
metals

Article

Fatigue Assessment of Selective Laser Melted Ti-6Al-4V:
Influence of Speed Manufacturing and Porosity

Unai Segurajauregi 1, Adrián Álvarez-Vázquez 2 , Miguel Muñiz-Calvente 2,* , Íker Urresti 1

and Haydee Naveiras 1

����������
�������

Citation: Segurajauregi, U.;

Álvarez-Vázquez, A.;

Muñiz-Calvente, M.; Urresti, Í.;

Naveiras, H. Fatigue Assessment of

Selective Laser Melted Ti-6Al-4V:

Influence of Speed Manufacturing

and Porosity. Metals 2021, 11, 1022.

https://doi.org/10.3390/met11071022

Academic Editors: Atila Ertas, Adam

Stroud and Matteo Benedetti

Received: 3 May 2021

Accepted: 22 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IK4-Ikerlan Technology Research Centre, Mechanics Area, Po J.M. Arizmendiarrieta 2,
20500 Arrasate-Mondragón, Spain; usegurajauregi@ikerlan.es (U.S.); iurresti@ikerlan.es (Í.U.);
nphaydee@gmail.com (H.N.)

2 Department of Construction and Manufacturing Engineering, University of Oviedo, 33203 Gijón, Spain;
alvarezvadrian@uniovi.es

* Correspondence: munizcmiguel@uniovi.es

Abstract: Additive Manufacturing represents a promising technology as an alternative to the con-
ventional manufacturing process, with rapid and economic product development, as well as a
significant weight reduction and a freeform design. Although the mechanical properties of additively
manufactured metals, such as the Ti-6Al-4V alloy, are well-established, a complete understanding
of the fatigue performance is still a pending aspiration due to its inherent stochastic complexity
and the influence of several manufacturing factors. This paper presents a study of the influence
of speed manufacturing and porosity in the fatigue behaviour of a Ti-6Al-4V alloy. To this aim,
a numerical simulation of the expected porosity at different laser velocities is performed, together
with a simulation of the residual stresses. These numerical results are compared with experimental
measurements of residual stresses and a qualitative analysis of the porosities. Then, fatigue strength
is experimentally obtained for two different laser speeds and fitted by a probabilistic model. As a
result, the probabilistic S–N fields for different laser velocities are found to be similar, with scatter
bands nearly coincident, drawing the conclusion that this effect is negligible in comparison with other
concurrent ones, such as roughness or surface defects from manufacturing conditions, promoting
crack initiation and premature fatigue failure.

Keywords: additive manufacturing; fatigue; titanium; selective laser melting

1. Introduction and Motivation

Additive Manufacturing (AM), formerly known as Rapid Prototyping (RP) (see ASTM
F2792-12a [1]), has undoubtedly been increasing over the last two decades as a technol-
ogy that is disrupting current manufacturing processes, and attracts interest from both
industrial and academic perspectives [2–5]. Known also as 3-D printing, AM consists of
a progressive consolidation of raw materials, such as powder or wire, in a layer-by-layer
fashion, in an opposite approach to traditional manufacturing processes, which are typi-
cally based on machining block parts, that is, the subtraction or removal of material [6].
Moreover, this novel technology has several important advantages compared with tradi-
tional methods: an agile development product from Computer Aided Design (CAD) to
fabrication; a significant reduction of weight in the final design (with potential reductions
of up to nearly 50% [6,7]); and a geometric freedom that allows the production of parts
otherwise not possible with conventional methods. Additionally, AM may lead to the
reduction of carbon emissions compared with traditional manufacturing processes, due to
the use of lighter weight parts [6,8].

Polymeric materials were originally preferred for producing additively manufactured
parts [5], but nowadays both non-metallic (composites, ceramics) and metallic materials
are usually employed. The titanium (Ti) alloys, in particular, are of great interest because
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of their increasing use in the aerospace industry due to their weight saving, operating tem-
perature, corrosion resistance and compatibility with biological and composite materials.
Unfortunately, their higher cost compared with other alternatives hitherto represents the
most important limitation [6,9–12].

Three different technologies were developed to produce metal additively manufac-
tured parts: Laser Beam Melting (LBM), Laser Metal Deposition (LMD) and Selective Laser
Melting (SLM), the latter being the most commonly used [13,14]. In this process, the energy
of the laser source is applied to melt powder, as a raw material, within a powder-bed layer.
Then, the 3D geometrical design is built up by recoating a new powder-layer and subse-
quent melting [5]. Nowadays, these manufacturing technologies for developing structural
alloys are particularly useful, since the intrinsic heat can be directly used to trigger the
chemical reactions, such as those implied in precipitation hardening alloys [15,16].

There are different works in the literature that have focused on researching the in-
fluence of different additive manufacturing parameters on the fatigue performance of
Ti-6Al-4V, such as the microstructure, the build direction, the residual stresses and the
porosity. In the first case, Nalla et al. [17] have investigated the influence of the microstruc-
ture on both bimodal and coarser lamellar types, concluding that the latter improved the
fatigue behaviour in the HCF zone, whereas Thijs et al. [18] studied the influence of the
scanning parameters and scanning strategy on the microstructure during the SLM process.
In the second case, Edwards et al. [6,19] presented a study on the effect of the build direc-
tion, revealing that the cracks oriented perpendicular to the build layers provide enhanced
fatigue crack growth behaviour. Regarding the residual stresses, several researchers [20,21]
have found that a high temperature pre-heating during the additive manufacturing process
may reduce thermal gradients. Lastly, [22] evidenced that the failure initiation in SLM or
EBM manufactured titanium alloys is governed by porosity and lack of fusion. Neverthe-
less, previous works have not investigated the influence of speed manufacturing, which
would be conducted with different porosities and could imply different fatigue behaviours.

The aim of this paper is to study the influence of different laser velocities on the
porosity of additively manufactured specimens of the Ti-6Al-4V alloy and to evaluate the
fatigue performance associated with those porosities. Firstly, numerical simulations were
developed to study the expected porosity considering different laser velocities, together
with residual stresses inherent to the manufacturing process. Secondly, these numerical re-
sults were compared with experimental measurements of residual stresses and a qualitative
analysis of the porosities. Thirdly, a tensile test was conducted on specimens produced at
two different laser velocities in order to evaluate its influence on the mechanical properties.
After that, a fatigue experimental campaign was carried out on specimens at two different
laser speeds and the results were evaluated according to a probabilistic S–N model devel-
oped by [23], contrary to the fatigue assessment methodologies performed in the literature,
based on deterministic S–N models [24–26], through the inherent and non-negligible scatter
titanium fatigue tests [6,27–31].

The paper is structured as follows: in Section 2, the material and methods employed
in this study are detailed, including the material and geometry selected (Section 2.1),
the manufacturing conditions (Section 2.2) and the experimental procedures followed in
the testing (Section 2.3). Section 3 details the numerical study of the porosity and the
residual stresses together with the experimental results obtained. Section 4 is focused on
both the tensile (Section 4.1) and fatigue characterization of two different laser velocities
(Section 4.2). Section 5 presents an interpretation of the experimental results and, finally,
Section 6 summarises the main conclusions drawn from this work.

2. Materials and Methods

This section describes the material and geometry of the specimens to be used in the
experimental campaign in this work. Then, the manufacturing conditions are also detailed,
distinguishing different batches of samples fabricated for porosity, tensile and fatigue
characterization. Finally, the experimental testing procedures are exposed.
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2.1. Material and Geometry

The specimens were produced using the SLM technique employing a titanium-based
alloy, Ti-6Al-4V. The dimensions of the specimen are indicated in Figure 1. Note that the
build direction Z-axis is indicated, starting at the support.
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Figure 1. Dimensions (in mm.) of the Ti-6Al-4V specimens with build direction in Z and the support.

2.2. Manufacturing Conditions

All the specimens were provided by the manufacturer Optimus3D (Vitoria–Gasteiz,
Spain) in the same orientation. The SLM parameters selected are detailed in Table 1.
Three different batches of additively manufactured Ti-6Al-4V samples were produced with
the following purposes:

− Batch 1: Porosity characterization. Fourteen specimens were fabricated with 7 different
velocities to evaluate their influence on the porosity (2 samples per velocity):

{
800,

1100, 1200, 1300, 1500, 1700, 1900
}

mm/s.
− Batch 2: Tensile characterization. Two specimens were manufactured with laser

velocities of 1200 and 1900 mm/s (1 sample per velocity) for tensile characterization
of the material.

− Batch 3: Fatigue characterization. Fifteen specimens were manufactured with laser
velocities of 1200 (7 samples) and 1900 mm/s (8 samples) for fatigue characterization.

Table 1. SLM parameters selected.

Layer Thickness Hatch Spacing Power
.[mm] [mm] [W]

0.03 0.1 200

2.3. Testing and Characterization Procedures
2.3.1. Porosity Measurement Procedure

The samples from Batch 1 were sliced using a diamond disc cutter by removing a layer
thickness of no less than 1 mm, in order to avoid the effect of the cutting process on the
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microstructure. Silicon carbide papers with different grades of 80, 240, 600, 1200 and 2500
(in this order) were used for the grinding with a continuous water stream for flushing the
loose and abrasive particles. Then, a manual polishing process was applied to the surfaces
using a diamond suspension of 9, 3 and 1 microns of particle size on a Remet LS1.

It is worth mentioning that neither the heat treatment nor the machining process were
conducted on specimens before the experimental campaign, since the aim of this work was
to study only the laser velocity, that is, without any additional varying concomitant effect
that could mislead the interpretation of the experimental results. After that, the porosity
was qualitatively analysed using both optical and scanning electron microscope (SEM).
The entire surface of the specimens was analyzed with a resolution of 500 µm in order to
identify the zones with larger pores. After that, different scanning zooms (10 and 50 µm)
were applied to focus on the zones where pores had been observed. In cases where the
resolution of 500 µm was not enough to identify pores in any part of the specimen, 50 µm
was used to check the entire surface. It is important to remark that smaller pores could
not be identified by the applied resolution. Still, the authors assumed that the influence of
those pores on the fatigue life could be disregarded, compared to the pores identified in
this study.

2.3.2. Residual Stresses Measurement Procedure

The measurement of the residual stresses was performed by way of the hole drilling
strain gage method according to ASTM E837–13a [32] using an MTS-300 RS measurement
machine supplied by SINT Technology, as can be seen in Figure 2. The parameters selected
included a drilling speed of 0.2 mm/min, a drill delay of 2–3 s and an acquisition delay set
to 5–10 s. The RESTAN software (SINT Technology) was used to obtain the residual stresses.

Figure 2. Strain gage method in hole drilling for measurement of residual stresses.

2.3.3. Tensile and Fatigue Characterization Procedure

The tensile tests were developed according to EN 2002 [33]. A strain rate of 0.05 mm/min
was used for yield stress σys at 0.2 % and 2 %/min for tensile strength σr. The displacement
was measured using DIC equipment.

The fatigue tests were conducted for sinusoidal load at R = 0.1 and at ambient
temperature, according to ASTM E466-07 [34], at a frequency of 6 Hz with stress ranging
from 100 to 600 MPa, in a servohydraulic MTS Bionix. As previously mentioned, a total of
7 samples were tested for laser velocity v = 1200 mm/s and 8 samples for laser velocity
v = 1900 mm/s.
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3. Study of Porosity and Residual Stresses

This section presents the results obtained from numerical and experimental studies
related to the estimation and measurement of specimens porosity and residual stresses.

3.1. Numerical Study: Expected Porosity and Residual Stresses

Two different numerical studies were conducted: a porosity simulation for each of
the different laser velocities considered in Batch 1, and a finite element simulation for the
estimation of the residual stresses.

In the first case, the tool known as “Additive Science”, from the Additive Suite
developed by ANSYS [35], was used to simulate the expected porosity with different laser
velocities. The following constraints in the dimensions of the melt pool were introduced as
an input (see Figure 3):

− Reference depth (D ≥ 0.045). It ensures that half of the third layer is passed in the
material fusion.

− Ratio depth/width (D/W < 0.95). It ensures the depth is nearly the same as the width.
− Ratio length/width (L/W < 4). It ensures the length is not larger than the width.

W

D

L

Baseplate

Powder

Z
Y/X

Figure 3. Dimensions of the melt pool.

Based on the constraints on the melt pool, the geometrical mean results provided by
Additive Science for each velocity are summarised in Table 2.

Table 2. Numerical results of the geometrical dimensions of the melt pool for different velocities.

Scan Speed D L W
[mm/s] [mm] [mm] [mm]

800 0.115 0.447 0.157
1100 0.082 0.446 0.136
1200 0.074 0.442 0.130
1300 0.067 0.439 0.125
1500 0.056 0.428 0.115
1700 0.047 0.417 0.108
1900 0.039 0.400 0.101

Once the dimensions of the melt pool had been estimated, the software provided the
expected porosity for each of the different laser velocities considered, as shown in Table 3,
together with the corresponding energy density in the SLM process. The porosity was
directly estimated by ANSYS as a function of the energy density applied, which depends
on the power, velocity and the dimensions of the melt pool. It is also worth mentioning
that this software only considered the porosity that was due to a lack of fusion, which was
predominant at high velocities, and the porosity that was due to spherical vaporization was
discarded. Then, in order to identify the kind of porosity to be experimentally found, the
causal relationship between the energy density and the kind of porosity proposed by Dilip
et al. [36] was used: spherical pores correspond with energy density >60 J/mm3, a lack of
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pores (or completely net) corresponds with energy density in the interval 55–60 J/mm3

and sharper pores correspond with energy density <55 J/mm3. Then, according to these
limits, only the velocity 800 mm/s was expected to produce spherical pores, but with a
lower percentage of porosity. On the contrary, those velocities higher than 1300 mm/s were
expected to give sharper pores, with the porosity percentage increasing as much as the
velocity increases. According to the simulation performed and the results obtained, middle
velocities ranging from 1100 to 1200 were not expected to produce pores, but completely
net structures. Finally, it is worth mentioning that the values reported in Table 2 regarding
the percentage of porosity are not related to experimental measurements, but to results
obtained by the Additive Suite tool developed by ANSYS, in combination with the work
reported by Dilip et al. [36], which studied the influence of processing parameters on
the evolution of melt pool and porosity in Ti-6Al-4V alloy parts fabricated by selective
laser melting.

Table 3. Numerical results of the porosity simulations for different velocities.

Scan Speed Energy Density Porosity
.[mm/s] [J/mm3] [%]

800 83.33 0.00
1100 60.61 0.00
1200 55.56 0.00
1300 51.28 0.00
1500 44.44 0.01
1700 39.22 0.08
1900 35.09 0.36

In the second case, the Additive Science tool allowed the residual stress to be nu-
merically simulated, as can be seen in Figure 4, where the equivalent von Mises stress is
depicted along the sample.

Figure 4. Residual stresses simulated upon the removal of the support.
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3.2. Experimental Results
3.2.1. Porosity

The porosity was qualitatively analysed using both optical and scanning electron
microscopes (SEM) for each of the laser speeds considered in Batch 1, as can be seen in
Figure 5. As is well known, the geometrical forms of the pores are expected to be heteroge-
neous depending on the laser velocity, which occurred in this case; ranging from spherical
(Figure 5a) at low velocities and high laser power, to irregular and sharper (Figure 5d–f)
for large velocities and low laser power, which is in accordance with the simulated results
in Section 3.1. The former are known to be caused due to improper settings or processing
parameters [12,37,38], while the latter are usually related in the literature to the argon gas
entrapped during the manufacturing process [39–41]. Furthermore, the middle velocities
were expected to produce a negligible porosity in comparison with the other velocities (see
Table 2), which is corroborated in the micrographs in Figure 5b,c).

a) b)

d) e)

(a)

(c) e)

(b)

(d)

(e) (f)

Figure 5. SEM micrographs for different laser velocities: (a) v = 800 mm/s, (b) v = 1100 mm/s,
(c) v = 1200 mm/s, (d) v = 1500 mm/s, (e) v = 1700 mm/s, (f) v = 1900 mm/s.

3.2.2. Residual Stress Measurement

Figure 6 illustrates the experimental results of the maximum and minimum residual
stresses along the distance for both velocities considered in Batch 1. The maximum values
of the residual stresses for the higher velocity evolve steadily along the distance, while
for the lower velocity, a peak is present at the 0.1 mm distance. The same behaviour is
observed in the case of minimum residual stress but at a lower order of magnitude. In
general terms, there is an inverse trend between the development of residual stresses and
the laser speed, that is, the values for both maximum and minimum residual stresses are
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higher for the larger velocity until a certain distance of almost 0.6 mm, where both trends
tend to be equal.
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Figure 6. Experimental values of maximum and minimum residual stresses for two different laser
velocities: v = 1200 mm/s and v = 1900 mm/s.

4. Study of Tensile and Fatigue Behaviour

Once the study of the expected porosity and residual stresses and its comparison
with the experimental results was performed, the tensile and fatigue characterization was
conducted, and is now described in this section.

4.1. Tensile Behaviour

Engineering stress–strain curves for both velocities considered in Batch 2 are illustrated
in Figure 7. As can be seen, the linear-elastic regime is approximately the same in both cases,
but with a larger yield strength the lower the laser speed. In the plastic zone, however,
the samples manufactured at a lower laser velocity produce a better tensile performance
for the same strain value. Table 4 summarises the mechanical constants of the additively
manufactured specimens for both velocities.

v1 = 1200 mm/s

v2 = 1900 mm/s

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

Strain (%)

St
re

ss
(M

Pa
)

Figure 7. Engineering stress vs. strain curves for Ti-6Al-4V for two velocities: 1200 and 1900 mm/s.

Table 4. Tensile properties for additively manufactured Ti-6Al-4V obtained from the stress–strain
curves in Figure 7.

Velocity (mm/s) σys (MPa) σr (MPa) ε f (%)

1200 1068.62 1158.96 6.12
1900 990.69 1114.76 6.58
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4.2. Fatigue Behaviour

Finally, the fatigue assessment of manufactured Ti-6Al-4V samples from Batch 3 was
conducted according to the probabilistic model developed by [23]. In this model, the
p-percentile curves in the S–N field are given as the following Weibull distribution:

p = 1 − exp

[
−
(
(log ∆σ − C)(log N − B)− λ

δ

)β
]

, (1)

with B as the horizontal asymptote for the stress, that is, the fatigue strength, C as the
vertical asymptote for the lifetime, that is, no fatigue failure will occur below this limit,
and λ, δ and β as the location, scale and shape Weibull parameters, such that (log ∆σ −
C)(log N − B) > λ.

Figure 8 depicts the estimated S–N fields for both velocities considered in this batch,
which were estimated easily with ProFatigue software [42]. As can be seen, the inherent
scatter of fatigue results is non-negligible, thus a probabilistic model is more suitable than a
deterministic one. The fatigue performance on both velocities exhibits the same behaviour
with no differences in the lifetime cycle for different given stress ranges, and the scatter
bands are approximately similar. For this reason, speed manufacturing seems to not have a
significant effect on the fatigue performance of additively manufactured Ti-6Al-4V.
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p = 0.95

Transformed run-outs

Transformed run-outs

Figure 8. Resulting S–N curves from the Castillo–Canteli model for Ti-6Al-4V with velocities
1200 mm/s and 1900 mm/s.

Finally, the experimental campaign retrieved from [6], corresponding with a lower
laser velocity of v = 200 mm/s, was also estimated according to the Castillo–Canteli model
and is superposed in Figure 9 for comparison purposes. As a result, a wide range of laser
speeds were considered from 200 to 1900 mm/s, providing robustness to the final conclu-
sions drawn from this work. Indeed, though having a lower laser velocity, the resulting
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S–N field is approximately the same with both previous velocities at 1200 and 1900 mm/s,
enhancing the conclusion that there was a negligible effect on the fatigue performance.
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Figure 9. Comparison of S–N fields for different laser velocities: v = 200 mm/s (data from Edwards
and Ramulu [6]), v = 1200 mm/s and v = 1900 mm/s.

5. Discussion

In this work, different laser speeds were considered in additively manufactured Ti-6Al-
4V alloy to evaluate their influence on the fatigue performance, where any other additional
concurrent effect was avoided (heat treatment, machining surfaces, etc.). The experimental
fatigue results were estimated according to a probabilistic model developed by [23], and
the resulting S–N curves were approximately the same with the scatter bands being nearly
coincident. In other words, the laser speed effect is negligible and no influence is found
on the fatigue lifetime of Ti-6Al-4V specimens. Then, in order to enhance this conclusion,
an external experimental campaign retrieved from [6]—at a lower velocity from those
previously considered, that is, v = 200 mm/s—was also estimated and compared with
previous results. Though having a wide range of laser velocities, from 200 to 1900 mm/s,
the resulting S–N fields are approximately the same and the scatter bands are nearly
coincident. However, this evidence does not allow for the conclusion that the effect of laser
speed is negligible in terms of the fatigue lifetime of the specimens, since other concurrent
effects could be covering the effects associated with the laser velocity and misleading
the conclusions. The authors postulate that the high surface roughness obtained in the
additive manufacturing process (Ra = 3.27, Rz = 15.83), together with the few differences
in porosities depending on both laser speeds, lead to all cracks originating from the surfaces
of the specimens, misleading conclusions about the potential effects of the porosities on the
fatigue lifetime. Future work could consider the prior polishing of the specimens in order
to improve the surface roughness, thus inducing the failure to occur from the pores.

The authors want to remark that the tensile and fatigue properties presented in
this paper are related to only one SLM building direction. Taking into account that the
material properties of metals manufactured by SLM cannot be considered isotropic—
that is, dependent on the testing direction—the conclusions of this paper must be taken
into consideration only for the manufacturing direction in which the specimens were
made, since different results could be achieved for other directions. Furthermore, the
relationship between speed manufacturing and the resulting mechanical properties is not
straightforward in additively manufactured samples, as other variables are implied, such
as the melt pool depth and temperature required for complete melting or evaporation; the
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effects of these variables were not considered in this study but are proposed as the basis for
further work.

6. Conclusions

− The experimental values of the residual stresses increase for lower laser speeds for
both maximum and minimum values.

− The expected porosity was simulated for different laser velocities, establishing limiting
energy densities to identify the kind of pores: spherical, sharper or absent.

− The porosity was qualitatively analysed for seven different velocities, corroborating
that, for lower speeds, the pores are spherical while for larger speeds they are sharper
and more irregular. On the contrary, for middle velocities no pores were detected.

− Tensile experimental results at two different laser speeds showed an influence on the
mechanical properties of Ti-6Al-4V alloys, especially in the plastic regime.

− A probabilistic model was used to estimate the fatigue lifetime for two different
velocities, concluding that this effect is negligible in comparison with other concurrent
variables, such as surface defects or roughness.

− The influence of speed manufacturing will only be non-negligible when other con-
current effects, such as those caused by the machining process or heat treatments, are
softened or relaxed.
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