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Abstract: A uniaxial compression test and scanning/transmission electron microscopy observations
were performed to investigate the differences in mechanical behavior and deformed microstructure
between focused ion beam-manufactured [1 1 1]- and [0 0 1]-oriented austenite micro-pillars with
5 µm diameter from duplex stainless steel. After yielding, the strain hardening of two orientation
micro-pillars increased sharply as a result of the formation of a microband, namely microband-
induced plasticity, MBIP. The same phenomenon could be observed in a [0 0 1]-oriented pillar due
to the activation of the secondary slip system, while slight strain hardening behavior was observed
in the [1 1 1] orientation because of the refinement of the microband. Furthermore, the trend of the
calculated strain hardening rates of both [1 1 1]- and [0 0 1]-oriented micro-pillars were in good
agreement with the experimental data. This study proved that MBIP can be helpful for the mechanical
property enhancement of steels.

Keywords: strain hardening; dislocation interaction; MBIP; orientation; micro-pillar compression

1. Introduction

Austenite-ferrite duplex stainless steels (DSS) are widely used as the pressure vessel
and piping in thermal power, nuclear power and other industries [1,2]. As a dual-phase
steel, DSS takes advantage of the beneficial properties of its constituent phase, exhibiting
higher strength than pure austenite or ferrite stainless steels and not less than 15% elon-
gation, i.e., excellent work hardening performance. Compared with the ferrite phase, the
austenite phase undertakes most of the plastic deformation during straining, which mainly
determines the overall ductility of DSS [3,4]. Hence, the investigation of the plasticity of
local austenite phase is helpful to understand and improve the mechanical properties of
whole DSS steel. Depending on the value of stacking fault energy (SFE), plastic deformation
mechanisms of austenite phase include austenite-to-martensite transformation-induced
plasticity (TRIP, SFE < 20 mJ/m2) [5–7], twinning-induced plasticity (TWIP, 20 mJ/m2 <
SFE < 50 mJ/m2) [8–11] and microband-induced plasticity (MBIP, SFE > 50 mJ/m2) [12–15].
Many studies have reported the enhancement effect of the formation and evolution of
strain-induced martensite and mechanical twinning on plasticity and ductility under uni-
axial stress by macro-tensile test [16–21] and micro-pillar compression test [22–25]. I. V.
Kireeva et al. [20] pointed out that strain hardening reached the maximum when twinning
developed in two systems and decreased in a transition period of the development of
twinning predominantly in one system simultaneously with slip. Soares et al. [21] showed
strain hardening behavior and microstructural evolution of AISI 304 steel by uniaxial
tensile test and found complex strain hardening behavior due to the formation of strain-
induced martensitic transformation. Choi et al. [23] conducted the compression tests on
micro-pillars fabricated from an austenitic Fe-Mn-C twinning-induced plasticity steel and
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learned that deformation twinning induced higher flow stresses and dislocation glide
produced more stable work hardening behaviors. Compared with TRIP and TWIP steels,
MBIP steel possesses the same excellent combination of strength and ductility, but more
stable and continuous strain hardening behavior during straining and more homogeneous
microstructure and better strain coordination after deformation. There have been some
studies about the strain hardening behavior of nickel compression pillars caused by the
dislocation interaction [26–28], but little research has been conducted to investigate the
contribution of microband formation to the work hardening behavior of the austenite phase
at the micro-scale. Hence, in this paper, the plasticity caused by micro-band evolution was
studied by compression test on two austenite micro-pillars with different orientations.

2. Materials and Methods

Studied austenite crystals were from commercial austenite-ferrite duplex stainless
steel obtained from Baosteel stainless steel Co., Ltd (Shanghai, China). The chemical
compositions and stacking fault energy of the tested austenite phase are shown in Table 1.
According to the calculation based on the research result Dai et al. [29], SFE of austenite
phase at room temperature was estimated to be 58–73 mJ/m2. More information was
described in detail previously [30]. As-received material was solution-annealed at 1050 ◦C
for 12 h followed by water quenching to obtain recrystallized coarse grain. Crystallographic
orientations of austenite grains were characterized by Electron Backscatter Diffraction
analysis (EBSD, Oxford Instruments). Figure 1 shows the EBSD inverse pole figure to Z
axis (IPF-Z) of austenite and ferrite grains in the studied DSS. As the surrounded black and
white circles show in Figure 1, austenite grains, which had Euler Angles of [263◦ 3.1◦ 85.4◦]
and [49.9◦ 47.9◦ 40.3◦], were selected for micro-pillar fabrication. The Miller factor of the
selected grains, [h k l], could be calculated by:

g =

 u r h
v s k
w t l

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1


=

 cos ψ cos ϕ− sin ψ sin ϕ cos θ sin ψ cos θ + cos ψ sin ϕ cos θ sin ϕ sin θ
− cos ψ sin ϕ− sin ψ cos ϕ cos θ − sin ψ sin ϕ + cos ψ cos θ cos ϕ sin θ

sin ψ sin θ − cos ψ sin θ cos θ

 (1)

where (ψ θ ϕ) is Euler Angle of selected grain. The actual crystallographic orientation of the
selected austenite grains closed to ideal [0 0 1]- and [1 1 1]-orientations were more inclined
to [1 0 17]- and [12 14 17]-orientations, respectively. Micro-pillars were fabricated using a
dual-beam Focused Ion Beam with Scanning Electron Microscope (SEM/FIB Crossbeam
System, FEI Helios Nanolab 600i, FEI Ltd., Hillsboro, Oregon, USA). The final pillars had a
length-to-diameter ratio around 3 with 5 µm diameter. Taper angles were ensured to be less
than 5◦, as confirmed by SEM. Compression tests were carried out at room temperature
using Agilent Nano Indenter G200 (Agilent Technologies Inc., Santa Rosa, CA, USA) with
a 20 µm diameter flat-ended diamond tip. The tests were performed under a constant
loading rate of 0.1 mN/s up to the maximum penetration depth (strain) of 5 µm (33%). The
compression engineering stress (σ) - strain (ε) curves of tested micro-pillars were converted
from the compressive load (P) - displacement (h) data by the average value of top, middle
and bottom cross-sectional area and the height of the micro-pillar. Finally, lamellae with
thickness less than 100 nm, fabricated from deformed pillars by FIB milling, were observed
by transmission electron microscopy (TEM, JEOL JEM-2100, JEOL Ltd., Tokyo, Japan). The
cross sections of TEM specimens were perpendicular to the slip planes of the slip systems
to analyze the activated deformation carriers and their interactions.
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Table 1. Chemical compositions and stacking fault energy of the tested austenite phase.

Chemical Composition (wt.%) Characteristics

C Cr Ni Mo Mn Si SFE (mJ/m2) [29]
0.056 25.05 7.81 2.91 0.81 0.38 58–73
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was 11.9 GPa at 22.83% strain. 

Figure 1. EBSD inverse pole figure to Z axis (IPF-Z) of austenite and ferrite grains in the studied DSS.

3. Results
3.1. Stress-Strain Curves

Figure 2a,b show σ-ε curves and the strain hardening rate (dσ/dε) at some strain points
of tested [0 0 1]- and [1 1 1]-oriented austenite micro-pillars, respectively. At the beginning,
both [0 0 1]- and [1 1 1]-oriented austenite micro-pillars experienced elastic deformation
stage, i.e., stage I. Young’s modulus (E) for the [0 0 1]- and [1 1 1]-oriented austenite micro-
pillars (197.2 GPa and 273.3 GPa, respectively) was crystallographic orientation-dependent.
After yielding, both [0 0 1]- and [1 1 1]-oriented austenite micro-pillars presented small
strain bursts, which implied the processes of plastic deformation, named as stage II. In
this stage, plastic deformation proceeded by discrete strain bursts, and the average and
total strain burst sizes were 1.01% and 5.07% for the [0 0 1]-oriented pillar and 0.88% and
1.75% for the [1 1 1]-oriented pillars before the strain reached 7.7% for the [0 0 1]-oriented
micro-pillar and 4.3% for the [1 1 1]-oriented pillar. Between the strain bursts in stage II,
flow stresses surged drastically with dσ/dε values closing Young’s modulus. Specifically,
the dσ/dε values of [0 0 1]- and [1 1 1]-oriented micro-pillars reached 204.4 GPa at 2.46%
strain and 154.5 GPa at 2.95% strain, respectively. This phenomenon is called exhaustion
hardening. After that, the flow stresses of both pillars climbed moderately, i.e., stage
III. In this stage, both pillars possessed lower hardening rate, having the maximum rate
of 32.51 GPa at 15.58% strain for the [0 0 1]-orientation and 36.30 GPa at 13.52% strain
for the [1 1 1]-orientation. Apparent differences in stress-strain responses dependent on
crystallographic orientation could be observed after the strain reached 20%, considered as
stage IV. Differently from the stable deformation behavior up to strain larger than 30% of
the [1 1 1]-oriented pillar, [0 0 1]-oriented pillars experienced a sharp climb again in flow
stress at strain larger than 22%, similar to the deformation during stage II. For example, the
rate of the [0 0 1]-oriented micro-pillar reached 76.9 GPa at 22.91%, while that of the [1 1
1]-orientation was 11.9 GPa at 22.83% strain.
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Figure 2. (a) The stress-strain curves and (b) the strain hardening rates at some strain points of [0 0
1]- and [1 1 1]-oriented austenite micro-pillars.

3.2. Microstructure Observation

Figure 3 shows the SEM microtopography of compressed austenite micro-pillars.
After dramatic deformation with strain larger than 30%, distinct glide traces of inclined
slip planes were visible and concentrated on the top and middle of both [0 0 1]- and [1
1 1]-oriented deformed micro-pillar surface. However, the appearance of slip planes on
the surface was also crystallographic orientation-dependent. As presented in Figure 3a, in
the [1 1 1]-oriented pillar, surface steps were concentrated on one slip plane exclusively
and uniformly, i.e., presented in the primary slip system. The repeated gliding on the
same plane led to obvious lattice torsion. The angle between activated slip planes and the
normal direction of experimental pillar was measured to be 63.9◦. By contrast, the surface
of the [0 0 1]-oriented deformed micro-pillar presented two glide traces on different slip
systems, marked by white and black dashed lines, as shown in Figure 3b, which indicated
that, besides the primary slip system, the second set of slip planes was activated. Because
of the relatively homogeneous distribution and smaller spacing, the slip traces marked
by red dashed lines were considered as the primary slip system, which had a deviation
angle of 58.5◦. Several slip lines with different angles were found near the top of the [1 1
1]-oriented micro-pillar, indicating that another slip system was activated, which could be
explained by the inhomogeneous distribution of compression stress near the top surface of
the micro-pillar. The same phenomenon can be observed in another study [31]. The effect
of this slipping on strain hardening behavior was negligible to this study.
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Table 2 lists the Schmid factor and deviation angle of all potential slip systems under
the theoretical and experimented loading conditions. The ideal [1 1 1]-oriented austenite
micro-pillar had the same tendency on six slipping systems. Practical direction of the
studied [1 1 1]-oriented austenite pillar was more inclined to [12 14 17]-orientation, and
the deviation angle (8◦), smaller than 10◦, was acceptable. Slip trace analysis indicated
that (−1 1 1)[1 0 1] slip direction had the highest Schmid factor of 0.36, i.e., proved to be
the primary activate slip system. The angle between the normal of the slip plane and the
compression axis should be 63.9◦ by the calculation result of the geometric relationship.
The measured angle was 61.8◦, however, having a very small difference, which could
be caused by the measurement issue, and the deviation was acceptable. The tested [0 0
1]-oriented micro-pillar exhibited two obvious slip systems during the deformation. The
actual compressive axis along the [1 0 18] direction had tendentious slip systems of (−1 1
1)[1 0 1] and (1 1 −1)[0 1 1] with Schmid factors of 0.41 and 0.38., respectively. The inclined
angle of above two slip system was observed to be 58.5◦, in good agreement with the
theoretical angle of 57◦. The activation of the second slip system was attributed to the
increase of the resolved shear stress on the second slip plane with increasing strain.

Table 2. The corresponding Schmid factor and angles of slip systems for perfect dislocation under different loading
orientations.

Slip System
[0 0 1]-Oriented Grain [1 0 18]-Oriented Grain [1 1 1]-Oriented Grain [12 14 17]-Oriented Grain

Schmid Factor Angle Schmid Factor Angle Schmid Factor Angle Schmid Factor Angle

[1 0 1]( −1 1 1) 0.41 54.7 0.41 57 0.27 70.5 0.36 63.9
[0 −1 1]( −1 1 1) 0.41 54.7 0.38 57 - - 0.03 63.9

[1 1 0](-1 1 1) - - 0.02 57 0.27 70.5 0.32 63.9
[0 −1 1](1 1 1) 0.41 54.7 0.43 52.3 - - 0.07 7.9
[−1 1 0](1 1 1) - - 0.02 52.3 - - 0.06 7.9
[1 0 -1](1 1 1) 0.41 54.7 0.41 52.3 - - 0.14 7.9

[−1 0 1](1 −1 1) 0.41 54.7 0.4 52.6 - - 0.05 70.4
[0 1 1](1 −1 1) 0.41 54.7 0.43 52.6 0.27 70.5 0.29 70.4
[1 1 0](1 −1 1) - - 0.03 52.6 0.27 70.5 0.25 70.4
[1 0 1](1 1 -1) 0.41 54.7 0.4 57.2 0.27 70.5 0.17 77.6

[0 1 1](1 1 −1) 0.41 54.7 0.38 57.2 0.27 70.5 0.19 77.6
[1 −1 0](1 1 −1) - - 0.02 57.2 - - 0.01 77.6

Figure 4 illustrates cross-sectional TEM bright field images and the selected area
diffraction pattern of [1 1 1]- and [0 0 1]-oriented compressed micro-pillars. One can note
from both microstructure characterization results that clear slip traces could be observed,
and no transformation-induced twinning and martensite phase could be found due to high
stacking fault energy of the tested austenite crystals. For [1 1 1] orientation, the slip traces
were parallel in the exclusive glide plane, and the distribution was uniform and dense
on the top of micro-pillar, as shown in Figure 4a. Due to the crystal lattice twist, the slip
bands exhibited arc-shaped traces, i.e., had a radian. Compared with the arc-shaped traces
of the [1 1 1]-oriented pillar, the slip traces of compressed [0 0 1]-orientation were in the
shape of straight lines. Two slip planes with an intersect angle of 69.57◦ could be observed,
indicating that the secondary slip system was activated. Differently from the whole slip
traces with radian in the [1 1 1]-oriented micro-pillar, some of those in the [0 0 1] orientation
were inflected, which was considered to be caused by jogged dislocation, marked by white
arrows in Figure 4b. The caused dislocation stairs could also be observed on the surface
of the deformed micro-pillar characterized by SEM. Some short dislocation fragments
could be observed near the bottom of micro-pillar, marked by yellow arrows in Figure 4b,
believed to be independent of deformation, i.e., presented in the initial dislocation.
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(b) intersecting bands in deformed [0 0 1]-oriented pillars after 33% strain.

4. Discussion
4.1. Elastic Deformation

From the above we can see that for single crystal micro-pillars, the mechanical re-
sponses were dependent on the crystallographic orientation. During the elastic deformation
stage, the [1 1 1]-oriented micro-pillar possessed a higher Young’s modulus of 273.3 GPa
than the [0 0 1]-orientation with that of 197.2 GPa. The increase in E111 can be explained by
the anisotropy parameter [32]:

Ahkl =
h2k2 + k2l2 + l2h2

(h2 + k2 + l2)2 (2)

and thus, A111 and A001 have the largest discrepancy of 0 and 1/3, respectively. The
relationship between Ehkl and Ahkl can be expressed by:

1
Ehkl

= S11 + (2S12 − 2S11 + S44)Ahkl (3)

where S11, S12 and S44 are three independent factors of a cubic system, taken as 10.7 × 10−3,
4.25 × 10−3 and 8.6 × 10−3, respectively [33]. Hence, E111 should be much higher than
E001, which is in accordance with our experimental result.

4.2. Plastic Deformation

From Figure 2, the yield stresses of [0 0 1]- and [1 1 1]-oriented austenite micro-pillars
were 426.9 MPa and 492.5 MPa, respectively. Combined with the Schmid factors of the
primary slip system verified by the deformed microstructure observation, the Critical
Shear Stresses (CRSS) of [0 0 1]- and [1 1 1]-oriented micro-pillars were calculated to be
183.6 MPa and 173.3 MPa, respectively. The average value of CRSS was calculated to be
178.5 MPa, and the deviation was about 5%, which was negligible here. Other research
has also shown that the CRSS value is related to the materials and independent of grain
orientation [9,23]. After yielding, the engineering stress-strain curves of both [0 0 1]- and
[1 1 1]-oriented micro-pillars exhibited multiple plastic deformation stages with different
strain hardening rates. Compared with the slight strain hardening of the [1 1 1]-oriented
micro-pillar from stage III, the deformation response of the [0 0 1]-orientation showed a
climb in stage IV. Based on SEM and TEM observation of the tested austenite micro-pillars,
the deformed microstructure was characterized by a pronounced dislocation glide plane,
which led to the formation of crystallographic slip bands on the activated slip systems,
i.e., microband-induced plasticity, MBIP. The tested [1 1 1]-oriented micro-pillar exhibited
dislocation glide traces with the same direction while the [0 0 1]-orientation revealed the
secondary slip system. Hence, the activation of the secondary slip system induced higher
flow stresses.
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4.3. Flow Stress Expression

The total flow stress (σt) after the yielding can be expressed by:

σt = σy + σSH(ε) (4)

where σy is the yield stress and σ(ε) is the plasticity-driven strain hardening capacity in
the flow stress. The first term, σy, representing the activation of perfect dislocation in the
present tests, can be calculated by [8]:

σy =
2α0Gbperfect

Λ
(5)

where α0 is a constant describing the character of dislocation, considered as 0.5 for pure
edge dislocations here [8], bp is the magnitude of the Burgers vector for perfect dislocation,
considered as 0.256 nm for face-centered crystal lattice [8,13] and G is the shear modulus,
which was taken as 105.1 GPa and 75.8 GPa for [0 0 1]-oriented and [1 1 1]-oriented micro-
pillars, respectively. Additionally, Λ mentioned before is defined as the “mean free path”,
which is the average feasible distance of dislocations before they stored or annihilated [34].
The values of Λ were calculated to be 319.7 nm and 206.1 nm for the [1 1 1]- and [0 0
1]-oriented micro-pillars, respectively.

For pure dislocation-dislocation mediated plasticity steels, the change of flow stress
can be expressed by the evolution of dislocation density, ρ, invariably [35]:

σSH(ε) = αGb
√

ρ (6)

where α is a factor related to the material, generally ranged from 0.3 to 0.5 [35]. Differen-
tiating both sides of Equation (6) to the strain, the strain hardening rate, Θ = dσ

dε , can be
expressed as:

σΘ =
(αG)2

2
b
Λ

(7)

where the rate of dislocation accumulation to the strain can be formally expressed as
dρ
dε = 1

bΛ . Hence, the strain hardening itself can be expressed as:

Θ =
(αG)

2
D
Λ

(8)

where D is the mean dislocation spacing, expressed as D = 1/
√

ρ. According to Equation (8),
the strain hardening rate of the research material during plastic deformation is proportional
to the ratio of the mean dislocation spacing and the mean free path. The trend of experi-
mental and calculated strain hardening rates of [0 0 1]- and [1 1 1]-oriented micro-pillars
are presented in Figure 5a,b, respectively. For better comparison, all experimental and
calculated strain hardening rates were standardized by the strain hardening rate at the yield
point. The calculation results had a good description of the trend of strain hardening rate.
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Figure 5. Experimental and calculated normalized strain hardening rates of (a) [0 0 1]- oriented
micro-pillar and (b) [1 1 1]-oriented micro-pillar.

Micro-pillar compression tests combined with SEM/TEM observation were carried
out in this work to describe the differences in mechanical responses and properties of [0 0
1]- and [1 1 1]-oriented single crystal austenite micro-pillars with high SFE value. Another
task will be to explore the deformation behaviors of ferrite grains and the effect of grain
boundaries on the mechanical property by the same experimental method. The research
results can provide a local deformation mechanism support for the overall mechanical
description and safety prediction of duplex stainless steel components.

5. Conclusions

The deformation behaviors and micro-structure evolution of austenite micro-pillars
were investigated by a compression test and SEM and TEM observation. The main conclu-
sions are:

1. The elastic modulus of 5 µm austenite pillars with [0 0 1]- and [1 1 1]-orientation
was 197.2 GPa and 273.3 GPa, respectively, and was crystallographic orientation-
dependent. The calculated CRSS values derived from the experiments were about
178.5 MPa for both [0 0 1]- and [1 1 1]-oriented micro-pillars, relating to the activation
of dislocation gliding.

2. Deformation microstructures of both micro-pillars were characterized by pronounced
planar slip. The slipping band structure undergoes refinement during straining,
resulting in the strain hardening behavior.

3. Higher flow stress and unstable strain hardening behavior in [0 0 1]-oriented austen-
ite micro-pillars were assumed to be caused by the easy activation of secondary
slip systems.
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