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Abstract: Welding parameters can greatly affect the final product. In this study, there was a varia-
tion given on the pulse energy, i.e., heat input parameters. The microstructure was analyzed and 
presented in relation to the efficiency of corrosion. The microstructural study showed the changes 
of the fusion zone (FZ) and the heat-affected zone (HAZ) with an increase in pulse energy. The 
development of a prominent austenite process on the weld material had a prolonged effect on its 
corrosion resistance property. Electrochemical impedance spectroscopy (EIS) and potentiodynamic 
measurements were used to test the electrochemical activity of laser-weld 2205 duplex stainless steel 
in an aqueous 3.5% NaCl solution. Finally, the findings of the EIS analysis were supported by Ra-
man spectroscopy. Based on the obtained results, the 2205 duplex stainless steel (DSS) weld ob-
tained at a higher pulse energy showed higher corrosion resistance than the welded sample ob-
tained at a low pulse energy. The impedance spectroscopy confirmed a smooth surface property 
with an increase in the pulse energy and the presence of an oxide layer, a finding also confirmed by 
the Raman spectroscopy measurements. 
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1. Introduction 
There are several advantages of using duplex stainless steel over the austenitic 

grades. Duplex grades are cost-effective and lightweight compared to their austenitic 
counterparts, though the latter possess better corrosion resistance and approximately 
double the yield strength in some cases. Duplex stainless steel (DSS) comprises an equiv-
alent amount of the ferrite and austenite phases. During solidification, the duplex solidi-
fies in ferrite mode, and the transformation of ferrite to austenite also occurs, a process 
which is controlled by nitrogen diffusion [1]. The austenite initially precipitates at the 
grain boundaries at the time of cooling, then at the Widmanstädter plates, and eventually 
as intergranular precipitates [2]. The duplex steel exhibits excessively ferritic microstruc-
tures with deteriorated welding metal properties during the autogenous laser welding 
phase [3–9], and is thus avoided. The DSS does not have sufficient time to form an aus-
tenitic phase during laser welding in the case of low heat input and rapid cooling. Solidi-
fication structures of close to 100% ferrite are noticed in DSS 2205 [8,10]. The ferrite phase 
precipitation of chromium nitride has a negative influence on toughness and corrosion 
behavior [3,11–13]. Usually, these precipitations are of the Cr2N form and can cause chro-
mium reduction in the ferrite grain boundaries, which eventually contributes to a reduc-
tion in local pitting resistance [13–15]. The benefits of using laser welding methods for 
welding duplex stainless steel are high welding speed, low distortion, and gap bridge 
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capacity. The main difference for duplex grades is the higher heat input relative to laser 
welding, resulting in decreased cooling rates and hence improved austenite forming 
[16,17]. 

As discussed earlier, the DSSs have good weldability, but the favorable duplex mi-
crostructure deteriorates during welding because of the presence of defects within the 
fusion zone (FZ) and the heat-affected zone (HAZ) of the structure; such defects are due 
to the melting and solidification process [18]. Heat generally is transmitted from the FZ to 
the HAZ while welding. The FZ and the HAZ are hence considered to be the weak points, 
and welding failures tend to occur in these regions. The ferrite–austenite phase ratio of 
DSSs must be preserved at close to 50:50 in order to obtain the required mechanical prop-
erties and corrosion resistance properties. However, this phase ratio equilibrium can be 
hampered by the slow/fast-cooling thermal cycles in the welding process. The rate of cool-
ing and the transformation extent of δ-ferrite → γ are controlled by the heat input during 
welding [19]. Primary austenite dissolution occurs initially during welding, accompanied 
by grain growth within the δ-ferrite, and finally, during cooling, austenite reformation 
occurs. In general, at the grain boundaries, the austenite tends to nucleate, but it can also 
precipitate in the grain interiors at slow cooling speeds [20]. 

Generally, a high heat input or slow rate of cooling is favorable for austenite for-
mation during cooling. However, the intermetallic compounds can easily be formed in the 
FZ and the HAZ under slow cooling rates, especially in the case of highly alloyed super 
duplex and hyper duplex grades [21–23]. Consequently, the corrosion resistance and 
toughness of the DSS decrease significantly after welding. A significant amount of ferrite 
phase and chromium nitride (Cr2N) particles are generated at a low heat input or during 
the rapid cooling process. The low solubility of nitrogen in ferrite leads to the supersatu-
ration of nitrogen in ferrite, which leads to Cr2N precipitation after fast cooling from high 
temperatures [24]. In the weld region, the austenite content can be managed by regulating 
the Ni content in the filler material and by applying heat treatment after welding [25]. The 
steel compositions and welding techniques greatly influence the mechanical and corro-
sion-resistant properties of the welded duplex stainless steel (DSS). Several welding tech-
niques, including laser welding, tungsten inert gas (TIG) welding, plasma arc welding, 
friction welding, electron beam welding, gas metal arc welding, etc., are used for the weld-
ing of DSS. All the techniques have their limitations and advantages [21,26–32]. During 
the welding process, variation in composition and microstructure takes place in the FZ, 
which may reduce the corrosion resistance of DSS. When exposed to hostile conditions, 
the presence of Cr2N and various intermetallic phases in welded metal will lead to low 
corrosion resistance [33–35]. In the present work, the effect of pulse energy on the micro-
structural and corrosion behavior properties of the welded DSS has been investigated. 

2. Materials and Methods 
The material used in this study was commercially available duplex stainless steel; 

2205 with 4 mm plate thickness. Its chemical composition is provided in Table 1. 

Table 1. Chemical composition of duplex 2205 (wt%). 

C Si Mn P S Al B 
0.03 0.39 1.34 0.03 <0.003 0.0039 0.0035 
Cr Cu Mo Ni Nb Co Ti 

22.5 0.24 3.03 5.6 0.016 0.128 <0.005 

The laser welding was carried out using a 9000W laser power device PLDD-100M 
(ALPHALAS, Goettingen, Germany), a laser wavelength of 1070 nm, a pulse duration of 
5 ms and a laser spot diameter of 1.5 mm on pulsed wave Nd:YAG laser mode and high-
purity argon gas with a flow rate of 15 L/min during the welding process. The effect of the 
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laser power was clarified using a fixed welding speed of 0.5 m/min and defocusing dis-
tances of −2.0 mm. Three different laser powers of 4.5 kW, 6.5 kW and 8.5 kW were chosen 
in order to analyze the effect of laser power on the weld quality. The processing parame-
ters are provided in Table 2. 

Table 2. Process parameter of laser welding for joining 2205 duplex stainless steel. 

Laser Power (kW) Welding Speed 
(m/min) 

Defocusing Dis-
tances (mm) 

Shielding Gas/Flow 
Rate (L/min) 

4.5 
0.5 −2 Argon/15 6.5 

8.5 

The polishing of samples was performed using various grades (400–1500 grades) of 
silicon carbide emery papers; the samples were also polished with abrasives such as alu-
mina and 0.03 μm colloidal silica. An ultrasonic cleaner was then used to clean the speci-
mens. By etching the polished samples using Kalling’s No. 2 (5 g copper chloride, 100 mL 
hydrochloric acid, and 100 mL ethanol), the microstructure of the welded joint for the 
overlapped sheets was analyzed. Microstructural analysis of the sample and the welded 
joint was examined under a Leica optical microscope DM3 XL (Leica Microsystems, 
Bourges, France). 

The Raman spectrum of the sample was measured using a Raman spectrometer 
LabRAM HR800 (HORIBA Jobin Yvon, Paris, France) with an incident laser light at a 
wavelength of 514.5 nm. Raman bands were calibrated using the 520 cm−1 band from Si. 
The Raman spectra were taken at three appropriate points on each sample in the range of 
200 to 1000 cm−1. 

A three-electrode corrosion cell was used for EIS measurements. The impedance ex-
periments were performed in the frequency range of 0.01 Hz to 100 kHz. The absolute 
impedance and phase angles were measured at each frequency and the Nyquist and Bode 
plots were obtained. Using actual and imaginary data components in a simplex fit model, 
the impedance data were fitted into a suitable equivalent electrical circuit. Based on this 
equivalent electrical circuit, the impedance data were analyzed. Electrochemical parame-
ters were obtained after the EIS studies from EIS curves from figure to figure. The EIS 
parameters are tabulated in Table 2. 

The corrosion behavior of the welded material was studied in a 3.5% NaCl solution 
with a pH value of 7. Potentiodynamic polarization tests of all welded samples were con-
ducted at room temperature at a scan rate of 1 mV/s using a Gamry Potentiostatic (PC/750, 
USA) device in the NaCl solution. The duplex stainless-steel samples were cleaned with 
acetone and ethanol after being polished with emery papers and cloth polishers. A stand-
ard three-electrode system was used to measure the icorr and Ecorr of the sample. A satu-
rated calomel electrode (SCE) was used as a reference electrode with graphite taken as an 
auxiliary electrode; the sample was a working electrode. The surface area exposed to the 
solution differed from sample to sample, but it was standardized to a fixed sample area 
at the time of plotting. The icorr and Ecorr values obtained from the figure by the Tafel ex-
trapolation method are tabulated in Table 3. 

3. Results  and Discussion 
3.1. Microstructure Analysis 

The microstructure of duplex stainless steel is shown in Figure 1. From the figure, it 
is observed that it has a duplex steel structure, which can be attributed to the existence of 
ferrite and austenite phases in equal volumes. These two phases are layered and have 
discrete and detectable grain boundaries. The microstructure was observed using a light 
microscope (LM) as presented in Figure 1. The brown area depicts the phase of ferrite (δ), 
while the phase of austenite (γ) is shown in black. 
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Figure 1. Microstructure of 2205 duplex stainless steel. 

In the fusion zone, a dendritic microstructure was found owing to the accelerated 
cooling of the welded metal (Figure 2). Upon further cooling, the austenite phase for-
mation took place at the ferrite grain boundary. A more globular shape structure was ob-
served at the center of the welding metal due to its improper heat flow and low cooling 
speeds. The solidification of the DSS weld metal led to the formation of an α-ferrite phase. 
By managing the subsequent transformation of the solid-state phase, the volume fraction 
of austenite was managed [36]. 

 
Figure 2. Optical micrographs of the laser-overlapped welded joint formed using (a) 4.5 kW (b) 6.5 
kW and (c) 8.5 kW power. [BM: base metal; HAZ: heat-affected zone; FZ: fusion zone]. 
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The HAZ zone increased with increasing pulse energy. At the lowest energy, the 
HAZ zone was almost invisible. As the energy was increased, the austenite formation with 
a prominent grain boundary occurred in the fusion zone, and a substantial difference was 
observed in the structure of the heat-affected zone (HAZ) and the fusion zone (FZ) com-
pared to that of the base metal (BM). 

As shown in Figure 3, the cross section of the laser weld sheets had a narrow and 
regular form and were free of any defects in solidification and shrinkage. The penetration 
depth increased steadily with the rise in heat supply, resulting in a complete penetration 
of welding and providing enhanced mechanical strength. Mirakhorli et al. [37] reported 
that with the heat input and overlap factor, the penetration depth increases and adversely 
affects the penetration depth when welding duplex stainless steel. It is, therefore, neces-
sary to choose the right experimental conditions for the welding of duplex stainless steel. 
Shallow and incomplete penetration and formation of defects, such as pores and cracks, 
etc., may result if the experimental conditions are outside the preferred area. This would 
result in joints that have lower strength than the base alloy. 

 
Figure 3. Macrographs of cross sections of laser sheet welds formed using a 0.5 m/min welding speed, −2 mm defocusing 
distance, 15 L/min Argon flowrate at different pulse energies (a) 4.5 kW; (b) 6.5 kW (c) 8.5 kW. 

3.2. Potentiodynamic Polarization 
In Table 3 and Figure 4, the effect of heat supply on the corrosion resistance of laser-

welded joints of overlapped sheets is shown. It was observed that increasing the heat in-
put improved the corrosion properties of the welded joints. This heat input effect was 
supported by observing the cooling rates. In laser welds at low heat supply, the rapid 
cooling rate resulted in chromium nitride (CrN) precipitation and an inadequate volume 
fraction of austenite. This effect rendered the drop-in chromium precipitation in the sur-
roundings of the weld, which may have led to a significant impact on the corrosion resis-
tive properties of the steel. 

Table 3. Ecorr and icorr values of welded duplex 2205 stainless steel in 3.5% NaCl solution. 

Sample Name Ecorr (V vs. SCE) icorr (A/cm2) 
8.5 kW −0.1831 1 × 10−7 
6.5 kW −0.2339 6 × 10−7 
4.5 kW −0.3157 4 × 10−6 
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Figure 4. Potentiodynamic polarization diagram of 2205 duplex stainless steel welded with different 
pulse energy conditions. 

The best corrosion resistance was therefore obtained by increasing the pulse energy, 
i.e., the heat input. By doing so, the surface property was also slightly improved. The mi-
crostructure showed that a higher energy input produces a smoother weld surface than 
the surface obtained using a lower energy input. These effects of the crevice or uneven 
surface, together with higher austenite levels, were eliminated, and thus the corrosion re-
sistance was improved. After welding at higher heat input and lower cooling rates, the 
formation of higher austenite phases took place in the welding region. The austenitic 
phase was more resistant to pitting, and hence the overall corrosion resistance property 
increased. Among all three samples, the sample welded at the highest pulse energy (at 8.5 
kW) showed the best corrosion resistance property (1 × 10−7 A/cm2) as well as the highest 
passivity, i.e., the highest Ecorr value compared to the other two samples. 

3.3. Electrochemical Impedance Spectroscopy 
For each of the three frequencies of 2205 duplex stainless steel, the real impedance is 

plotted against the imaginary impedance in Figure 5. The Nyquist graph exhibited a de-
pressed semicircle. When welding with increased pulse energy, the diameter of the capac-
itive semicircle in the Nyquist plot increased. The diameter of the semicircle represents 
the polarization resistance of the surface. With an increase in this resistance, the corrosion 
resistance property of the steel also increased, a finding which is evident from the corro-
sion data provided in Table 3. 
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Figure 5. Nyquist plot of 2205 duplex stainless steel in 3.5% NaCl solution. 

Bode magnitude plots and phase plots are provided in Figures 6 and 7, respectively. 
The bode magnitude plot clearly exhibits two distinct regions. In the low- and high-fre-
quency regions, the graph exhibits constant log ׀Z׀ values w.r.t log (f). This type indicates 
the response to the solution resistance [38,39]. The spectrum shows a linear slope of about 
−1 in the wide middle frequency range (1–1000 Hz). This is the distinctive response of the 
surface film’s capacitive actions [38,40]. 

In the low-frequency region, the curve shifted to a higher modulus with increasing 
pulse energy or heat input. This indicates that the solution resistance increases as the pulse 
energy increases. 

 
Figure 6. Bode magnitude plot of 2205 duplex stainless steel in 3.5% NaCl solution. 
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In the Bode phase plot, the phase angles of two samples (8.5 kW and 6.5 kW pulse 
energy) approach 75° at the intermediate frequency range. As for the other sample (4.5 
kW), the phase angle is decreased to 50° which indicates diffusion on the steel surface. 
This diffusion affects the solution resistance which also lowers the corrosion resistance 
property. 

 
Figure 7. Bode phase plot of 2205 duplex stainless steel in 3.5% NaCl solution. 

In Figure 8, an equivalent circuit is proposed to be adapted to the EIS results, thus 
evaluating the electrochemical parameters. The constant phase aspect model was verified 
by all the curves. The solution resistance, the charge transfer resistance and the capacitive 
behavior of the passive film reflect Rs, R1 and Q1 (constant phase angle elements), respec-
tively, in this equivalent circuit. 

The charge transfer resistance of the duplex stainless steels is given in Table 4. It is 
obvious that the charge transfer resistance (R1) of the low pulse energy sample is always 
lower than that of the higher pulse energy sample. 

 
Figure 8. Equivalent circuit diagram for EIS fitting. 

The CPE behavior of the oxides on the duplex stainless steel was induced by surface 
distributions, which can be supported by local EIS data [41]. Interestingly, the capacitance 
value (Q1) and the passive film thickness also increases as the pulse energy input rises. 
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Table 4. EIS fitting data of 2205 DSS in 3.5% NaCl solution. 

Solution Rs (ohm-cm2) Q1(ohm-1 cm−2 s−n) R1 (kohm-cm2) 
4.5 kW 6.67 62.81 109.7 
6.5 kW 7.94 66.58 155.90 
8.5 kW 8.97 71.71 211.50 

3.4. Raman Spectroscopy 
Figure 9 show the Raman spectra of the passive film formed on the 2205 duplex stain-

less steels at different pulse energies. The Raman spectra display two clear broad peaks at 
365 cm−1 and 550 cm−1 corresponding to the hematite and magnetite [42]. The presence of 
the high amounts of dopants or defects in magnetite as compared to hematite is the reason 
for the difference in the peak for magnetite [43]. It can be deduced that the passive films 
in 2205 duplex stainless steel with higher pulse energy will have significantly higher cor-
rosion resistance as compared to those with lower pulse energy. The results of the Raman 
spectra suggest that the increase in the concentration of hematite in 2205 duplex stainless 
steel may lead to a decrease in the passive film point defects. It also proves that higher 
pulse energy increases the passive film corrosion resistance generated in 2205 DSS in an 
aqueous NaCl solution. 

 
Figure 9. Raman spectra of the passive film formed at 4.5 kW, 6.5 kW and 8.5 kW on 2205 duplex 
stainless steels. 

4. Conclusions 
The input parameters of the energy-pulsed Nd:YAG laser beam welding of 2205 du-

plex stainless steel were investigated using experimental methods. Based on the research 
conducted, the following qualitative and quantitative conclusions can be made: 

1. By increasing laser energy, the austenite formation with a prominent grain bound-
ary occurs in the fusion zone; 

2. From the micrograph, it can be deduced that the penetration depth increases stead-
ily with the rise in heat supply, resulting in a complete penetration of welding and provid-
ing enhanced mechanical strength; 
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3. The 2205 duplex stainless steel weld obtained at a higher pulse energy showed 
higher corrosion resistance than the welded sample obtained at a low pulse energy. The 
best corrosion resistance property of 1 × 10−7A/cm2, as well as the highest passivity, was 
for the highest pulse energy value of 8.5 kW; 

4. The impedance spectroscopy confirms a smooth surface property with an increase 
in the pulse energy and the presence of an oxide layer, a finding which is also confirmed 
by the Raman spectroscopy measurement. 
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