.B.; writing—review and
editing, M.B., S.G. and S.K.; visualization, S.K.; supervision, M.B. and S.G.; project administration,
M.B. and S.G.; funding acquisition, M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft DFG (German Research
Foundation) under project number 394286626 (BR1793/22-1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The financial support of the DFG is gratefully acknowledged. The technical sup-
port of Wolfgang Saur (Universität der Bundeswehr München, Werkstoffe das Bauwesens, Germany)
is also gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
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