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Abstract: The tempering of low-alloy steels is important for controlling the mechanical properties
required for industrial fields. Several studies have investigated the relationships between the input
and target values of materials using machine learning algorithms. The limitation of machine learning
algorithms is that the mechanism of how the input values affect the output has yet to be confirmed
despite numerous case studies. To address this issue, we trained four machine learning algorithms to
control the hardness of low-alloy steels under various tempering conditions. The models were trained
using the tempering temperature, holding time, and composition of the alloy as the inputs. The
input data were drawn from a database of more than 1900 experimental datasets for low-alloy steels
created from the relevant literature. We selected the random forest regression (RFR) model to analyze
its mechanism and the importance of the input values using Shapley additive explanations (SHAP).
The prediction accuracy of the RFR for the tempered martensite hardness was better than that of
the empirical equation. The tempering temperature is the most important feature for controlling the
hardness, followed by the C content, the holding time, and the Cr, Si, Mn, Mo, and Ni contents.

Keywords: low-alloy steels; tempering; tempered martensite hardness; machine learning; SHAP

1. Introduction

The tempering of low-alloy steels involves the control of their mechanical properties
through ε-martensite and carbide formation, dislocation recovery, carbide spheroidization,
and recrystallization [1–6]. It is important to use apposite tempering to meet the property
requirements of industrial use. Empirical equations for adjusting the hardness in tempered
low-alloy steels have been proposed. Hollomon and Jaffe proposed tempering parame-
ters comprising the tempering temperature and holding time to predict the hardness of
tempered martensite. These equations are given by [1]:

TP = T(log t + C), (1)

TMH =

(
1542.97− 25.31

Xc

)
· exp

(
−1.23× 10−4TP

)
(2)

where TP is the tempering temperature in Kelvin, t is the holding time in hours for
isothermal conditions, C is a constant, TMH is the tempered martensite hardness, and Xc is
the amount of carbon in weight percent. The equations effectively explain the effect of the
tempering temperature and holding time. The hardness of the tempered martensite varies
with the alloy elements. However, this hardness variation cannot be accurately estimated
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by Equation (2). Kang and Lee proposed a composition-dependent tempering parameter
given as [2]

TP = T

(
log t +

(
k0 + ∑

i
kiXi

))
(3)

where k0 is a constant, ki is the coefficient of element i, and Xi is the amount of alloying
element i in weight percent. k0, kc, kMn, kSi, kNi, kCr, and kMo were 17.396, −6.661, −1.604,
−3.412,−0.248,−1.112, and−4.355, respectively [2]. It has been reported that these optimal
ki values were determined from over 1900 experimental data and revealed the fact that the
change of activation energy related to tempering is associated with chemical composition.
This equation makes it possible to evaluate the hardness variations of the tempered low-
alloy steel with the tempering temperature, holding time, and alloy composition. These
equations sufficiently explain the hardness of the tempered martensite. However, it is
still important to confirm the importance of each parameter to the hardness of tempered
martensite and to improve the accuracy of the equation to reduce the prediction error.

Machine learning algorithms are intensive methods for improving prediction accu-
racy. They can predict the target values more accurately than classical alloy modeling
methods without a trial-and-error process, which requires considerable time, cost, and
effort. Such algorithms include random forest regression (RFR), support vector regression
(SVR), k-nearest neighbors (kNN), and artificial neural networks (ANN). These algorithms
are widely used to predict target parameters such as the yield strength, hardness, and
thermal properties in material science [7–14]. For instance, Zhang et al. predicted the me-
chanical properties of a nonequiatomic high-entropy alloy using an ANN and an SVR [7].
Narayana et al. predicted the mechanical properties of 20Cr-20Ni-0.4C steels over a wide
range of temperatures using an ANN [8]. However, the analysis of machine learning mod-
els to confirm how they work remains a challenge. Shapley additive explanations (SHAP)
have been used to study the mechanisms of trained machine learning algorithms [15–17].
Yan et al. evaluated the importance of input features and how they affect the corrosion rate
of low-alloy steels using SHAP [15]. This analysis opened the way to the evaluation of the
machine learning algorithm mechanisms, which were previously regarded as black boxes.

In this study, we propose the use of machine learning algorithms to improve predic-
tion accuracy and investigate how the tempering temperature, holding time, and alloy
composition affect the tempered martensite hardness. We collected a dataset containing
the composition, tempering temperature, and holding time of low-alloy steels from the
literature. SHAP were then used to assess the trained machine learning mechanisms.

2. Data Collection

Datasets for low-alloy steels were collected from 1926 utilizable datasets from the
literature [2]. The datasets consisted of compositions containing six elements (C, Mn, Si,
Ni, Cr, and Mo), tempering features such as the tempering temperature and holding time,
and the Vickers hardness (HV). The ranges of the compositions, tempering features, and
HV are listed in Table 1.

Table 1. Range of the compositions (wt.%), tempering temperature (◦C), holding time (s), and HV in
the dataset used in this study.

Minimum Maximum Average Deviation

C 0.12 1.15 0.45 0.21
Mn 0.00 1.75 0.65 0.32
Si 0.00 0.90 0.24 0.17
Ni 0.00 3.50 0.26 0.71
Cr 0.00 2.00 0.20 0.38
Mo 0.00 0.50 0.06 0.11

Tempering temperature 145 716 444 160
Holding time 30 3,500,000 68,665 344,146

Hardness (HV) 105 899 395 144
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3. Machine Learning Training

To predict the HV, the ANN, SVR, kNN, and RFR were employed. The ANN learning
algorithm searches for the optimal weight and bias features to explain the relationship
between the input and target features [18]. The main hyperparameters in ANN learning are
the optimizer, activation function, number of layers, and number of nodes. The ANN was
trained with the number of layers varied from 1 to 2, the number of neurons from 1 to 100,
and the learning rate to 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1. Deep learning,
which has over three hidden layers, is typically used with tens of thousands of data. In
this study, we trained the ANN with 1 or 2 layers, which was enough to deal with the
total of 1926 datasets efficiently and accurately. In addition, we used root mean squared
propagation (RMSprop) as the optimizer, the rectified linear unit (ReLU) as the activation
function for the hidden layers, and the linear transfer function (purelin) as the activation
function for the output layer. The datasets of the ANN were divided into proportions of
70%, 15%, and 15% for training, validation, and testing, respectively. The SVR algorithm
was trained to minimize the weight and satisfy the constraints given by [19]:

minimize
1
2
‖W‖2 + C ∑l

i=1(ξi + ξ∗i ), (4)

subject to


yi −WX− b ≤ ε + ξi
WX + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
, (5)

where W is the weight matrix, C is a constant, ξi and ξ∗i are the soft margins, X is the matrix
of input values, b is a constant, and ε is the error. The values of C and ε affect the SVR
performance. The SVR was trained with ε set to 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, and
0.1. We set C to 100 and used a radial basis kernel with a constant value of 0.1. The kNN
algorithm predicts the target value using the k-nearest values [20]. The performance of the
kNN varies with the value of k. The kNN algorithm was trained with k values ranging
from 1 to 20. The RFR consists of a multitude of decision trees [21,22]. The RFR trains
k decision trees and takes the average value. The performance of the RFR is affected by
the number of decision trees. The RFR was trained using 10 to 100 decision trees. The
datasets for the SVR, kNN, and RFR algorithms were split into 80% for training and 20%
for validation, respectively. R2 was used to assess the predictive accuracy. The R2 value is
given by:

R2 =

 ∑[(xi − x)(yi − y)]√
[∑(xi − x)]2 ∗ [∑(yi − y)]2

2

(6)

where x and y are the measurement and predicted target values, respectively, and x and y
their arithmetic means. The training processes and algorithm assessment were performed
using TensorFlow Version 2.0, Google brain team, Mountain View, CA, USA and the
scikit-learn Version 0.23.1 module in Python Version 3.7, Python software foundation,
Fredericksburg, VA, USA.

4. SHAP Method

For a simple model such as linear regression, the best explanation is often the model
itself. However, it is difficult to explain how complex models such as machine learning
models work and how the input values affect the target values. The SHAP, which is based
on game theory and local explanations, can explain the relationship between the inputs
and targets using the Shapley value. The Shapley value can be expressed as [23,24]:

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)
|F|!

(
vS∪{i}

(
xS∪{i}

)
− vS(xS)

)
(7)
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where φi is the Shapley value of the ith input value, S is the set of input values with the ith
input value excluded, |S| is the magnitude of S (for example, S = x1, x2, . . . , xi−1, xi+1, . . . ,
xn−1, xn and |S| = n− 1), F is the set of input values, and v(x) is calculated based on the
marginal contribution of the input values. The explanation model of the linear function of
the Shapley value is given by:

v
(
z′
)
= g

(
z′
)
= φ0 +

M

∑
i=1

φiz′i (8)

where z′i ∈ {0, 1}M and M is the number of input values. z′i is 1 when the ith input value
is observed and 0 otherwise. The value of the explanation model demonstrates how the
model works. For example, if we need a Shapley value of C, we calculate v(x) with the
whole data and v(x) except the C data. Then, we calculate φC. The Shapley value makes it
possible to evaluate the average influence of the input value on the target value.

5. Results and Discussion

The machine learning algorithms with the best R2 values were selected. Figure 1
shows the accuracy of the selected machine learning algorithms with the training dataset.
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Figure 1. Accuracy of the machine learning algorithms with the training dataset. RFR: random
forest regression. kNN: k-nearest neighbors. ANN: artificial neural network. SVR: support
vector regression.

RFR exhibited the best R2 value of 0.9966. The second best model was kNN, which
had an R2 value of 0.9648. The ANN and SVR had R2 values of less than 0.9. The average
learning time for the ANN was 103.8 s, whereas that for the other algorithms was just a few
seconds. The selected RFR algorithm consisted of 30 trees. The kNN algorithm had the k
value of k = 4 for the HV. The structure of the ANN algorithm was 9-71-1. The learning rate
of 0.01 was used in the selected ANN. ε = 0.01 in the selected SVR. Based on the R2 values,
we chose the RFR for HV prediction. Figure 2a shows the performance of the RFR for the
test datasets that were not used for training. The accuracy was 0.9795. This demonstrates
that the RFR predictions were reliable and that the RFR was successfully trained. The R2

values for the test datasets were 0.9492, 0.8474, and 0.5344 for kNN, the ANN, and the
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SVR, respectively. Figure 2b shows the performance of Equation (3) and the RFR. The
RFR showed a higher accuracy (R2 = 0.9961) than Equation (3) (R2 = 0.9407). This result
indicates that the RFR predicted HV more accurately.
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Figure 2. Comparison between predicted and measured HV (Vickers hardness). (a) Validation of the
RFR algorithm; (b) the performance of the RFR and Equation (3).

Figure 3 shows the influence of each feature. We calculated the absolute Shapley
value of each input value. Then, we averaged it. Therefore, Mean (|SHAP|) indicates the
average absolute magnitude of the influence of each input value on HV. The tempering
temperature had the greatest influence on the HV, followed by the C content, the holding
time, and the contents of Cr, Si, Mn, Mo, and Ni.
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explanations) analysis.

Figure 4 shows the average influence of each variation on hardness. Figure 4a shows
the effect of the tempering temperature on the HV. Carbon was chosen as a color legend.
To make the plot, we calculated the Shapley values at each tempering temperature the
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with RFR and confirmed the effect of each variation, which mostly related to tempering
temperature. Hence, we can say if the tempering temperature increases, HV decreases on
average. For the same tempering temperature, the C content is the most effective value
to control the HV. Speich et al. proposed that the tempering process can be divided into
four stages according to the tempering temperature. The first stage occurs at temperatures
between room temperature and 250 ◦C. In this stage, carbon segregation (<0.2 wt.% C) and
ε-carbide precipitation (>0.2 wt.% C) occur. The tempering progresses to the second stage
at temperatures between 230 and 300 ◦C. At this stage, the retained austenite decomposes.
The third stage takes place between 200 and 300 ◦C. At this stage, rod-shaped carbide
is precipitated at the austenite grain boundaries, the martensite lath boundaries, the
boundaries between ε-carbide and the matrix, and the twin boundaries. The fourth stage
occurs between 300 and 600 ◦C. At this stage, dislocation recovery and Fe3C spheroidizing
occur. Above 600 ◦C, the crystal structure recrystallizes and Fe3C coarsening occurs [3–6].
The HV is decreased according to the four stages of tempering. The tempering temperature
effect in the RFR reflects this process.

Figure 4b shows the effect of C on the HV. The HV is enhanced with the increase in
the C content. The HV is influenced by several factors, including (1) the restriction of the
dislocation movement by C atoms located at interstitial sites, (2) the increase in ε-carbide
transformation at tempering temperatures between room temperature and 250 ◦C, and
(3) the decrease in the frequency of auto-tempering due to the decline in the martensite
starting temperature. Figure 4a,b show the relationship between the C content and the
tempering temperature. At tempering temperatures between 100 and 300 ◦C, the HV
is enhanced when the C content increases. In this range of temperatures, ε-carbide and
rod-shaped carbide are precipitated. The amount of carbide increases with the C content,
leading to the enhancement of the HV. However, between 400 and 700 ◦C, the HV is re-
duced by an increase in the C content. This reduction may be due to the decrease in the
recrystallization temperature of the low-carbon alloy. A larger C content increases the den-
sity of Fe3C, which fixes the ferrite boundaries. The earlier occurrence of recrystallization
in the low-carbon alloy compared to the high-carbon alloy results in a finer grain in the
low-carbon alloy. In contrast, in the high-carbon alloy, spheroidal Fe3C is formed, and
dislocations are recovered. At a large C content, recrystallization is inhibited by the pinning
action of carbides on the boundaries. The recrystallization temperature of the low-C alloy
is lower than that of the high-C alloy [6].
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(g) Mo, and (h) Ni, on HV.

Figure 4c shows the effect of the holding time on the HV. A longer tempering holding
time provides sufficient time for alloy elements to diffuse in the steel alloy. Hence, the
tempering process proceeds sufficiently. Figure 4d–h shows the effects of the alloy elements.
All the elements improve the HV. Cr and Mo enhance the HV through the formation of
carbide, which is harder than Fe3C. Si improves the stability of ε-carbide by retarding
the nucleation and growth of Fe3C [6]. Mn has been reported to delay the appearance of
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martensitic to a higher temperature and to make the carbide smaller and more numerous.
The HV is hardly affected by Ni [3].

6. Conclusions

In this study, the use of the RFR to predict the HV of low-alloy steels was proposed.
The RFR algorithm was trained using the tempering temperature, holding time, and the
amounts of added alloying elements C, Mn, Si, Ni, Cr, and Mo. The RFR exhibited a larger
improvement in the accuracy of the predicted hardness compared to the composition-
dependent empirical equation. The effect of each feature on the RFR was evaluated using
the SHAP value. The HV decreased as the tempering temperature and holding time
increased and increased as the amount of added alloying composition increased. The most
important feature affecting the HV was the tempering temperature, followed by the C
content, the holding time, and the Cr, Si, Mn, Mo, and Ni contents.
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