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Abstract: It is generally accepted that the superimposed hydrostatic pressure increases fracture strain
in sheet metal and mode of fracture changes with applying pressure. Void growth is delayed or
completely eliminated under pressure and the shear damage mechanism becomes the dominant
mode of fracture. In this study, the effect of superimposed hydrostatic pressure on the ductility
of sheet metal under tension is investigated using the finite element (FE) method employing the
modified Gurson–Tvergaard–Needleman (GTN) model. The shear damage mechanism is considered
as an increment in the total void volume fraction and the model is implemented using the VUMAT
subroutine in the ABAQUS/Explicit. It is shown that ductility and fracture strain increase signif-
icantly by imposing hydrostatic pressure as it suppresses the damage mechanisms of microvoid
growth and shear damage. When hydrostatic pressure is applied, it is observed that although the
shear damage mechanism is delayed, the shear damage mechanism is dominant over the growth of
microvoids. These numerical findings are consistent with those experimental results published in
the previous studies about the effect of superimposed hydrostatic pressure on fracture strain. The
numerical results clearly show that the dominant mode of failure changes from microvoid growth
to shear damage under pressure. Numerical studies in the literature explain the effect of pressure
on fracture strain using the conventional GTN model available in the ABAQUS material behavior
library when the mode of fracture does not change. However, in this study, the shear modified GTN
model is used to understand the effect of pressure on the shear damage mechanism as one of the
individual void volume fraction increments and change in mode of fracture is explained numerically.

Keywords: superimposed hydrostatic pressure; shear damage growth; fracture strain;
finite element analysis (FEA)

1. Introduction

There are several methods of increasing the ductility of metals, such as superimposing
hydrostatic pressure [1,2]. In mechanical testing under superimposed hydrostatic pressure,
tensile testing of the specimen is carried out in a pressure vessel that applies the desired
level of pressure in the load assembly [3]. The effect of superimposed hydrostatic pressure
has been studied numerically using the conventional Gurson–Tvergaard–Needleman
(GTN) model under tension and bending in previous studies [1–4]. However, in this study,
the modified GTN model considering the shear damage growth as an increment in the
void volume fraction is used to investigate the effect of superimposed hydrostatic pressure
on the shear damage mechanism.
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The different failure modes shown in Figure 1 can be described in terms of the ratio
of shear and normal stresses. Generally, shear failure is dominant for low or zero stress
triaxiality, while the process of void nucleation, growth, and coalescence occurs when stress
triaxiality is high [5]. Ashby et al. [6] investigated the influence of pressure and temperature
on damage in terms of the of brittle, fully plastic, ductile, and shear fracture mechanisms.
It was shown that the failure mode is a function of pressure and temperature, with an
increase in pressure corresponding to an increase in ductility. It was also demonstrated
that a material only fails in a fully plastic manner when all other fracture mechanisms are
suppressed. This failure mode is characterized by the onset of necking that progresses
to a point of zero area when a material is continuously loaded in tension past its yield
point. Kao et. Al [7] used quantitative metallography to determine the effect of hydrostatic
pressure on the failure mode of a steel subjected to tensile deformation. It was observed
that a superimposed hydrostatic pressure suppressed the nucleation of voids and resulted
in a significant increase in ductility. Unlike the void-sheet mechanism, shear decohesion is
not strongly influenced by pressure; this causes the latter to be the only valid mechanism
to explain the observed failure [7]. Overall, it is generally accepted that a superimposed hy-
drostatic pressure increases ductility by delaying or completely eliminating void nucleation
and growth; this matter has been investigated in other studies [6,8–12].
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For many high-strength sheet materials, such as aluminum alloys that contain a
significant amount of second phase particles, microvoids often develop in the vicinity of
these particles during large plastic deformation. These particle-induced microvoids are
known to localize plastic flow and limit the formability of sheet metals [13–16]. One of the
well-known models of ductile void growth that is often utilized in analyzing large plastic
deformation of ductile metallic materials is the Gurson–Tvergaard–Needleman (GTN)
model, proposed by Tvergaard and Needleman [17] as an improvement on the accuracy of
the original Gurson model [18]. These models treat voids as spherical cavities and capture
their effects on material yield following a modification of the von Mises yield criterion [18].
More recently, the GTN model has been extended to include the effect of shear damage
by Nahshon and Hutchinson [19]. Sun et al. [20] used the shear modified GTN model and
simulated punch test and identified the parameters using the neural networking. The size
effect on damage evolution using the shear modified GTN model under high/low stress
triaxiality is performed by Li et al. [21]. Yildiz and Yilmaz [22] used the shear modified
GTN model to simulate the plastic deformation for 6061 aluminum alloys. Overall, the
shear modified GTN model has been used frequently to simulate various materials for
different tests [23–27].

Peng et al. [4] investigated the effect of superimposed hydrostatic pressure on fracture
in round bars. It was shown that, because void formation is not significant prior to
necking, superimposed pressure has little or no effect on the yield strength of metals.
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However, the numerical results showed that due to a suppression in void nucleation and
growth by the applied pressure, the fracture strain increased, and the failure process was
extended. The effect of superimposed pressure on fracture in sheet metals under tension
was studied in [3], where it was again found that the application of hydrostatic pressure
increased the ductility in sheet metal. Numerical results showed the transition of fracture
surface from planar mode at atmospheric pressure to chisel mode under high pressure as
observed experimentally.

The effect of superimposed hydrostatic pressure on the bendability of sheet metals us-
ing the GTN model in ABAQUS is investigated in [1]. This study explored how hydrostatic
pressure suppresses void growth and leads to an increase in ductility in sheet metals. The
pressure and stress triaxiality were shown to decrease with an increase in superimposed
hydrostatic pressure. As already mentioned, the void growth decreases, and it causes the
fracture strain to increase. In another study [28], the effect of cladding on the ductility
of sheet metals was investigated using the GTN model. A softer material with a higher
ductility than the substrate metal was applied with perfect bonding. It was demonstrated
that the application of the soft ductile layer improved the bendability of the base metal.
From these two studies [1,28], it is clear that combining finite element methods (FEM) with
the GTN model is a useful and successful approach to perform a range of analyses and to
understand various effects on the ductility of metals in three-point bending tests.

The shear damage mechanism is a dominant mode of fracture under pressure as void
growth is delayed or completely eliminated. To the best of the authors’ knowledge, the
effect of superimposed hydrostatic pressure on the shear damage mechanism has not been
reported elsewhere. The aim of this paper was to perform a numerical study of the effect
of a superimposed hydrostatic pressure on shear fracture in sheet metal under tension. The
effect of superimposed pressure is explained in detail and in a step-wise manner, and it
is shown what happens when the shear damage mechanism becomes a dominant mode
of fracture with increasing pressure. All the simulations presented in this study were
performed using ABAQUS/Explicit [29] based on the modified GTN model implemented
in a VUMAT subroutine. The effect of hydrostatic pressure on the change in failure mode
is explained in detail. The numerical results were found to be in good agreement with
experimental observations considering the mixed dimple/shear mode of fractures in a
sheet metal. The void growth and shear void growth volume fractions are considered
individually in the shear modified GTN model. Therefore, the effect of pressure on void
growth and shear void growth volume fractions are studied and compared with each other.

2. Constitutive Model

The Gurson–Tvergaard–Needleman (GTN) model [17,30,31] is used in this study,
which is on the basis of damage growth in metals due to void nucleation, growth, and
coalescence. The void growth is a function of the plastic strain rate DP:( .

f
)

growth
= (1− f )I : DP (1)

and the void nucleation is assumed to be strain controlled as follows:( .
f
)

nucleation
= A

.
ε

P
(2)

where
.
ε

P
is the effective plastic strain rate, and the parameter A is chosen so that nucleation

follows a normal distribution as suggested by Chu and Needleman [32]:

A =
fN

SN
√

2π
exp

[
−1

2

(
εp − εN

SN

)2
]

(3)

here, fN is the volume fraction of void nucleating particles, εN is the average void nucleating
strain, and SN is the standard deviation of the void nucleating strain.
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Additionally, the shear damage growth proposed by Nahshon and Hutchinson [19] is
as follows:

d fShear damage = kww
(
σij
)

f
Sijdε

p
ij

σe f
(4)

kw is the magnitude of the damage growth rate in the pure shear test. The function w
(
σij
)

identifies the current state of stress, which is defined as w
(
σij
)
= 1.0−

(
27J3
2σ3

eq

)2
, where J3

is the third invariant of the deviatoric stress matrix.
The growth of existing voids and the nucleation of new voids are considered in the

evolution of void volume fraction as follows:
.
f =

( .
f
)

growth
+
( .

f
)

nucleation
+
( .

f
)

shear damage
(5)

and the function of void volume fraction ( f ∗( f )) is defined to consider coalescence as follows:

f ∗ =

{
f f or f ≤ fc

fc +
f ∗u− fc
f f− fc

( f − fc) f or f > fc
(6)

where fc is the critical void volume fraction for coalescence and f f is the void volume
fraction at failure. The parameter f ∗u = 1

q1
is defined. It should be mentioned that void

growth and nucleation does not happen when the stress state of an element is compressive;
it may only occur in tension.

Finally, the approximate yield function to be used in which f ∗ is distributed randomly
is as follows:

Φ(σ, σ, f ) =
σ2

e

σ2 + 2 f ∗q1cosh
(

3q2σH
2σ

)
−
[
1.0 + (q2 f ∗)2

]
= 0 (7)

where σ is the macroscopic Cauchy stress tensor and σe, σH , and σ are the equivalent stress,
hydrostatic stress, and matrix stress, respectively. In fact, the matrix stress and equivalent
stresses are damaged and undamaged stresses in the GTN model. Additionally, q1 and q2
are calibrated parameters.

The uniaxial elastic–plastic undamaged stress–strain curve for the matrix material is
provided by the following power-law form:

ε =

{
σ
E , f or σ ≤ σy
σy
E

(
σ
σy

)n
, f or σ > σy

(8)

3. Problem Formulation and Method of Solution

A sheet metal with length Lo, thickness to, and width Wo that is under hydrostatic
pressure is considered and shown schematically in Figure 2. It is assumed that the sheet is
wide enough and that no deformation occurs in the width direction, such that the sheet may
be considered to be under plane strain. The shear modified GTN model is not supported
in the ABAQUS material behavior library and a VUMAT subroutine was implemented in
this study to investigate the effect of pressure on shear damage mechanism. However, the
subroutine only supports the three-dimensional elements. The superimposed hydrostatic
pressure is represented by small brown arrows directed into the material from all directions.
The sequence of tensile strain under superimposed hydrostatic pressure is modeled as two
steps. In the first step, the pressure is gradually increased up to a desired level p = −ασy
(α defines the value of applied pressure respect with yield stress) without applying any
tensile strain. In the second step, tensile strain is applied to the sheet while maintaining the
constant pressure value p = −ασy.
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The elastic–plastic properties of the matrix material are specified by σy/E = 0.0033,
ν = 0.3 and n = 10. It is assumed that the initial void volume fraction is zero and the fit
parameters in the GTN model (Equation (7)) are q1 = 1.5 and q2 = 1.0. These values for q1
and q2 were found to be in good agreement in [31] for metals to analyze the bifurcation
mode of porous metals. Void nucleation is assumed to be plastic strain controlled, the
volume fraction of void nucleating particles fN = 0.04, the mean strain for void nucleation
εN = 0.3, and the corresponding standard deviation SN = 0.1. The parameters related to
the final failure, fc and f f , are assumed to be 0.15 and 0.25, respectively. These values of
mechanical properties are taken from Tvergaard and Needleman [17]. It should be empha-
sized that the main purpose of the present study is to assess the effect of superimposed
hydrostatic pressure on the ductility of sheet metals and particularly on the shear damage
mechanism, and that the overall results and conclusions are not particularly dependent
on the above values of the material parameters. The three-dimensional element C3D8R
in ABAQUS/Explicit is used for the sheet. The mass scaling method with a sufficient low
target time increment is used and it is carefully attempted to minimize the dynamic effect
of the sample. Therefore, a wide sheet with a width (Wo) of 100 mm is considered when
the length (Lo) and thickness (to) are 60 mm and 10 mm, respectively. It is to be noted that
all nodes in the sheet are constrained in the width direction.

As the mesh sensitivity is expected in numerical simulations involving localized
deformation and fracture, different meshes are considered in this simulation. Figure 3
shows the finite element (FE) configuration of the specimen with a typical mesh for metal
sheet consisting of 60 × 110 × 4 elements (60 elements in thickness direction, 110 elements
in length direction and 4 elements in width direction) in which the element distribution in
the refined area is biased to the middle section of the specimen where fracture is expected
to occur. Due to the symmetry, only half of the sheet is investigated and symmetric
boundary conditions are imposed in the middle section of specimen. Figure 4 represents
the normalized force (F∗) as a function of the tensile strain ε for fully base material and
the effect of mesh sensitivity on this curve is also included. Force is normalized by the
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multiplication of the yield stress of the material and the initial cross section of the sheet,
and ε = ln

(
1.0 + ∆l

lo

)
.
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4. Results and Discussion

In this section, the 60 × 110 × 4 elements mesh distribution is used to present the
results. The effect of kw on the force as a function of tensile strain under ambient pressure
(α = 0.0) is shown in Figure 5. It is clearly observed that the fracture delays with a decrease
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in kw. Shear damage growth increases with an increase in kw according to Equation (4).
Therefore, the total void volume fraction increases with kw as shown in Equation (5).
It should be noted that the result for the case with kw = 0.0 corresponds to using the
conventional GTN model with the effect of shear damage mechanism not being considered.
Additionally, the deformed shape of the fractured specimen is shown in Figure 6. Necking
and localized deformation is clearly observed in the specimen. Damage is very low, close
to zero, before necking and it starts to grow when localized deformation happens.
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As mentioned previously, the effect of pressure on ductility and bendability has been
determined in [1,4] using the conventional GTN model when the effect of the shear damage
mechanism is not considered. It is explained in [1,4] that the superimposed hydrostatic
pressure lowers the stress triaxiality, which retards void growth and increases the fracture
strain. In the present study, the influence of superimposed hydrostatic pressure

(
p = −ασy

)
on fracture under tension is considered while accounting for the shear damage mechanism
by using the modified GTN model. Figure 7 shows the effect of α on the force–tensile strain
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curve. It was found that as α increases, the tensile strength is unaffected and the fracture
strain of the material increases.
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Figure 8 shows the volumetric strain (ε11 + ε22 + ε33) at the center of the specimen for
sheets under a range of superimposed hydrostatic pressures. It is found that the volumetric
strain decreases with increasing α as shown in Figure 8. According to Equation (1), the de-
crease in volumetric strain renders void growth less favorable and leads to higher ductility.
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The delay of void growth and the concomitant increase in fracture strain caused by
the increase in applied pressure can be explained in terms of how this pressure influences
the hydrostatic pressure and stress triaxiality at the center of the specimen. Figure 9
presents the hydrostatic pressure σH = (1/3)

(
σxx + σyy + σzz

)
and stress triaxiality σH

σ at
the center of the specimen, where fracture initiates as a function of tensile strain under
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various superimposed hydrostatic pressures. At room pressure p = 0, both hydrostatic
pressure and stress triaxiality develop in a way to assist void growth. However, under a
superimposed hydrostatic pressure p = −ασy, both values are initially compressive. This
result implies that void growth is delayed until a sufficiently large component of tensile
stress is introduced.
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The effect of superimposed double-sided pressure on the formability of a biaxially
stretched age-hardenable aluminum sheet metal (AA6111-T4) was studied in [33], where
the researchers numerically employed the GTN model. It was found that double-sided
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pressure increased formability while void nucleation remained invariable. Furthermore,
only the extent of void growth was observed to change, decreasing with an increase
in pressure. Figure 10a shows the effect of superimposed hydrostatic pressure on void
nucleation. It is demonstrated that the final value of nucleated void volume fraction is
not a function of superimposed hydrostatic pressure as the GTN model used in this study
assumes that the nucleation is strain controlled (Equations (2) and (3)). A previous study [1]
investigated the effect of superimposed hydrostatic pressure on bendability by using both
the strain- and stress-controlled void nucleating GTN model. It was found that the final
value of nucleating void volume fraction is constant when the strain void nucleating GTN
model is used [1]. On the contrary, the final value of nucleating void volume fraction
decreases with increasing pressure when the stress-controlled void nucleating GTN model
is used. However, the effect of superimposed hydrostatic pressure on void growth is
shown in Figure 10b and it is clearly seen that hydrostatic pressure delays void growth.
The reduction in void growth due to an increase in the hydrostatic pressure has been
reported in other studies for sheets under tension [4] and bending [28]. Figure 10c shows
the effect of hydrostatic pressure on the prevalence of the shear damage mechanism and it
is clearly observed that it dominates at higher values of hydrostatic pressure. As mentioned
previously, the void sheet mechanism is excluded under external applied pressure, leaving
shear decohesion as the dominant failure mechanism [7]. It is interesting to note that while
the shear damage mechanism becomes more dominant as pressure is increased, both it
and the void growth mechanism calculated using the modified GTN model become more
delayed as the superimposed hydrostatic pressure is increased. Finally, Figure 10d shows
the total void volume fraction under various superimposed hydrostatic pressures. It is
found that the total void volume fraction delays and it will be shown that it causes the
fracture strain to increase.
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Figures 11 and 12 plot the influence of superimposed hydrostatic pressure on the
normalized minimum cross-section area

(
Amin
Ao

)
and the fracture strain

(
ε f

)
in the middle

section of the specimen, respectively. Here, the fracture strain ε f is defined as ε f = ln Ao
Amin

,
where Amin is the minimum cross-sectional area of the sheet when fracture is complete. It
is to be noted that Amin = tmin and Ao = to considering the plane strain condition and in
this way, Ao

Amin
= to

tmin
. The following equation will be obtained to calculate ε f :

ε f = ln
to

tmin
(9)

It is found that the minimum cross-sectional area follows an inverse relationship
with the level of hydrostatic pressure. Therefore, as the pressure increases, the minimum
cross-sectional area at fracture decreases and the specimen can deform more before failure,
which is manifested as an increase in fracture strain.
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5. Conclusions

In this study, an FEA simulation was conducted for sheet metal simultaneously
subjected to a tensile test and superimposed hydrostatic pressure. The modified GTN
model is used when the shear damage mechanism is considered. It is determined that
the superimposed hydrostatic pressure increases the ductility significantly as hydrostatic
pressure delays or eliminates growth of microvoids or microcracks as well as damage by
the shear mechanism. However, it is clearly observed that the shear damage mechanism
is dominant over the void growth under high pressure. The numerical results clearly
show that the type of fracture changes from microvoids mechanism to shear failure under
superimposed hydrostatic pressure. Finally, to sum up the conclusion remarks, the salient
points are listed as follows:

• Superimposed hydrostatic pressure increases the fracture strain in metals when void
growth is delayed or completely eliminated.

• Fracture mode changes under pressure and it dominates the shear damage mechanism.
• The shear modified GTN model implemented using a VUMAT subroutine explains

this phenomenon when the shear damage mechanism is considered as an increment
in the void volume fraction.

• Void nucleation volume fraction is constant under pressure using a strain-based
void nucleating GTN model. Shear void growth volume fraction at the final frac-
ture increases as the void growth volume fracture decreases under superimposed
hydrostatic pressure.
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