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Abstract: Insufficient strength of welding spots is a common problem in the hot stamping process
of ultra-high strength steel patchwork blanks (UHSSP). In this paper, the welding spots of 22MnB5
boron steel with thicknesses of 1.2 and 1.5 mm were austenitized and then air-cooled to 650–850 ◦C
for high temperature tensile shear tests and high temperature cross-tension tests, respectively. To
study the mechanical properties of the welding spots at room temperature after heat treatment, the
austenitized welding spots were quenched in cold water to room temperature, and microhardness
tests and microstructure observations were performed. The results indicated that compared to the
original welding spots, the heat-affected softening zone disappeared after heat treatment, and the
hardness values of the fusion zone, heat-affected zone and base material were basically the same, at
about 500 HV. After heat treatment, the welding spots were mainly martensite. With the increase in
deformation temperature, the peak loads of the tensile shear and the cross tension of the welding
spots decreased. At 750 ◦C, the peak loads of the welding spots decreased less, energy absorption was
larger, and the welding spots had the comprehensive mechanical properties of strength and ductility.

Keywords: patchwork blanks; 22MnB5; resistance spot welding; microstructure; tensile shear
strength; cross-tension strength

1. Introduction

As environmental protection, energy saving, and safety gradually becomes the new
direction of modern automobile development, it is urgent for researchers to handle the
problem of automotive lightweight materials while ensuring its safety. One effective way
is to find high strength, lightweight materials to replace the traditional steel [1–5]. Hot
stamping ultra-high strength steel is a perfect solution to this challenge. After austenitizing,
boron steel is formed and quenched simultaneously to obtain room temperature martensite,
and the tensile strength of the as-quenched parts is up to 1500 MPa, which can improve
crashworthiness and reduce automobile body weight [6–10]. With the requirements of
crash safety, some parts need to have different mechanical properties of strength and
ductility in different areas, which are called “tailored” parts [11–13]. At present, the hot
stamping process of ultra-high strength steel patchwork blanks (UHSSP) can yield tailored
parts by “patching” the load-bearing area of the part, and the main blank and the patched
blank can be formed in one stroke after spot welding connection, which requires fewer
tools and has high production efficiency. As the patched blank is connected with the main
blank by spot welding, if the strength of the welding spot is insufficient during the high
temperature forming process, it will cause relative movement between the patched blank
and the main blank. Moreover, the drastic deformation of the patched area during the hot
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stamping process will cause the welding spots to pull apart or fall off. Some tiny cracks
in the welding spots generated during the forming process will gradually expand with
the increasing use of the part, and eventually the welding spots fracture. Therefore, the
strength of welding spots under high temperature deformation conditions is a decisive
factor for the hot stamping process of UHSSP.

Researchers have conducted a number of studies related to the properties of ultra-high
strength boron steel welding spots. Feng et al. [14] studied the effect of spot welding
parameters on the mechanical properties of the welding spots. Bai et al. [15] researched
the microstructures and mechanical properties of resistance spot welding of 22MnB5
boron steel. Yang et al. [16] studied the effect of welding parameters, such as welding
current and welding time, on the tensile and shear properties of 22MnMoB welding spots.
Lu et al. [17] investigated the temperature and pressure distribution, nucleus formation,
and electrode indentation during BS1500 resistance spot welding and established a cou-
pled thermal-mechanical-electrical model for predicting the welding spot performance.
Mohamadizadeh et al. [18] established a finite element model for spot welding joints which
could be used for predicting spot welding failure mode. The above studies are mainly
related to the properties of UHSSP welding spots at room temperature, while the weld-
ing spots in the hot stamping process of UHSSP are in a high temperature environment
and their strengths are considerably different from those at room temperature. The cur-
rent research on microstructures and properties of welding spots at high temperature is
quite limited.

In this paper, the high temperature tensile shear strength and cross-tension strength of
boron steel welding spots were investigated and the effect of forming temperature on the
strength of welding spots was studied. In addition, the austenitized welding spots were
quenched in cold water, and then microhardness tests and microstructure observations
were conducted.

2. Methodology

The hot stamping process of UHSSP is shown in Figure 1. Firstly, the main blank and
the patched blank were connected together by resistance spot welding, and then they were
heated to 930 ◦C together and held for 5 min for austenitizing. The hot main blank and
patched blank were formed and quenched together in water-cooled tools. By designing
different thicknesses and shapes of main blank and patched blank, this process can flexibly
adjust the mechanical properties of the parts.
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Figure 1. Process flow chart of the hot stamped ultra-high strength steel patchwork blanks (UHSSP).

3. Experimental Materials and Procedure

The materials are 22MnB5 boron steel with thicknesses of 1.5 and 1.2 mm. The chemical
composition is shown in Table 1. The composition of this type of boron steel is characterized
by the addition of a certain amount of boron elements to the steel, due to boron segregation
in the austenite grain boundaries delaying the formation of ferrite and bainite nuclei;
hence, the strength of the steel increased. The steel has a yield strength of approximately
400 MPa, ultimate tensile strength (UTS) of around 600 MPa, and approximately 22% total
elongation. After hot stamping, the material’s yield strength exceeds 1000 MPa and UTS
reaches 1500 MPa. The total elongation of the final part is typically over 5% [11].
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Table 1. Chemical composition of 22MnB5 steel (wt %) [19].

C Si Mn P S Cr Ti B Fe

≤0.25 0.23 1.2 ≤0.02 ≤0.01 ≤0.20 ≤0.30 0.003 Bal.

A 220 KW intermediate frequency DC RSW machine was used to weld high tempera-
ture tensile shear and cross-tension specimens, respectively. The dimensions of the welded
specimens are shown in Figure 2. The main welding parameters are as follows: electrode
pressure of 3.5 KN, welding current of 7 KA, welding time of 20 cyc, and nugget diameter
of 6 mm.
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Figure 2. Geometries of the specimens: (a) tensile shear specimen; (b) cross-tensile specimen.

To study the effect of the hot stamping process on the microstructures and mechanical
properties of welded joints, the welded joint specimens were heated in a resistance furnace
to 930 ◦C for 5 min, then air-cooled to 750 ◦C and water-cooled to room temperature to
obtain heat-treated welding spots (HT welding spots). A welding spot that has not been
heat-treated after spot welding is called an original welding spot (O welding spot). The two
kinds of welding spots were cut along the center of the fusion center, and the profiles were
sandpapered and polished withϕ0.25 µm diamond powder, and then etched with 4% nitric
acid alcohol solution for 15–20 s. The CMY40 (Shanghai Optical Instrument Factory,
Shanghai, China) metallographic microscope was used to observe the microstructures of
the O welding spot and the HT welding spot. A DHV-1000Z (Shanghai Shangcai Instrument
Co., Ltd., Shanghai, China) digital display microhardness testing machine was used to
measure the hardness distribution of the O and HT welded spots along the horizontal
direction. The load was 200 g and holding time was 15 s. Each hardness test experiment
was repeated three times and then averaged.

The welding spot specimens were heated to 930 ◦C for 5 min using a resistance furnace
and then transferred to a high temperature tensile test machine after air-cooling to the
forming temperatures (650, 700, 750, 800 and 850 ◦C) for tensile shear and cross-tension
experiments. The load–displacement curves were recorded. The loading speed was set to
be constant as 2 mm/min. The experiments were repeated twice under each condition.

4. Results and Discussion
4.1. Microstructures

Figure 3 shows the microstructures of the O welding spot. In Figure 3a, it is clearly
observed that the O welding spot is composed of three parts: the base material, the
representative intermediate critical heat-affected zone, and the fusion zone. The base
material is mainly pearlite and ferrite, as shown in Figure 3b. In the intermediate critical
heat-affected zone (Figure 3c), it is mainly ferrite, pearlite and martensite. In the fusion
zone, it is mainly martensite, as shown in Figure 3d. The microstructure of the HT welding
spot is shown in Figure 4. It can be found that the microstructures of the base material and
the intermediate critical heat-affected zone are not significantly different from each other
and are mainly uniform with finer martensite, as shown in Figure 4b–d. The reason for
this is that after the welding spot was austenitized and quenched by cold water, and the
original ferrite and pearlite were transformed to martensite after rapid quenching.
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4.2. Hardness Profiles of Welding Spots

Figure 5 shows the hardness profiles of the welding spots. The hardness of the O
welding spot is about 500 HV in the fusion zone and about 190 HV in the base material. The
hardness drops sharply in the heat-affected zone and an evident softening zone appears.
This is due to the extremely fast heating and cooling rate in the process of resistance spot
welding, resulting in a large difference in temperature between the fusion zone and the
heat-affected zone. Ghassemi-Armaki’s study [20] demonstrated that the heat-affected zone
is a vulnerable region of the welding spot and is prone to weld failure. For the HT welding
spot, the hardness values of the base material, the heat-affected zone and the fusion zone
all reach about 500 HV. The hardness profile exhibits an approximately horizontal straight
line, and the heat-affected softening zone that existed in the O welding spot disappears.
This is because the welded spot first obtained the high temperature uniform austenite
in the heat treatment process, and the base material, heat-affected zone and fusion zone
were transformed into martensite after water-cooled quenching. Therefore, the hardness
distribution is not significantly different.
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4.3. High Temperature Tensile Shear and Cross-Tensile Strength

The stresses on the welding spot under tensile shear and cross-tension conditions are
shown in Figure 6 [21]. In the tensile shear test, the welding spot was subjected to shear
stresses only, while the base material was subjected to shear stresses and tensile stresses in
the thickness direction. In the cross-tension test, the welding spot and the base material
were subjected to tensile stresses. Figure 7 shows the typical load–displacement curves
of welding spots under tensile shear and cross-tension conditions [21]. Pmax is the peak
load and Lmax is the displacement under peak load and is used to evaluate the elongation
of the welding spot. Wmax is the energy absorption work, which is used to evaluate the
energy absorption of the welding spot. A higher Wmax value indicates the improved
impact resistance of the welding spot.
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Figure 8 shows the results of the tensile shear experiments on the welding spots at
different temperatures. It can be seen that the load increases linearly with displacement
in the initial stage, and shows a nonlinear relationship before the peak load, which is
remarkably similar to the load–displacement curve for the tension of plastic metals due to
the strain hardening of the base material. As the load continues to increase and reaches the
peak load, cracks begin to develop and the load then decreases, producing a pull-out failure
when the crack is fully extended along the perimeter of the fusion core. After reaching
the peak load, the load decreases relatively slowly, and as the displacement increases, the
curve takes on a “long tail” shape. It is caused by the fact that after the welding spot
was pulled out, the base material would be affected by the shear and thickness direction
stretching, resulting in a tear along the loading direction, and when the tear was in contact
with the outer end of the base material loading direction, the welding spot would be
completely fractured.

Figure 9 shows the results of high temperature cross-tension experiments on welding
spots. In the high temperature cross tension test, the load–displacement curve remained
approximately linear until the peak load was reached, after which the curve decreased
rapidly, showing a “short tail” shape. This is due to the fact that the failure mode of the
welding spot during the high temperature cross-tension process is the “pulled out” mode,
and in a short time, the welding spot is separated from the base material and the specimen
is fractured.
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Figure 10 shows the peak load, elongation at peak load, absorption capabilities for high
temperature tension shear and high temperature cross tension at different temperatures. As
can be seen from Figure 10a, the peak load in the high temperature tension shear experiment
decreases with the increase in temperature. It reached a maximum value of 2.3 KN at
650 ◦C. The peak load decreases at 700 and 750 ◦C, but the decrease is relatively small. The
peak load decreases significantly with temperatures of above 800 and at 850 ◦C; it reaches
only about half of the value at 650 ◦C. The elongation and energy-absorbing activities under
the peak load increase with the increased temperature, reaching a peak at 750 ◦C, and then
shows a decreasing trend. This is because the plasticity of the material increased and the
strength of the welding spot began to decline as the temperature was increased. In the high
temperature cross-tension test, the peak load showed similarity with the tensile shear test,
i.e., a decreasing trend with the increase in the deformation temperature. However, the
peak load at each temperature is lower than that in the tension shear test, which is about
two-thirds of that in the tension shear test, as shown in Figure 10b. In the high temperature
cross-tension test, the elongation and energy absorption activities at peak load first increase
with the increase in temperature, reach a peak at 750 ◦C, and then show a decreasing trend.
For the hot stamping of UHSSP, the welding spot has good comprehensive properties of
strength and ductility at 750 ◦C. When the forming temperature is greater than 750 ◦C,
although the rheological stress of the material is relatively low, the low strength of the
welding spot at this time may lead to the failure of the welding spot in the area of larger
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deformation during the forming process. When the forming temperature is lower than
750 ◦C, the strength of the welding spot is higher, but the material formability is reduced.
Consequently, 750 ◦C is the suitable forming temperature for the hot stamping of UHSSP.
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5. Conclusions

In this paper, the mechanical properties of 22MnB5 steel patchwork blank welding
spots at high temperature and the effect of a heat treatment process on microstructures and
properties of welding spots were studied through microstructure observations, hardness
tests and high temperature tension shear and cross-tension experiments. The following
conclusions were obtained:

(1) Compared with the original welding spot, there was no heat-affected softening zone
in the heat-treated welding spot, and the base material and fusion zone were fine
uniform martensite. For the heat-treated welding spot, the hardness values of the
base material, the heat-affected zone and the fusion zone all reached about 500 HV,
and the hardness profile was an approximately horizontal distribution.

(2) In the high temperature tension shear and cross-tension experiments, the peak load of
the welding spot decreased with the increase in forming temperature, and the decline
was relatively slight at 750 ◦C and the displacement and energy absorption activities
under peak load were larger. Therefore, it was more appropriate for patchwork blanks
to be formed at about 750 ◦C.
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