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Abstract: In this paper, a life prediction model associated with maximum principal stress and
equivalent shear amplitude based on twin-shear unified yield criterion for multiaxial high-cycle
fatigue is proposed. The equivalent shear amplitude is the normalized format of the equivalent shear
amplitude based on clusters of yield criteria embodying Tresca and the linearization of Huber-von
Mises, extending the application to metallic materials. Simultaneously, the effect of mean stress on
multiaxial high-cycle fatigue is considered in the proposed model. As an assessment of the new
prediction model, the criterion is compared with experimental data of aluminum alloy LY12CZ and
carbon structural steel SM45C published in the relevant literature, which shows that most of the data
are located within an error range of less than two times the data and are in good agreement with the
experiment. Moreover, the proposed model is also compared with other models, such as McDiarmid,
Liu, and Freitas, to validate its competitiveness.

Keywords: multiaxial fatigue; high cycle fatigue; lifetime assessment; twin-shear unified yield
criteria; mean stress

1. Introduction

With continued developments in science, technology, and economics, the pursuits of
mechanical components for operational life, security, and economic benefits are widely
accepted by mechanical designers. However, fatigue is one of the most serious forms
of material failures, which endangers the safety of component operation and may cause
tremendous economic losses. To achieve the long operational life and complex loading
conditions desired, the analysis of many mechanical components designed for endurance to
multiaxial high-cycle fatigue constitutes an integral part. Accordingly, research regarding
the assessment of life prediction of multiaxial high-cycle fatigue is highly necessary.

As a classification method, fatigue is typically split into two descriptions based on the
number of cycles: low-cycle and high-cycle fatigue [1]. For high-cycle fatigue, macroscopic
deformation behavior is elastic and lasts for a high number of cycles, that is, more than
104 cycles, which is a major part the crack initiation phase [2]. From the view of load
path, fatigue can also be separated into uniaxial and multiaxial. Multiaxial high cycling
is a kind of fatigue characterized by more than 104 cycles and a complex load path, for
instance, bending and torsion stresses which are out of phase. For this fatigue, various
approaches have been proposed and improved on the basis of experimental observations
and mechanisms [3–10]. From these approaches, we may notice some yield criteria are
in extensive application and have gained fairly good results, e.g., Tresca yield criteria
and Huber-von Mises yield criteria. As one of outstanding delegates, the concept of
critical plane associated with Tresca yield criteria have gained widespread usage [11].
It should be noted that critical plane approach is a product related to the generalized
application of Tresca yield criteria. This conclusion can be obtained since maximum shear
stress amplitude is constantly employed for critical plane approach [12,13]. However,

Metals 2021, 11, 1178. https://doi.org/10.3390/met11081178 https://www.mdpi.com/journal/metals

https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-2659-923X
https://doi.org/10.3390/met11081178
https://doi.org/10.3390/met11081178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/met11081178
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met11081178?type=check_update&version=1


Metals 2021, 11, 1178 2 of 12

the adaptability of the yield criterion determined by material properties (e.g., fragile
materials and ductile materials) results in these approaches perhaps being more suitable for
directional materials [14]. Detailly, Tresca yield criteria and Huber-von Mises yield criteria
are experimentally suitable for fragile materials and ductile materials, respectively. Such
experimental results may lead to adaptability of the critical plane approach in different
kinds of materials. Consequently, it is very necessary to develop a new multiaxial high-
cycle fatigue life prediction approach associated of yield criteria that is available for more
materials. Twin-shear unified yield criteria, the clusters of yield criteria embodying Tresca
and the linearization of Huber-von Mises, provides a reliable approach to develop the
adaptability.

In particular, the forward-looking approach in the domain of investigating damage
mechanisms associated with the experimental phenomena in localization of crack initiation
with the most potential should be the macro–micro approach [15]. As a form of highly
localized damage, high-cycling investigated with a macro–micro approach is extremely
promising. In this paper, the macro–micro approach is employed to develop the assessment
of life prediction of multiaxial high-cycle fatigue associated with Twin-shear unified yield
criteria, and a new multiaxial high-cycle fatigue life prediction model is proposed. Twin-
shear unified yield criterion [16] is employed to describe the multiaxial loading path,
and thus a new equivalent shear amplitude for controlling crack initiation is proposed.
Moreover, in order to portray the normal stress contributing to the spread of existing
embryo cracks in the material, the maximum principal stress is selected as one of the major
causes to ultimately induce fracture. Finally, assessment of the resulting model shows that
it is in good agreement with experimental data, verified by aluminum alloy LY12CZ and
carbon structural steel SM45C, as published in relevant literature, and is competitive with
other models, namely, McDiarmid [17], Liu [18], and Freitas [8].

2. Fatigue Criteria Based on Twin-Shear Unified Yield Criterion

Failure of high-cycle fatigue happens due to the combined action of external stress
and internal stress (intergranular residual stress), which exceeds the elastic shakedown
of materials at the mesoscopic level [15]. An algorithm has been proposed, based on
combining kinematic and isotropic hardening, to calculate approximately the local residual
stress tensor and elastic shakedown limit [15]. The calculation procedure is revealed in
Figure 1, in which OP represents the local residual stress tensor and R represents the elastic
shakedown limit when the multiaxial loading path achieves the fatigue strength of the
material, which can last for a very high number (theoretically infinite) of load cycles. It
should be noted that R0(O), R1(O1), and R2(O2) in Figure 1 reflect the evolution of local
residual stress tensor of materials subjected to cyclic loading based on combining kinematic
and isotropic hardening.
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Figure 1. Calculation of the residual stress tensor and elastic shakedown limit. Figure 1. Calculation of the residual stress tensor and elastic shakedown limit.

According to the previous algorithm, the elastic shakedown limit is determined by
the longest chord, as shown in the Figure 2. Accordingly, components subjected to the
proportional loading path along the longest chord last for the cycle number amounts to
that of a non-proportional loading path. However, the deduction cannot be supported by
multiaxial high-cycle fatigue experiments. In particular, random grain orientation leads to
disunity of the Schmidt factor, causing the maximum shear amplitude in the load cycle to
result in a high possibility of activating one of the slip systems in the material instead of
in all grains; this viewpoint corresponds approximately with reference [19]. Furthermore,
the principal stress plane continuously rotates due to the non-proportional loading path,
which can be an initiator for activating other slip systems, leading to a more complex
internal stress field than a proportional loading path, and introducing additional hardening
effects [20]. We know that dislocation slip evolution is the result of combining internal
and external stress fields, thus the error of using the longest chord to represent the elastic
shakedown limit is evident. In this paper, the elastic shakedown limit is expressed by
following model.

Rlimit =
√

R2
min + R2

max, (1)

where Rlimit, Rmin, and Rmax are the values induced by the yield criterion enclosing the
macroscopic loading path, for instance, the Huber-von Mises criterion that is equal to
the minimum circumscribed ellipse employed to evaluate the multiaxial fatigue limit by
Freitas and co-workers [8]. Twin-shear unified yield criterion that embodies Tresca and
the linearization of Huber-von Mises [21] is employed to evaluate the elastic shakedown
limit for the sake of extending the range to more materials, in this paper. Equation (1) is
reduced to:

Rlimit =
√[∣∣τ1,max(t0)− τmp1

∣∣+ β
∣∣τ2(t0)− τmp2

∣∣]2 + [∣∣τ1,min(t1)− τmp3
∣∣+ β

∣∣τ2(t1)− τmp4
∣∣]2, (2)

where τ1,max(t0), τ1,min(t1) is the vector for the maximum/minimum of maximum principal
shear stress in one cycle and corresponding time t0, t1, τ2(t0) and τ2(t1) are respectively
expressed as the vectors for the medium principal shear stress at the times t0 and t1, τmp1,
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τmp2, τmp3, and τmp4 are expressed as the vectors for the average shear stress of the material
planes, upon which τ1,max(t0), τ2(t0), τ1,min(t1), and τ2(t1) respectively act, and β is the
material parameter.
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Figure 2. Assumption of multiaxial loading state.

In order to portray the normal stress contributing to the spread of existing embryo
cracks in the material, the maximum principal stress was employed to ultimately induce
fracture. Based on the considerations mentioned above, the ultimate formula for the
multiaxial high-cycle fatigue endurance criterion is expressed in the following equation:√[∣∣τ1,max(t0)− τmp1
∣∣+ β

∣∣τ2(t0)− τmp2
∣∣]2 + [∣∣τ1,min(t1)− τmp3

∣∣+ β
∣∣τ2(t1)− τmp4

∣∣]2 + ασpmax ≤ λ, (3)

where σpmax is the maximum principal stress acting upon the material in the loading
cycle, and α and λ are all material parameters. Considering, respectively, the uniaxial
high-cycle fatigue with mean tension stress and without mean tension stress, Equation (3)
is reduced to:

σa ≤ σ−1 −
2α

1 + β + 2α
σm, (4)

where σa and σm respectively indicate tensile stress amplitude and mean tension stress, and
σ−1 is the symmetric tension compression fatigue limit. Equation (4) has a format identical
to many other models, for instance, Goodman [22], Haigh [23], and Papadopoulos [24], to
express the relationship of tension fatigue limit with mean tension stress. If Equation (4)
satisfies the relationship purposed by Papadopoulos, the material parameters α, β, and λ
are computed by the following equation:

β =
√

3σ−1
3(σ−1−τ−1)

− 1

α =
√

3t−1−σ−1
2
√

3(σ−1−τ−1)

λ = σ−1τ−1
2(σ−1−τ−1)

, (5)

where τ−1 is indicated as the fatigue limit under fully reversed torsional loading. Con-
sidering that tensile stress contributes to fatigue fracture, material parameter α should be
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positive, thus the relationship τ−1 with σ−1 should satisfy 1 < σ−1/t−1 <
√

3. The relation-
ship implies that our proposal is available for all materials since the relationship between
the torsional fatigue limit and tension fatigue limit can be approximately expressed as
follows: [25]

σ−1

τ−1
=
√

2 + 2ν, (6)

where ν is indicated as Poisson’s ratio of materials, which was approximately assumed to
be 0.3 for all materials [26].

Certainly, material parameters β, α, and λ can also be obtained by combining the
least squares method and experimental data. At the moment, Equation (5) should be
rewritten as: 

β =
τ−1

n
∑

i=1
σ2

mi−σ−1τ−1
n
∑

i=1
σmi+τ−1

n
∑

i=1
σmiσai

n
∑

i=1
σ2

mi(σ−1−τ−1)

α =
σ−1τ−1

n
∑

i=1
σmi−τ−1

n
∑

i=1
σmiσai

2
n
∑

i=1
σ2

mi(σ−1−τ−1)
λ = σ−1τ−1

2(σ−1−τ−1)

, (7)

where n, σmi, and σai are, respectively, the expressed frequency of the experiments, mean
tension stress posed to the specimen in each experiment, and the tensile stress amplitude
posed to the specimen in each experiment. However, Equation (5) is utilized to identify
the material parameters of the model in this paper, allowing Equation (3) to be reduced in
format for the life prediction of multiaxial high-cycle fatigue:

 teq = 2(σ−1−t−1)
σ−1

√[∣∣τ1,max(t0)− τmp1
∣∣+ β

∣∣τ2(t0)− τmp2
∣∣]2 + [∣∣τ1,min(t1)− τmp3

∣∣+ β
∣∣τ2(t1)− τmp4

∣∣]2 + ασpmax

teq = t−1/
(

1− ηNb1
f

) , (8)

where teq is convertible shear stress amplitude linked with the S–N curvilinear equation,
and thus a fatigue life prediction can be obtained, N f is the predicted life duration, and
η and b1 are the material parameters of the S–N curvilinear equation. The Basquin [27]

model, teq = τ′ f
(

2N f

)b0
, is also a form of the S–N curvilinear equation, in which τ′ f and

b0 are all the material parameters.

3. New Fatigue Criteria Applied to Tension and Torsion
3.1. Stress State Analysis

As an example, for validating the proposed model, in competition with the life-cycle
prediction of multiaxial high-cycle fatigue in previous models, a cylindrical specimen
subjected to tensile and torsion was investigated (Figure 3). Based on the coordinate
system in Figure 3, the stress state posed to the cylindrical specimen is expressed by the
second-order tensor:

σij =

 σa sin(ωt) + σm τa sin(ωt− δ) + τm 0
τa sin(ωt− δ) + τm 0 0

0 0 0

, (9)

where τa is the amplitude of the shear stress due to torsion, τm is the mean stresses due to
torsion, the variable δ is the phase difference between tension and torsion, and ω and t are,
respectively, loading frequency and time.
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Let us define the shear stress acting upon an elementary material plane, Ω, with
spherical coordinates (Figure 4). In this reference frame, the curve for the vector of shear
stress acting upon any elementary material plane is an ellipse along the loading history,
which is centered at the point O1(O2) (Figure 5) and its semi-axes Ca and Cb are given
by [28]:

Ca,b =

√√√√ a2 + b2 + c2 + d2

2
±

√(
a2 + b2 + c2 + d2

2

)2

− (ad− bc)2, (10)

where a, b, c, and d are contractions of the following equation:
a = 1

2 sin 2θ
(
σa cos2 ϕ + τa sin 2ϕ cos δ

)
b = − 1

2 sin 2θ(τa sin 2ϕ sin δ)
c = 1

2 sin θ(2τa cos 2ϕ cos δ− σa sin 2ϕ)
d = − 1

2 sin θ(2τa cos 2ϕ sin δ)

. (11)

where θ and ϕ are angle variables utilized to define the elementary material plane in
spherical coordinates.
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From Figure 5, an equation, based on the solid mechanics of some variables in Equa-
tion (2), can be described in the explicit formulation as follows:∣∣τ1,max(t0)− τmp1

∣∣ = max[Ca(θ, ϕ)]. (12)

At the moment, t0, the following equation can also be obtained:

∣∣τ2(t0)− τpm2
∣∣ = max[Ca(θ, ϕ)]−min

(
1
2

∣∣Si(t0)− Sj(t0)
∣∣)(i, j = 1, 2, 3, i 6= j), (13)

where Si(t0) is the principal deviator stress at the time t0. According to the theory above,
we can also obtain the following equation:
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
∣∣τ1min(t1)− τpm3

∣∣ = max
(

1
2

∣∣Si(t1)− Sj(t1)
∣∣)∣∣τ2(t1)− τpm4

∣∣ = max
(

1
2

∣∣Si(t1)− Sj(t1)
∣∣)−min

(
1
2

∣∣Si(t1)− Sj(t1)
∣∣) (i, j = 1, 2, 3, i 6= j), (14)

where Si(t1) is the principal deviator stress at the time t1.

3.2. Evaluation of the Criteria

To assess the quality and competitiveness of the proposed model compared to previ-
ous models, proportional and iso-frequency out-of-phase sinusoidal multiaxial high-cycle
fatigue experiments were performed for two kinds of metallic materials, aluminum alloy
LY12CZ and carbon structural steel SM45C. These fatigue experiments were completed
by Zhang [29] and Lee [30], separately. The shape of the specimen made of two kinds
of metallic materials (shown in Figure 6) are analogous. However, multiaxial high-cycle
fatigue loading paths imposed on a specimen made of aluminum alloy LY12CZ, combined
tension and torsion, are different from that made of carbon structural steel SM45C, com-
bined bending, and torsion. The data associated with the experiments, fatigue properties of
the materials, and calculation results of the prediction models, including McDiarmid, Liu,
Freitas, and that proposed in this paper, are reported in Tables 1 and 2 and Figures 7 and 8.
The experimental fatigue life and logarithmic mean values were collected from publications
by Lee [29] and Zhang [30].
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Figure 6. Specimen made of aluminum alloy LY12CZ [29].

Table 1. Fatigue strength and material parameters of S–N curvilinear equation of aluminum alloy LY12CZ
(σ−1 = 168.73 MPa, t−1 = 119.62 MPa, τ′ f = 602.8 MPa, b0 = −0.1115): experimental data [30] and predictions.

σa (MPa) σm (MPa) τa (MPa) τm (MPa) δ (o) A B C D Exp.

126.491 0 91.571 0 0 281,670 1,082,449 243,628 >107 482,666
158.114 0 111.803 0 0 42,683 167,487 36,135 1,736,000 76,451
189.737 0 137.356 0 0 7421 28,518 6419 300,650 23,003
126.491 0 95.507 0 30 241,200 960,836 192,398 9,908,700 420,261
158.114 0 119.384 0 30 32,600 129,866 26,004 1,339,200 63,584
126.491 0 100 0 45 205,270 857,035 148,362 8,520,800 275,527
158.114 0 125 0 45 27,744 115,837 20,053 1,151,700 57,004
126.491 0 105.193 0 60 178,320 760,413 109,702 7,340,500 231,348
158.114 0 131.491 0 60 24,102 102,779 14,827 992,160 30,893
158.114 0 139.111 0 90 35,187 89,612 10,178 1,035,900 15,459
126.491 0 111.289 0 90 260,330 662,994 75,299 7,663,900 66,940

200 0 115.47 0 90 26,490 287,053 5303 874,420 14,296
250 0 144.34 0 90 3580 38,793 717 118,180 4634
200 0 100 0 90 40,853 837,823 7430 1,392,800 37,789
250 0 125 0 90 5522 113,241 1004 188,260 6811

A—Current model. B—McDiarmid model [17]. C—Liu model [18]. D—Freitas model [8]. Exp.—Experiment [29,30].
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Table 2. Fatigue strength and material parameters of S–N curvilinear equation of carbon structural steel SM45C
(σ−1 = 442 MPa, t−1 = 311 MPa, η = 62.3 MPa, b1 = −0.53): experimental data [29] and predictions.

σa (MPa) σm (MPa) τa (MPa) τm (MPa) δ (o) A B C D Exp.

449 0 282 0 90 33,399 89,680 16,006 >107 29,900
354 0 334 0 90 37,667 41,856 20,236 >107 35,700
485 0 223 0 90 39,863 >107 25,852 >107 50,000
357 0 309 0 90 51,948 68,445 23,389 >107 73,800
449 0 217 0 90 63,825 >107 36,598 >107 106,000
370 0 285 0 90 67,675 133,212 25,257 >107 106,000
449 0 199 0 90 80,172 >107 41,222 >107 112,000
457 0 194 0 90 75,020 >107 38,516 >107 131,000
354 0 252 0 90 191,400 3,869,612 37,984 >107 333,000
437 0 154 0 90 236,950 >107 61,528 >107 431,000
286 0 143 0 90 >107 >107 >107 >107 1,660,000
354 0 165 0 90 >107 >107 2,980,185 >107 1,860,000
441 196 215 0 90 43,691 >107 40,658 >107 53,000
286 196 309 0 90 62,224 42,824 40,316 >107 59,200
464 196 155 0 90 56,322 >107 40,596 >107 70,100
473 196 136 0 90 57,808 >107 38,199 >107 86,300
173 196 334 0 90 83,584 40,007 81,343 >107 89,900
403 196 209 0 90 74,826 2,219,079 31,942 >107 92,100
437 196 177 0 90 66,929 >107 55,224 >107 102,000
167 196 321 0 90 130,430 59,441 128,539 >107 135,000
357 196 179 0 90 611,040 215,534 84,523 >107 351,000
182 196 274 0 90 >107 235,925 2,562,011 >107 394,000

A—Current model. B—McDiarmid model [17]. C—Liu model [18]. D—Freitas model [8]. Exp.—Experiment [29,30].
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Figure 7. Experimental and predicted results for aluminum alloy LY12CZ.
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Figure 8. Experimental and predicted results for carbon structural steel SM45C.

Tables 1 and 2 report the predicted life durations provided by McDiarmid, Liu, and
Freitas, together with that proposed in this paper, for aluminum alloy LY12CZ and carbon
structural steel SM45C, under proportional and non-proportional loading paths character-
ized by alternating tensile and torsion loading. McDiarmid and Liu models can be classified
as critical plane approach, while the damage parameters in two models are established
differently. For McDiarmid model, the damage parameter can be expressed as [30],

teq = max[Ca(θ, ϕ)] +
t−1

2σb
Nmax, (15)

where σb is the tensile strength of materials and Nmax is maximum normal stress acting on
the critical plane. For Liu model, the damage parameter can be expressed as [18],

teq =

√√√√(max[Ca(θ, ϕ)]

t−1

)2
+

(
Nmax

σ−1

)2
+ 9

[(
t−1

σ−1

)2
− 1

](
σa

HC
σ−1

)2

, (16)

where σa
HC is hydrostatic stress amplitude acting on the critical plane. It should be noted

that the Freitas model is obtained by selecting the Huber-von Mises yield criterion as a
substitution of Equation (2) for the shear stress solicitation. However, the normal stress
contributing to the spread of existing embryo cracks is employed in the same manner as the
proposed model in this paper, which is confirmed by Gonçalves [31], instead of hydrostatic
stress [6,32]. Clearly, the results of the Freitas model for two kinds of metallic materials are
quite poor from Tables 1 and 2, while the unevenness of the predictions based on the other
models is evident. For aluminum alloy LY12CZ, the experimental data compared with the
predictions respectively obtained by McDiarmid, Liu, and the proposed model in this paper
are proportionally located at an error of less than two times the experimental values, and
the proportions are 6.6%, 26.7%, and 73.3%, which can be observed in Figure 7 or Table 1.
However, more excellent than those of the aluminum alloy LY12CZ, are the proportions of
35%, 55%, and 85% for the carbon structural steel SM45C, provided in Figure 8 or Table 2.
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In summary, the competitiveness of the proposed model in this paper, applied to the
life prediction of multiaxial high-cycle fatigue, among the previous models mentioned is
significant. It should be noted that the test models above are all related to yield criteria,
e.g., i: McDiarmid and Liu models induced by Tresca yield criteria; ii: Freitas model
induced by Huber-von Mises yield criteria. We can evidently notice that the predicted
model assembled by Twin-shear unified yield criteria is better suitable in comparison to
the other test models above. In detail, our model can be demonstrably applied toward
the non-conservative regions, when mean bending stress is superimposed with multiaxial
high-cycle fatigue.

4. Conclusions

A new model for the life prediction of multiaxial high-cycle fatigue, which is based
on the twin-shear unified yield criterion, has been proposed. The model was applied to
predict the fatigue life of two different materials subjected to a broad range of proportional
and non-proportional iso-frequency load paths, and the yielded simulated results were
in good agreement with experimental data, most of which possess an error of less than
two times the experimental data. The competitiveness of the proposed model, compared
with the previous models mentioned in the paper, is clear from the predictive results. It
is noticed that the predicted model assembled by Twin-shear unified yield criteria has
great potential aiming to develop the adaptability of the predictive model for the life of
multiaxial high-cycle fatigue. The view can be easily obtained since Twin-shear unified
yield criterion is characterized by the normalization format of other yield criteria.
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