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Abstract: Chilean mining is one of the main productive industries in the country. It plays a critical role
in the development of Chile, so process planning is an essential task in achieving high performance.
This task involves considering mineral resources and operating conditions to provide an optimal and
realistic copper extraction and processing strategy. Performing planning modes of operation requires
a significant effort in information generation, analysis, and design. Once the operating mode plans
have been made, it is essential to select the most appropriate one. In this context, an intelligent system
that supports the planning and decision-making of the operating mode has the potential to improve
the copper industry’s performance. In this work, a knowledge-based decision support system for
managing the operating mode of the copper heap leaching process is presented. The domain was
modeled using an ontology. The interdependence between the variables was encapsulated using a set
of operation rules defined by experts in the domain and the process dynamics was modeled utilizing
an inference engine (adjusted with data of the mineral feeding and operation rules coded) used
to predict (through phenomenological models) the possible consequences of variations in mineral
feeding. The work shows an intelligent approach to integrate and process operational data in mining
sites, being a novel way to contribute to the decision-making process in complex environments.

Keywords: intelligent recommendation systems; heap leaching; planning modes of operation

1. Introduction

Industry 4.0 is changing how businesses operate, forcing companies to compete to
deliver greater customer value [1]. This will involve combining advanced production
and operations techniques with intelligent technologies integrated into organizations,
people, and assets [2]. At present, artificial intelligence tools are a great support to indus-
trial processes [3,4]. Industry 4.0 is also touching on copper mining [3], which works by
pyrometallurgical and hydrometallurgical methods [5], this later having the lowest environ-
mental impact [6,7]. One method that has become established in copper mining is leaching.
There are several processes to leach minerals, which depend mainly on the physical and
chemical characteristics of the mineral [8] such as granulometry, the chemical composition
of the mineral, and leaching kinetics, among others, which directly impacts the planning
of the mode of operation to leach, and therefore in profitability. Typically, performing the
task of planning modes of operation requires a significant effort in generating information,
analysis, and design, where multiple factors such as those above-mentioned participate.
This is why in the present work, a prototype of an intelligent recommendation system is
proposed [9], which supports decision-making for the selection of modes of operation in
heap copper leaching [10].
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There is constant growth in the copper industry, with around 20 million tons world-
wide in 2020 [11,12]. Of this total, 75 percent comes from the pyrometallurgical processing
of copper sulfide ores processed in smelting plants [13]. Chile is the world’s leading copper
producer with a 28.5% share and 23% of the reserves of this commodity [11]. There are
3817 deposits of copper minerals [14], and their exploitation represents 90.7% of exports
by the mining market [15]. Currently, part of the strategy at the country level is to go
from 5.7 million tons [11] of fine copper to around 6.2 million tons by 2027 [16]. However,
despite the positive figures presented, in recent years, copper deposits have shown a drop
in their grades, where the average copper grade has dropped from 1.3% in 2002 to average
grades of 0.67 in 2019 [15].

Copper oxides processed by hydrometallurgy are increasingly scarce in Chile (they
will go from 30.8% in 2015 to 12% in 2027) while copper sulfides are in greater quantity.
SERNAGEOMIN [14] indicates that 39.2% of fine copper production is produced through
the hydrometallurgical route, while most of the production (60.8%) is by flotation processes.
A report by COCHILCO [16] proposes a constant increase in the production of copper
concentrates in Chile, where it is indicated that from 2014 to 2026, it will almost double
to 88% of the national mining production, which means going from 3.9 to 5.4 million
tons of concentrate. Based on this, the mining industry trend shows the processes of
the concentration of minerals as the future in the production of copper. However, these
processes generate significant environmental liabilities such as tailing dams, estimating that,
in the country, for every ton of Cu obtained by flotation processes, 151 tons of tailings are
generated. There are currently 92 mining sites defined as mining environmental liabilities,
where it is expected that this year-by-year cadaster will begin to reflect the decrease in
these deposits [17].

Most of the copper minerals correspond to sulfides and a lesser part to oxides [18].
The copper mining industry has traditionally worked in two ways to process minerals: py-
rometallurgy in the case of sulfide minerals, which is broken down into flotation, smelting,
and electro-refining processes; and hydrometallurgy to process oxidized minerals, divided
into the stages of leaching, solvent extraction, and electrowinning. Heap leaching is one
of the most important hydrometallurgical processes in copper extraction. About 20% of
the world’s copper production is obtained by leaching [19]. The most common leaching
models incorporate mineral leaching kinetics, reagent transport, and solution flow, among
others [20]. Heap leaching allows the processing of low-grade metal ores (e.g., less than
1% copper), non-metallic minerals, and potentially yttrium and rare earth heavy elements.
In fact, heap leaching is often the preferred method of extracting metal from low-grade
deposits as it provides a low cost of capital compared to other methods. This low cost is
because a reduction of intensive energy use is not required; however, this contrasts with a
slow and inefficient recovery, in addition to small changes in the extraction of metals [21,22].
The materials are leached with various chemical solutions that extract valuable minerals.
These chemical solutions are a weak sulfuric acid solution for copper [20] and the addition
of chlorides for sulfur minerals (secondary sulfides) [23]. The feed containing valuable
material is irrigated with the chemical solution that dissolves the valuable metal from the
ore, and the pregnant leach solution (PLS) passes through the ore pile. It is recovered
at the base of the heap [20]. Valuable material is extracted from the PLS using different
technologies, and the chemical solution is recycled back into the heap leach [24,25].

Considering the drop in oxidized mineral grades [15] and the increase in copper
sulfide grades (both primary and secondary), the use of mechanisms that streamline the
organization of assets to contribute to extending the useful life of hydrometallurgical
plants by leaching both copper oxides in acidic media and secondary copper sulfides
by adhering chlorides can bring considerable benefits at the operational level (increased
recovery of valuable mineral) [10], and therefore, economical ones. In line with what has
been described above and with the computerization of the copper industry, the design and
implementation of an intelligent system are proposed to support decision-making in the
hydro-metallurgical phase of heap copper leaching, generating planning operating modes
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of operation before variations in the power supply. The modes of operation will be defined
by a set of conditions in the planning of the feed. They will define the set of reagents to be
used as leaching agents, agents that will aim to improve the leaching kinetics, maximizing
the expected recovery of minerals compared to the dynamic behavior of the mineralogy of
the mineral fed.

Finally, the objective of the proposed system is to complement the set of tools used
in making strategic decisions in the heap leaching production process. This could lead
to improved production efficiency without incurring a significant increase in investment
(given the existing infrastructure for processing secondary copper sulfides).

2. Materials and Methods
2.1. Overview

Smart mining is the path taken by the mining industry in Chile, which implies the
adoption of technologies and tools that make autonomous and more productive mining
possible [3,7], technologies that aim to improve the efficiency and effectiveness of produc-
tive processes, and by considering the drop in mineral exploitation laws in the mining
industry. Then, considering the fall in the exploitation of oxidized minerals in the Chilean
mining industry and the subsequent increase in the extraction of sulfide minerals (both
primary and secondary sulfides) [14], the opportunity arises to analyze alternatives that
increase the useful life of hydrometallurgical plants by using the same infrastructure to
process sulfur minerals (secondary sulfides), leachable in acidic media with the addition of
chlorides [23,26,27].

Among the new technologies applied in the industrial context in recent decades, there
are applications of artificial intelligence tools both for studying the dynamics of production
processes and developing systems that support the making of decisions such as intelligent
prediction or recommendation systems. Prediction systems are techniques that build and
study new forecasts through a branch of artificial intelligence called machine learning.
Machine learning offers the capacity of machine learning to achieve precise predictions
on new observations by using techniques such as statistical models, neural networks,
support vector machines, or clustering tools to predict situations based on the experience
obtained [28]. These systems use machine learning algorithms to induce predictive models
from historical data. The knowledge produced is used to help organizations make data-
driven decisions. Machine learning algorithms learn prediction models by inducing a
generalized relationship between a set of descriptive characteristics and one or more target
characteristics from a set of specific training instances [29]. Recommendation systems,
on the other hand, aim to help the user select elements from a large number of options,
generating predictions of the situations with the highest probability of occurrence. A
recommender system can be defined as a system that helps associate a product with a user
in a personalized way. Therefore, the basic principle of the recommendation algorithms
is to find the dependencies between the variables of interest and the activity carried out
on or as a function of these variables. The dependencies on which the recommendation
algorithms are based can be based on correlations, but they can also be deducted from the
individual characteristics of each variable [30].

This document proposes generating an intelligent operating mode recommendation
system that supports decision-makers in the copper heap leaching process in the copper
industry. The design and implementation of the proposed intelligent system require the
development of the following tasks:

• Ore feed analysis: The data corresponding to the mineral feed includes the parameters
of the raw feed, among which are: percentage of leachable oxides and sulfides, particle
size, leaching flow rate, and level of chlorides added to the acid solution.

• Domain ontology development: Representation of knowledge about the dynamics
of the leaching process, mainly indicating the configurations of the assets typical of a
certain mode of operation.
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• Rules, facts, and knowledge base: Generation of operation rules based on a specific
subset of configurations in the mineral’s feed parameters that enter the process.

• Operational parameters and expected recovery levels: Identification of the operational
parameters that significantly impact the response and determination of expected
recovery levels is determining or estimating a tipping point where mineral recovery is
negligible or becomes asymptotic.

• Knowledge of domain experts: Experts in the domain have the functions of generating
the operating rules based on their knowledge of the dynamics of the process and the
validation of the sequence of operating modes recommended by the algorithm or
designed system.

2.2. LX Process Modeling

The heap leaching process has been studied and modeled by different authors using
analytical models using conventional statistical adjustments [10,31,32], phenomenological
model adjustments [22,33–36], or adjustments of machine learning models [37] such as
Bayesian networks [38] or neural networks [39,40].

Multivariate models provide a descriptive mathematical relationship between a set
of independent variables and one or more dependent variables. These models can be
adjusted either through regression models using methodologies such as response surface
optimization [41,42] like that developed by Aguirre et al. [43], or multiple regression models
adjusted through a design of experiments [44] such as those developed by Pérez et al. [45]
or by Saldaña et al. [46]. Additionally, in the literature, there are phenomenological models
where it is considered that the leaching dynamics can be modeled by a first-order model
such as those presented by Mellado et al. [21,22,33], where it is considered that the leaching
process occurs at different scales of size and time since different phenomena participate in
the process [35,36].

In addition to conventional modeling techniques, there are representation approaches
using machine learning techniques including techniques such as Bayesian networks or
neural networks. Saldaña et al.’s [38] model makes it possible to recognize the dependency
and causality relationships between the sampled variables and estimate the result with
partial knowledge of the operational variables. Other machine learning algorithms that
have proven to be efficient in modeling complex systems such as heap leaching are artificial
neural network models, allowing them both to model, predict, or optimize the response to
the sensitization of the predictor variables [39,47,48]. Additional studies have proposed a
hybrid approach, incorporating genetic algorithms to the artificial neural network model
to predict the optimal conditions for leaching in columns of copper oxides [49] or for
bioleaching of molybdenite [50].

2.3. Rules-Based System

Rule-based systems are systems based on deductive reasoning, which use rules to
represent knowledge and infer actions given certain conditions or circumstances [51].
Rule-based system definitions rely almost entirely on expert systems, systems that mimic
the reasoning of a human expert to solve a knowledge-intensive problem. Rather than
statically representing knowledge declaratively as a set of true things, the rule-based system
represents knowledge in terms of rules that indicate what to do or conclude in different
situations. The rules are expressed as a set of instructions like “If P, then Q ~ P⇒ Q”. A
rule-based system consists of a set of If–Then rules, a set of facts, and some interpreter
(inference engine) that controls the application of the rules, given the facts. When exposed
to the same data, the expert system will (or is expected to) work in a similar way of the
expert. The requirement is that knowledge about the problem area can be expressed in the
form of If–Then rules. The area should not be that large either, since many rules can make
the problem solver (the expert system) inefficient [52].

Inference engines are the main component of intelligent systems that apply logical
rules to a knowledge base to make new facts and relationships emerge. An inference engine
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consists of all the processes that manipulate the knowledge base to deduce the information
requested by the user and carries the reasoning required by the expert system to reach a
solution [52]. A rules-based inference engine applies rules to the data to reason and derives
some new facts (generate knowledge). When the data match the rule’s conditions, the
inference engine can modify the knowledge base such as the assertion or retraction of facts,
or execute functions such as displaying the derived facts [53]. In other words, they are in
charge of managing the process of selection, decision, interpretation, and application of the
behavior that reflects the reasoning, processing, and interpreting rules that are in charge of
solving a decision problem (such as the determination of a certain way of organizing the
resources). In classical logic, it is possible to deduce by using rules. If its premise is true, so
will its conclusion.

On the other hand, as part of the proposed framework of a decision-making support
system whose framework begins with the identification and modeling of subsystems,
statistical and machine learning techniques can be used to study the relationships between
the variables of interest, and to use logical rules (obtained from domain experts) to capture
the interdependencies between them.

Finally, an inference engine is applied to predict the possible consequences of the
given triggers and advise a decision-maker. The development of the inference engine
is carried out by generating a decision tree of the heap leaching process, followed by a
debugging, where it is customized considering the knowledge generated through statistical
analysis, and modeled based on machine techniques: learning and the conceptualiza-
tion/formalization of expert knowledge through operating rules.

2.4. Knowledge Representation

The representation and reasoning of knowledge are Artificial Intelligence (AI), which
deals with how knowledge can be symbolically represented and manipulated in an auto-
mated way through reasoning programs. More informally, it is the part of AI that deals
with thinking and contributing to intelligent behavior [54]. There are various methods to
represent knowledge. We have found methods based on ontologies (used in the proposed
system), methods based on rules, on knowledge networks, or methods based on graphics,
among others [55].

An ontology is an explicit specification of a conceptualization [56], allowing the
capture of consensual knowledge generically. A “conceptualization” refers to an abstract
model of some phenomenon by having identified the relevant concepts of that phenomenon.
“Explicit” means that the type of concepts used and the restrictions on their use are explicitly
defined [57].

An ontological system as a tool in a certain domain relates a set of harmonized parts
of a real knowledge [58] and prior conceptualization, developed by extracting knowledge
from both traditional sources (databases or sensors) and informal sources (domain ex-
perts). Within the formal sources, algorithms such as phenomenological mathematical
models [10,22,59], decision trees [60], regressions [31], neural networks [39], or Bayesian
networks [38], among others [37], are considered. The expert knowledge base is then
generated through rules and facts drawn from the expert(s).

2.5. Planning of Operating Modes

The contrast in the leaching dynamics of different copper minerals has already been
studied in the literature [10], indicating the differences between the mineral recovery curves
in oxidized minerals versus sulfide minerals. In work developed by [10], phenomenological
models were adjusted to extract copper from oxidized minerals in acidic media and sulfur-
ized minerals (secondary sulfides) using H2SO4 and chlorides at different concentrations.
This dynamic behavior of the feeding, considering the variable leaching time, to complete
the process when the mineral recovery in the leaching behaves asymptotically, supposes
high variations in the valid lifetimes of the heap (as shown in Figure 1a) due to lower
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leaching kinetics of sulfide minerals when exposed only to H2SO4, which implies increases
in operating costs.

Figure 1. Proposal to improve copper recovery through variation in operating modes. Leaching of
oxidized minerals and copper sulfides using only H2SO4 as the leaching agent (a), configuration of
operating modes (Modes A and B) according to mineral feed (b), and updating of operating curves
in the event of variation in leaching agents (c).

Given the variation in the recovery dynamics and the efficiency derived from main-
taining relatively constant battery lifetimes, introducing a system of operating modes such
as the one indicated in Figure 1b, associated with the copper oxide processing (Mode A) or
copper sulfides (Mode B), has the potential to introduce improvements in the responses
of the heap leaching process, accelerating the leaching kinetics of sulfide minerals (by
adding chlorides as leaching agent), showing that the recovery curves of secondary sulfides
tend to be assimilated to those of oxidized minerals (see Figure 1c), that is, operational
planning that considers the leaching of both oxidized and sulfide minerals (secondary) has
the potential to contribute to improving the efficiency in the use of the assets, increasing
the recovery of the mineral due to the use of selective leaching agents as organized through
different modes of operation depending on variations in the feed mineralogy. The modes of
operation considered as part of the proposed recommendation system are presented below:

• Mode A: Leaching of oxidized copper ores in acidic media.
• Mode B: Leaching of sulfide copper ores using H2SO4, and chlorides as a catalyst agent.
• Mode X: Mixed leaching of oxidized and sulfurized minerals in acidic media at low

chloride concentrations (This mode of operation corresponds to a transition mode,
between the leaching of oxides with H2SO4 and chloride-adhering sulfides).

2.6. Validation Using Performance Measures

Once the models have been developed, they must be validated using different tech-
niques. The data obtained in the experiments will generate a confusion matrix, a matrix
that facilitates the necessary analysis to determine where the classification errors occur. The
performance values necessary to evaluate the classifier’s performance to be implemented
will be calculated using this matrix. The confusion matrix is a 2 × 2 matrix with numerical
values TP, FP, TN, and FN, which are the result of the classified cases, where TP is the sum
of the true positive cases, FP is the true negatives, TF represents the positive ones false, and
FF corresponds to false negatives [61].
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The measures of merit used in this study help determine the quality of the predictive
models developed and are based on data from the confusion matrix and the training
result. The contrast between the outputs of the recommendation system and the planning
generated by historical data and by experts is evaluated through the performance indicators
confusion matrix, accuracy, precision, recall, specificity, F measure, Matthews correlation
coefficient, and kappa index [52]. These merit values are as follows:

1. Accuracy (Acc): Corresponds to the proportion of correctly classified cases from all
the examples in the dataset. This indicator can be calculated with the data from the
confusion matrix (see Equation (1)).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

2. Precision (p): The proportion of true positives (TP) among the elements is predicted as
positive (see Equation (2)). Precision refers to the spread of the set of values obtained
from repeated measurements of a quantity.

Precision = TP/(TP + FP) (2)

3. Recall (r): The proportion of predicted true positives among all items classified as
positive (see Equation (3)).

Recall = TP (TP + FN) (3)

4. Specificity: (True Negative Rate) measures the proportion of negatives that are cor-
rectly identified (that is, the proportion of those who do not have the condition (not
affected) who correctly identify as people who do not have the condition).

Specificity = TN/(TN + FP) (4)

5. F1 score: The F1 value is used to combine the precision and recall measurements into
a single value. This is practical because it makes it easier to compare the combined
performance of precision and recall between various solutions. F1 score is calculated
by taking the harmonic mean between precision and recall, as shown in Equation (5).

F1 score = Precision × Recall/(Precision + Recall) (5)

6. Matthew’s correlation coefficient (MCC): An indicator that relates what is predicted
with what is real, creating a balance between the classes, considering the instances
correctly and incorrectly classified in classes that are pretty different in size and with
a significant number of observations (see Equation (6)).

MCC = (TN × TP − FP × FN)/([(TN + FN) × (FP + TP) × (TN + FP) × (FN + TP)]0.5) (6)

7. Kappa index: An indicator that represents the proportion of agreements observed
beyond random with respect to the maximum possible agreement. It is used to
evaluate the concordance or reproducibility of categorical measurement instruments
and is defined as shown in Equation (7).

k = (Po − Pe)/(1 − Pe) | Pe = [(TP + FP) × (TP + FN) + (TN + FN) × (TN + FP)]/N2 (7)

Po represents the proportion of observed agreements (or accuracy) and Pe’s proportion
of agreements expected in the hypothesis of independence among observers, that is,
agreements by random.

The values of Equations (1)–(7) were calculated to evaluate the performance of the
proposed model with the historical data and the expert’s recommendations. This is useful
to compare the goodness of the developed model. The calculations, interpretations, and
comparisons are described in the next section.
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3. Implementation

The design of the proposed recommendation system considers the generation of the
planning of the modes of operation of the heap leaching phase in the copper hydrometal-
lurgical process based on variables and/or parameters such as mineralogy, leaching agents,
operational results, and databases and facts that are established based on the study of
the dynamics of the process such as consultations with experts in the domain formalized
through a system of rules, which together with machine learning models (such as the
generation of an inference tree derived from the construction of a decision tree) have the
potential to generate an optimal operation plan, which, together with generating planning
modes of operation or of varying operational parameters such as leaching agents, gener-
ate response estimates, that is, together with the operation planning, an estimate of the
recovery over time is generated through the application ion of phenomenological models
extracted from the literature [10,21], as previously adjusted.

The scheme for the proposed recommendation model presented in Figure 2 is divided
into the following sections:

3.1. Implementation of knowledge representation
3.2. Expert module
3.3. Recommendation module

Figure 2. The architecture of the proposed recommendation system.

3.1. Implementation of Knowledge Representation

This section describes the formalization and representation of the knowledge used
in the system. The representation of part of the knowledge was carried out by studying
the dynamics of the process developed by the authors in previous works and adjusting
phenomenological models and models based on regressions [10,31,62] of the decision tree
model fit and the formalization of expert knowledge through operating rules such as the
one exemplified below:

If %O > 80% and %S < 10%⇒Mode A

It is indicated that if the percentage of copper oxides is greater than 80% and the
percentage of leachable secondary sulfides is less than 10%, it must operate under operating
Mode A, as defined previously.
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The knowledge derived is part of the “Domain model” and/or the “Expert model”,
where the description of the entities (domain concepts), their attributes, roles, relationships,
and domain restrictions are stored. The domain of the model is described through the
ontology. In contrast, the expert model is given by an inference engine, derived from the
generation of a decision tree and customized according to expert knowledge, formalized
through operating rules.

The concepts (of the domain model) are represented using a domain ontology (see
Figure 3a). The main concepts are listed below [63]:

1. Heap/Pile: Accumulations of mineralized material carried out in a mechanized way,
forming a kind of continuous cake or embankment of varying height. The piles are
slightly inclined to allow the drainage and capture of the solutions and are watered
with a reagent solution to extract the mineral.

2. Operation mode: Configuration of productive resources in order to adapt to the char-
acteristics of the feed. For this knowledge model, three modes have been considered:
MODEA, MODEB, and MODEX. The detail of each operation mode and conditions of
changes are not of interest in this phase of the work.

3. Mineral: Inorganic solid substance, formed by one or more defined chemical elements
that are organized in an internal structure.

4. Reagent: A chemical element that establishes an interaction with other substances in
the framework of a chemical reaction, generating a substance with different properties
called a product.

5. Operating conditions: State of the variables of interest in a given mode of opera-
tion. Some variables are days of operation, irrigation ratios, type of reagent, total
reagent added, mineral recovery, and update of the amount of mineral extracted from
the heap.

6. Mineral recovery: Output variable or ore recovery function.

The relationships between classes were defined to identify the most appropriate
operation modes for a heap and the characteristics of the material, heap size, etc. Examples
of the relationships considered are listed below (see Figure 3b).

1. it_is_a_type: is the relationship between concepts that belong to the same hierarchy.
2. depends_on: is the relationship established between the concepts involved or influ-

ence in copper recovery.
3. leach: is the relationship between leaching agents and the type of material.
4. operates_according_to: is the relationship between the heap and the operation mode.

Sets the operating mode to be applied to a stack according to its characteristics.

Considering the simplifications applied to the production process, axioms have been
defined that express restrictions or specific characteristics of the heap leaching process
applied (generally) by the mining companies that apply this process. Some of these axioms
are described below.

1. Axiom 1: if P1, P2 are heaps and OM1, OM2 are operating modes (the operating
modes can exist independently of batteries and correspond to ways in which batteries
have been operated previously), and if OM1 corresponds to P1, and OM2 corresponds
to P2, then: P1 ∩ P2 = ∅.

2. Axiom 2: if P1 is a leaching heap and OM1, OM2 are modes of operation, and P
<oper> OM1 and P <oper> OM2, then: OM1 6= OM2 where <oper> represents the
univocal correspondence of the operation of a stack according to an operation mode.

3. Axiom 3: if P1, P2 are leaching heaps, M1, M2, and C1, C2 are the type of mineral and
the operating conditions of the pile, respectively, and it is known that C1 <corresp>
P1, C2 <corresp> P2 and M1 6= M2, then C1 ∩ C2 = ∅. <corresp> represents the
relationship between a Stack where a specific material and operating conditions are
established in a heap.

The implementation of the expert model, on the other hand, was carried out by
generating an inference engine, after generating a decision tree that models the studied
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process, developed using the “sklearn” library in Python 3.7.10. The inference engine
can also be conceptualized as a sequence of rules that model the knowledge of the heap
leaching process, and can indicate a course of action or some recommendation of the
response variables before the entry of one or the other more sequences of records of the
independent variables. The complete set of rules that model the system is obtained by
considering the largest number of rule combinations that can be theoretically established
(or by adjusting using classification algorithms such as decision trees). However, among
all these theoretical rules, some do not make physical sense or do not conform to the
characteristics of the problem to be solved, which are in contrast to expert knowledge.
Due to the complexity of the proposed model, it is necessary to reduce the number of
combinations made by adjusting the algorithm. The most frequent cases or combinations
of variables are used as a rule base to achieve this reduction.

Figure 3. Class hierarchy of the ontology for the definition of operation modes (a) and hierarchy of properties associated
with the classes of the ontological representation (b).

Another essential element in the formulation and design of the expert module, which is
a fundamental part of the declarative knowledge of the system’s behavior, is the availability
of data to generate the recommendation prototype (database of recovery results). The
selection and subsequent categorization of the variables involved in the heap leaching
process were determined from the practical study of the process and its theoretical basis.
When the characteristics that govern the process are theoretically defined, several variables
are presented that are involved and act with each other as the process is carried out. When
comparing the information obtained from the theory with the observation and analysis of
the practical execution, the most relevant variables are identified, highlighting those that
can significantly interfere with the final result if there is no control over them. In this sense,
historical data are available for the heap leach’s assembly, seasonal, and disposal phases.
Additionally, there is the experience of experts in the domain for the generation of rules.
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The feeding into the process is given by a set of variables whose impact is widely
documented in the literature [21,22,33,35,36,38,64,65]; however, to model the dynamics of
the process in the proposed recommendation system considering the sampling restrictions
(variables not sampled under operational conditions), the following independent variables
are considered:

• Percentage of oxides in the feed (%O);
• Percentage of sulfides (secondary) in the feed (%S);
• Granulometry (d);
• Surface velocity of the leaching flow (µs); and
• Chloride at concentrations of 20 g/L (Cl20) and 50 g/L (Cl50) (see Table 1).

While the process responses are given by:

• Operation mode; and
• Copper recovery.

Table 1. Chloride concentrations versus sulfide levels.

Cl/Sulfides Non-Existent Medium High

Cl20 0 1 0
Cl50 0 0 1

Additionally, the presentation model was given by designing the recommendations
generated by the proposed recommendation system. For this, the generation of sequences
of periods that share similar feeding characteristics was considered, that is, sequences of
periods in which a single mode of operation is maintained; the duration of the period,
the suggested mode of operation, and the average expected recovery are presented. The
presentation model contains the knowledge of the recommendation prototype (recommen-
dations and conclusions based on abstractions), the representation of historical episodes
(data and events) of the assembly, seasonal, and disposal phases of a heap leach, in addition
to the process responses.

Finally, to estimate the expected recovery of mineral per period, phenomenological
models were applied to estimate the recovery of minerals against a certain mode of opera-
tion. For calculation purposes, it is considered that the input of the feeding data contains
all the values of the variables indicated in the previous subsection.

3.2. Expert Module

As explained in Section 2.3, the expert module is part of the recommendation model
in charge of extracting or capturing human knowledge to solve problems that generally
require human experts. A well-designed expert system mimics the reasoning process of
domain experts to solve specific problems, serving as support mechanisms to be used
by non-experts to improve their problem-solving or decision-making skills. Additionally,
these systems have the potential to outperform any individual human expert in making
decisions in a given domain [66].

The components that comprise the developed expert module consider the acquisition,
representation, treatment, and use of knowledge from the domain model, the expert model,
the feed data, and the mineral recovery results.

The acquisition of knowledge was carried out by extracting knowledge from both for-
mal sources (databases of operational parameters of a mining worksite in the Antofagasta
region, Chile) as well as knowledge from experts in the domain to generate an inference
engine, previous representation of the knowledge, that allows one to obtain the planning
of recommendations of modes of operation. The formalization of this knowledge is in the
“Domain model” and “Expert model”. The representation has been made using ontology
(detailed in Section 3.1), while a system of rules formalizes expert knowledge.

The treatment of knowledge, on the other hand, was generated by adjusting machine
learning techniques. The logical rules of operation obtained from expert knowledge were
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formalized through an inference tree (base of the inference engine), which is expressed
through a set of operating rules that determine the most suitable mode of operation in
the face of variations in the power supply. The outputs of this process correspond to the
planning of a sequence of operating modes.

Finally, knowledge was used to generate abstractions related to the mode of operation,
its characteristics, and results. They are partial results that add more atomic interpretations
that result from applying the rules described in the “Expert model” such as the duration of
each operating cycle, the average mineral recovery, and the assignment of the operating
mode to the percentage dynamics of the types of minerals in food. In other words, the use of
knowledge refers to the incorporation of the expert module in the recommendation system,
the formalization of knowledge, food data, and methods based on statistical techniques
and machine learning to estimate the deliverables of the modeling process.

3.3. Recommendation Module

The recommendation module is in charge of interaction with the user, receives the
user’s request, and delivers a recommendation plan as a result. This module uses the
knowledge base “Presentation model” to generate the recommendations, which in turn
also uses knowledge of the “Domain model” and the “Expert model” to detail aspects
of the domain and the rules that model the dynamics of the process (i.e., characteristics
of the feed). The interconnection between the recommendation module and the expert
module allows us to refine the power data, generating abstractions about the planning of
the sequence of operation modes and planning in herself.

The acquisition of knowledge about the representation of the recommendations was
carried out, on one hand, through interviews with an expert planner, who said or gave
the guidelines of (a) what planning of the operation mode should carry (indicate) and (b)
what an expected planning sequence should indicate. He also received requests for (c)
refinement from the human planner.

In summary, the outputs of this module will be recommendations for (a) planning the
operating mode and (b) explanation of the expected recovery sequence, according to the
suggested plan.

4. Results and Discussion

This section is broken down into three subsections: the implementation of the rec-
ommendation system; the results of the proposed system, where the results of both the
analytical models generated to represent the dynamics of the studied system and the
recommendation of modes of operation are indicated (including the validation of the
recommendations against historical data and experts in the domain); and finally, the
discussions and analysis of the findings of the work carried out are presented.

4.1. Implementation of the Recommendation System

The implementation considered the generation of an expert module (whose function is
the acquisition, representation, and treatment of knowledge) and the inclusion of this in the
recommendation system including the knowledge base, represented through an ontology of
the domain and the predictive response analysis, in order to deliver a sequence of operating
modes and an estimate of the expected mineral recovery. After having the input variables
(feeding the statistical or phenomenological models), in addition to the knowledge of the
expert (through operating rules), the treatment of knowledge was formalized through the
generation of an inference tree, in charge of the process of selection, decision, interpretation,
and application of the behavior that reflects the necessary reasoning to induce a certain
mode of operation in the face of certain feeding conditions.

The development of the inference tree was adjusted by developing a decision tree
using the sklearn library in Python, while the criterion for the quality of the divisions
was entropy. The pruning of the decision tree and its pruning parameter (α) is shown in
Figure 4a, indicating that for a range of 0.01 ≤ α ≤ 0.011, the accuracy of the decision tree
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in the training set is maximized a priori. In contrast, the range 0.011 ≤ α ≤ 0.25 maximizes
the accuracy of the test set. Figure 4b shows that using different training and testing data
with the same α resulted in different precisions, suggesting that alpha is sensitive to the
datasets. Therefore, instead of choosing a single training dataset and a single test dataset,
cross-validation was used to find the optimal value for α.

Figure 4. Accuracy versus pruning parameter (α) (a) and accuracy for fitting 10 trees using 10 subsets (b).

Using cross-validation, as shown in Figure 5, we can conclude that the pruning
parameter α should be close to 0.015. Then, the ideal value of α to maximize the statistical
accuracy to build the best tree is 0.0152.

Figure 5. Average accuracy through cross-validation.

Finally, incorporating the operation rules generated by the experts into the decision
tree, the inference engine shown in Figure 6 is obtained. The confusion matrix presented in
Table 2 indicates that the inference engine is relatively accurate to estimate the modes of
operation of the heap leaching phase, which was confirmed by the performance statistics
of the classification of the modes of operation shown in Table 3, corresponding to the
classification of the data used for the generation of the decision tree.
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Figure 6. Inference engine of the expert module.

Table 2. Confusion matrix.

System Historical

Real/Predicted A B X

A 2982 47 146
B 17 769 127
X 94 81 2487

Table 3. Inference engine performance statistics.

Statistical/Mode A B X

Accuracy 0.9550 0.9597 0.9336
Precision 0.9392 0.8423 0.9343

Recall 0.9641 0.8573 0.9011
Specificity 0.9472 0.9754 0.9561
Accuracy 0.9550 0.9597 0.9336

An example of the dynamics of the inference engine shown in Figure 6 is presented below:

If sulfides percentage > 0.6:
If oxides percentage ≤ 0.2:

If Cl20 is not applied:
If Cl50 is applied:

Return [0.00,0.00,99.99] as probability distributions

Where, if the following conditions are met: percentage of sulfide minerals is greater
than 60%, the percentage of oxidized copper minerals is less than 20%, no chloride concen-
tration is applied at 20 g/L, but if chlorides adhere to 50 g/L, independent of the leaching
flow rate and granulometry, the recommended operating mode is Mode B, leaching of
sulfur minerals in acidic media with the addition of chlorides at high concentrations.
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From the historical data, it is not possible to appreciate a direct impact of the super-
ficial velocity of the leaching flow or the granulometry in the mode of operation of the
hydrometallurgical phase studied in the inference engine. This is explained because said
variables impact mineral recovery (estimated from phenomenological models), depending
on the conditions or mineralogical distribution of the feed.

Ontology Modeling

The ontology was implemented in the OWL language with the use of the Protegé
Software (version 5.5.0) [67] since it facilitates the creation of classes, the instantiation of
individuals, the implementation of properties, both of objects and data types, in addition
to offering the inclusion of rules on which it is possible to infer knowledge. Ontology
management, on the other hand, was developed using the “owlready2” library. In line
with the significant variables identified to generate predictions of the operating mode
recommendation system in the heap leaching phase, the modeled ontology, presented in
Figure 3, was composed of the following entities:

• Operating conditions

◦ Days of operation
◦ Irrigation ratios
◦ Types of reagents
◦ Total reagent added

• Modes of operation

◦ Mode A
◦ Mode B
◦ Mode X

• Heap

◦ Physical characteristics

� Heap height
� Granulometry

◦ Chemical characteristics

� Grade of oxides
� Grade of primary sulfides
� Grade of secondary sulfides

• Types of reagents

◦ H2SO4
◦ Cl

• Mineral recovery
• Type of mineral in the feed (Mineral)

◦ Oxides
◦ Sulfides

4.2. Evaluation of Recommendations

For the analysis of the operational information, it is possible to generate processing
plans optimized to the operational conditions at the mining sites, adjust models based on
machine learning, and incorporate expert knowledge to generate recommendation modes
that improve the mining phase’s operational indicators of heap leaching, considering a
smoothing of the variations that avoid continuous variations in short periods. On the other
hand, after generating the operation plan, estimates are generated for mineral recovery
in % for each block of the operation sequence through process models extracted from the
literature, mainly phenomenological models.

The incorporation of different modes of operation in the processing of the leaching
phase in copper ore heaps gives greater flexibility to the production process to adapt
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to changes in the feed, which is proven by analyzing the deliverables that consider the
display of the comparison between the expected recovery mode generated by the rec-
ommendation system (see Figure 7a) and the actual recovery mode (see Figure 7b). The
validation of the recommendations of the recommendation system was carried out by
contrasting the outputs of the proposed system against the operational data and the expert,
showing the confusion matrices of both contrasts in Table 4, wherein 87.3% of the cases,
the model correctly predicted observations compared to historical processing modes. In
comparison, 77.8% correctly predicted observations compared to the recommendations of
a domain expert.

Figure 7. Modes of operation proposed by the recommendation system (a), historical modes of operation
(b), and modes of operation recommended by expert knowledge (c) in the heap leaching phase.

Table 4. Confusion matrix between system recommendations versus historical operating modes and
domain expert recommendations.

System Historical Expert

Real/Predicted A B X A B X

A 592 7 17 587 13 22
B 8 198 21 12 188 21
X 12 13 212 16 19 202

Different decision metrics were considered to evaluate the effectiveness of the clas-
sification system, that is, the frequency with which the system makes correct recom-
mendations (both according to the operation history and with the contrast with the
experts’ recommendations).

The metrics used to evaluate the recommender’s performance included accuracy,
precision, recall, F1 score, and kappa index. The contrast between the modes of operation
recommended a priori by the proposed system (see Figure 7a) and the historical modes
of operation (see Figure 7b) indicates that the inference motor tends to be sensitive to
variations in power supply. However, the performance indicators of the model presented
in Table 4 indicate that the intelligent system is efficient in generating a recommendation
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plan for operating modes in contrast to the historical operating modes, despite the potential
costs associated with the variation of the use of assets as a result of continuous variations
in the recommended mode of operation. On the other hand, to avoid continuous changes
in the operating mode, the recommended outputs were smoothed (see Figure 7c) to ob-
tain planning that optimized the recovery of minerals in the heap leaching phase, thus
minimizing the number of changes in the recommended mode.

The performance statistics of the system shown in Table 5 indicate that, in general,
the model was quite accurate to model and recommends a certain mode of operation in
the event of variations in power. The contrast between the values of the performance
statistics compared with the historical data and with the expert showed that in the case of
the historical data, the modes of production tended to be smoothed so as to not present
constant variations in the use of data assets (see the comparison between planning in
Figure 7a versus Figure 7b). In contrast with the expert, there was a tendency to further
smooth the planning to minimize changes in operating modes.

Table 5. Performance statistics of the proposed recommendation system versus historical data and
domain expert.

Indicator Modo Proposal/Historical Proposal/Expert

Accuracy
A 0.95926 0.94167
B 0.95463 0.93981
X 0.94167 0.92778

Precision
A 0.96104 0.94373
B 0.87225 0.85068
X 0.89451 0.85232

Recall
A 0.96732 0.95447
B 0.90826 0.85455
X 0.84800 0.82449

Specificity
A 0.94872 0.92473
B 0.96636 0.96163
X 0.96988 0.95808

F1 score
A 0.96417 0.94907
B 0.88989 0.85261
X 0.87064 0.83817

MCC
A 0.91699 0.88090
B 0.86161 0.81480
X 0.83351 0.79189

Kappa index
A 0.91696 0.88082
B 0.86133 0.81480
X 0.83301 0.79171

Finally, the use of different modes of operation can improve the strategic planning
of the mining plan, making the value chain more flexible by making better use of assets
and improving mineral recovery, regardless of the mineralogical characteristics of the
mine feeding.

4.3. Discussion

In this subsection, the key challenges faced, and lessons learned from building
the decision support system based on prior knowledge for heap leach phase manage-
ment in copper hydrometallurgy are discussed, and the advantages and limitations of
the proposed framework.

The implementation of innovative tools applied to support modes of operation such
as those based on recommendation systems can improve the operational indicators of
the mining sector. Still, it will not provide all of the potential advantages if they are not
integrated with existing systems. The interoperability of the different systems allows the
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information management to be sustainable and with a satisfactory level of quality, which
will benefit companies adopting the technological revolution as the central axis of their
strategic planning. To predict the future behavior of the assets in the face of variations in
the supply of minerals, the dependencies of the assets were captured using rules in this
work. However, creating a comprehensive rule base for heap management is not feasible,
especially when working with few domain experts whose time is extremely valuable. In
this work, a rule base with three possible scenarios/outputs was created to demonstrate
the applicability of the proposed reasoning and the decision support framework. Different
experts or organizations can create rule bases for different scenarios/applications in a
distributed manner for larger-scale applications, incorporating a more extensive set of
power variables or a larger set of asset use distributions. It is important to highlight that
tools such as ontologies can provide a common language to handle the modeled process’s
knowledge to complement the recommendation generated by the expert system.

In this research work, a recommendation prototype for modes of operation in the
heap leaching phase in copper mining was presented. This takes into account the context
and is fundamentally based on content from both the analysis of historical data (from of a
mining site) using statistical techniques (for predicting the expected recovery of mineral)
and machine learning (by adjusting a decision tree, the base component of the inference
engine) as well as knowledge extracted from experts in the domain (through operation
rules incorporated into the inference engine dynamics). The prototype presented in this
work was designed to support decision-making.

The use of fuzzy information (coming from the power supply) is exciting since it
allows the operator to specify their preferences (of operating modes) with a relatively
broad degree of freedom. It is essential to bear in mind that for this system to work, a
previous compilation of both modes of operation and the operating conditions where a
specific mode of operation was put into operation and the experts’ evaluations. However,
as more data become available, especially in the context of the Internet of Things, and
more intelligent sensors are installed to monitor production processes, information will
no longer be fuzzy, and handcrafted rules could be used to guide the learning of quantita-
tive/logical rules using tool applications such as big data and validate existing domain
experts’ existing rules.

Systems such as the one proposed in this work will facilitate the companies and
organizations to obtain more detailed knowledge about the dynamics of the studied
process and efficiently learn the impact on the responses of the variation in the variables
and/or explanatory parameters. The validation through case studies (historical data)
and comparison against the experts were used to evaluate the correct operation mode or
configuration of assets or resources in the copper heap leaching process.

5. Conclusions and Future Works

In this work, a novel knowledge-based decision support system was presented to
integrate recommendations for operating the hydrometallurgical heap leaching process.
A recommendation system for selecting operating modes was generated, inspired by
intelligent recommendation systems, by modeling the dynamics of the process through
statistical techniques and machine learning, techniques that have been widely applied in
business processes as described in [37], mining, and the modeling of expert knowledge
through operation rules.

Then, the main tasks performed by the proposed system are the selection of the
operating plan and the recommendation of said plan in a given period, together with
the prediction of the expected recovery. For the selection task, there are rules to identify
the best operation plan, according to the characteristics of the materials and the leaching
process described above. For the recommendation task, a model was designed to show the
recommended operation plan (output from the first task). The feedback collected from ex-
ternal experts in the domain suggest that the reasoning processes (rules) and the estimated
consequence are appropriate for current practice, that is, to generate an operation plan
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that improves operational indicators, which was validated by the performance statistics,
accuracy, or precision, among others.

In summary, the article has made the following novel contributions:

• The first decision support system was presented that allows decision support to the
hydrometallurgical phase of heap leaching.

• An inference system was formalized and developed to recommend a mode of opera-
tion based on variations in feeding.

• This inference engine was integrated into a recommendation system that generates
predictions of the responses.

Finally, as future work, the current system will be expanded considering additional
scenarios and/or variations such as an extension of reagent concentrations or the impact of
variables such as porosity or the level of carbonates in the feed.
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