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Abstract: Although post-heat treatment can improve the fatigue life of selective laser melting (SLM)-
fabricated cobalt chromium molybdenum (CoCrMo) alloys, the effect of cooling conditions on the
fatigue properties of such alloys remains unclear. In this study, we fabricated SLM CoCrMo alloy
specimens and, after heat-treating them, cooled them either via furnace-cooling (FC) or air-cooling
(AC). Subsequently, we analyzed their microstructures using scanning electron microscopy combined
with energy-dispersive X-ray spectroscopy, electron backscattered diffraction, confocal laser scanning
microscopy, and X-ray diffraction. Tensile and Vickers hardness (HV) tests and axial-fatigue tests were
also conducted to assess their mechanical and fatigue properties, respectively. The microstructures
of all samples showed homogeneous equiaxed grains, with the grains and precipitates of the AC
samples (grain size: 84.9 µm) smaller than those of the FC samples (grain size: 109.7 µm). The
AC samples exhibited better ductility than the FC samples. However, we observed no significant
differences in the 0.2% yield strength and HV tests. The S–N curve derived from the fatigue tests
showed that the AC samples had greater fatigue life than the FC samples. Therefore, a high cooling
rate during post-heat treatment is effective in reducing grain and precipitate sizes, resulting in
improved ductility and fatigue life.

Keywords: additive manufacturing; post-heat treatment cooling conditions; mechanical property;
fatigue; CoCrMo alloy

1. Introduction

Cobalt chromium molybdenum (CoCrMo) alloys are widely used in the fabrication of
biomedical devices, such as knee joints, orthopedic implants, and dental devices, because
of their excellent mechanical properties and biocompatibility [1–5]. Over the past few
decades, selective laser melting (SLM), an additive manufacturing technique, has become
recognized as an advanced method for producing biomedical devices [5–9]. SLM allows
for semi-automatic processing of metal parts with a high degree of geometric complexity
while drastically reducing costs, energy consumption, and production time [9–11]. SLM-
processed CoCr alloys have been widely used in the dental field to produce fixed and
removable prostheses [1,2]. It has also been established that SLM technology enables
the production of CoCr parts with superior properties, such as improved mechanical
properties and less metal release, compared with parts fabricated via conventional casting
techniques [5,9]. These properties are related to the high cooling rates employed during
the SLM process, which generate finer-grained microstructures compared with those
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generated when conventional casting techniques are used [5,9,12]. However, one of the
main drawbacks of SLM is that a residual stress is generated within the printed parts
because of the distinctive thermal cycle pattern of rapid melting and cooling during the
fabrication process [6,13–15]. This residual stress leads to micro-cracking or distortion,
thereby degrading the resulting mechanical properties of the products [11,16]. Therefore,
post-heat treatments are essential for reducing such residual stresses and improving the
mechanical properties of the produced parts [11,13,16].

Previous studies have investigated how the heat treatment process could affect the mi-
crostructure, tensile properties, and fatigue strength of SLM-fabricated CoCr alloys [17–21].
Seki et al. [17] reported that CoCrMo samples heat-treated at 1150 ◦C for 1 h showed
substantial improvements in fatigue strength compared with as-built specimens. This
result was attributed to the occurrence of recrystallization and the disappearance of the
molten pool boundaries due to heat treatment. Dong et al. [22] found that CoCrMoW
alloys heat-treated at 1200 ◦C for 1 h exhibited a higher fatigue life, tensile strength, and
ductility than conventional cast CoCrMoW alloys did. The improvement in properties was
attributed to the fine grains and precipitates in the SLM-processed alloys; these produced
secondary cracks that deviated from the fatigue crack, which, in turn, reduced the crack
growth rate. These studies confirm that the tensile and fatigue properties of alloys are
dependent on their microstructures.

Heat treatment consists of two main processes—heating and cooling—and the cooling
rate affects the resulting microstructures as well. Lu et al. [23] compared the microstructures
and tensile properties of CoCrW alloys heated for 1 h at 1150 ◦C and subsequently cooled
via water quenching or furnace cooling (FC). They reported that the alloys quenched using
water showed greater tensile strength than the alloys subjected to FC [23]. Therefore,
microstructural changes induced by different cooling rates may affect the fatigue properties
of alloys. However, to the best of our knowledge, no studies thus far have investigated the
effect of cooling rates on the fatigue behavior of SLM-processed CoCr alloys.

In this study, we investigated the influence of post-heat treatment cooling conditions
on the fatigue behaviors of SLM-processed CoCrMo samples under tension–tension cyclic
loads. According to the company guidelines for use of the CoCrMo alloy powder used in
this study, the post heat treatment for relieving residual stress is 1150 ◦C for 6 h [24]. Kajima
et.al [16] and Razavi et al. [19], also reported that the heat treatment at 1150 ◦C for 6 h
caused significant changes in the microstructure, with homogenization and recrystallization
leading to isotropic properties. However, our previous study showed that a 6 h heat
treatment of removable partial denture clasp samples produced coarser precipitates on
the grain boundaries than a 1 h heat treatment, resulting in lower fatigue strength [18].
Therefore, in this study, we performed a heat treatment at 1150 ◦C for 1 h. Subsequently, we
employed two different cooling rates and analyzed the resulting microstructures, tensile
properties, and fatigue properties of the alloys.

2. Materials and Methods
2.1. Specimen Preparation

We used commercial CoCrMo powder (MP1, EOS, Krailling, Germany) to manufac-
ture the samples. Table 1 shows the composition of the CoCrMo powder. We prepared
dumbbell-shaped specimens with a diameter of 3 mm and a length of 18 mm using an SLM
machine (EOSINT M280, EOS, Krailling, Germany) equipped with a fiber laser. The SLM
machine was operated using standard deposition parameters for MP1 with a laser power
of 195 W on a platform temperature 40 ◦C under a nitrogen atmosphere. The samples
were fabricated with their longitudinal axes parallel to the printing direction, as shown
in Figure 1. The specimens were divided into two groups, and the heat treatment was
then performed in the following sequence: (1) heating the furnace from room temperature
to 600 ◦C, (2) maintaining the temperature for 30 min, (3) heating the furnace to 1150 ◦C,
(4) maintaining the temperature for 1 h, and (5) switching off the heating machine. The
heating was performed under an argon gas atmosphere with a ramp rate of 10 ◦C/min. The
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specimens in one group were cooled to room temperature inside the furnace; this group
was denoted as FC. We monitored the temperature in the furnace using a thermocouple
and it took about 2 h and 30 min to return to the room temperature. The specimens in
the other group, denoted as AC, were cooled to room temperature in air, according to the
following steps: opening the furnace door as soon as the 1 h holding time was complete
and (2) extracting the specimens from the furnace and cooling them to room temperature
in air. It took approximately 20 min to complete.

Table 1. Chemical compositions of CoCrMo alloy powder (MP1) in units of mass (%).

Co Cr Mo Si Mn Fe C Ni

MP1 60–65 26–30 5–7 <1.0 <1.0 <0.75 <0.16 <0.1
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tural analysis (3 mm diameter, 1 mm height), as shown in Figure 1. These rod-shaped 
specimens were then polished sequentially using waterproof emery paper (320–1000 grit), 
a 9 μm diamond suspension, and a 0.04 μm colloidal silica suspension. Subsequently, the 
specimens were etched in a solution of H2SO4/CH3OH (5:95, v/v) at 15 V and 268–273 K. 
The microstructure was observed using a scanning electron microscope with energy-dis-
persive X-ray spectroscopy (SEM-EDS; S-3400NX, Hitachi, Tokyo, Japan) under an accel-
erating voltage of 15 kV, as well as using a confocal laser scanning microscope (CLSM; 
OLS4000, Olympus, Tokyo, Japan) and through electron backscatter diffraction analysis 
(EBSD; TexSEM Laboratories, Inc., Provo, UT, USA) using a field-emission scanning elec-
tron microscope (XL-30FEG, Philips, The Netherlands). Using SEM-EDS, spot analyses 
were performed to evaluate the compositional segregation in the samples. An X-ray dif-
fractometer (XRD; D8 Advance, Bruker-AXS, Karlsruhe, Germany) was used to observe 
phase transformations using Cu Kα radiation at a voltage of 40 kV and a current of 40 mA 
in the 2θ scanning range of 40°–80°. The ε-HCP phase volume fractions were determined 
by the Sage and Guillaud method [25]. 

Figure 1. Arrangement for the dumbbell-shaped specimen on the base plate. The blue plane shows
the direction of the cutting plane for microstructural observations.

2.2. Microstructural Analysis

The specimens were transversely cut to form rod-shaped specimens for microstruc-
tural analysis (3 mm diameter, 1 mm height), as shown in Figure 1. These rod-shaped
specimens were then polished sequentially using waterproof emery paper (320–1000 grit),
a 9 µm diamond suspension, and a 0.04 µm colloidal silica suspension. Subsequently, the
specimens were etched in a solution of H2SO4/CH3OH (5:95, v/v) at 15 V and 268–273 K.
The microstructure was observed using a scanning electron microscope with energy-
dispersive X-ray spectroscopy (SEM-EDS; S-3400NX, Hitachi, Tokyo, Japan) under an
accelerating voltage of 15 kV, as well as using a confocal laser scanning microscope (CLSM;
OLS4000, Olympus, Tokyo, Japan) and through electron backscatter diffraction analysis
(EBSD; TexSEM Laboratories, Inc., Provo, UT, USA) using a field-emission scanning elec-
tron microscope (XL-30FEG, Philips, The Netherlands). Using SEM-EDS, spot analyses
were performed to evaluate the compositional segregation in the samples. An X-ray diffrac-
tometer (XRD; D8 Advance, Bruker-AXS, Karlsruhe, Germany) was used to observe phase
transformations using Cu Kα radiation at a voltage of 40 kV and a current of 40 mA in the
2θ scanning range of 40◦–80◦. The ε-HCP phase volume fractions were determined by the
Sage and Guillaud method [25].

HCP (wt%) = {
I
(
1011

)
hcp

I
(
1011

)
hcp + 1.5I(200)fcc

} × 100

2.3. Mechanical Properties

An Instron universal testing machine (AG-2000B, Shimadzu, Kyoto, Japan) was used
to perform uniaxial tensile tests at an initial strain rate of 1.1 × 10−3 s−1 with dumbbell-
shaped specimens (n = 5 for both conditions). A non-contact optical strain gauge was
used to measure the strain values. The ultimate tensile strength (UTS), 0.2% yield strength
(0.2% YS), and elongation of the tested specimens were calculated from the stress–strain
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curves. Vickers hardness (HV) tests were performed on the rod specimens (n = 3 for each
condition) for 30 s with a 100 g load. All average values and standard deviations were
calculated from five data points for each sample.

2.4. Fatigue Test

Before the fatigue strength test, to reduce the surface roughness (Ra), the dumbbell-
shaped specimens were polished using waterproof emery paper (from 320 grit to 800 grit)
until they started becoming reflective. Ra was determined using a CLSM five times for each
sample. The fatigue test was performed using an electrohydraulic fatigue test machine
(EHF-FB10kN-10LA, Shimadzu, Kyoto, Japan) with various sinusoidal cyclic tensile forces
(Table 2). Each test was conducted at a frequency of 10 Hz, in accordance with JIS T
0309:2009 [26,27]. The fatigue tests were continued until the sample fractured or 107 cycles
were completed. However, the number of samples available for this test was limited. As a
result, the number of samples provided to each stress level was different. Scanning electron
microscopy (SEM) was used to examine the fracture surfaces after the fatigue tests.

Table 2. Fatigue loads and number of specimens (N) for the test.

Stress Ratio (R) Maximum Stress
(MPa)

Minimum Stress
(MPa)

Number of Air
Cooling Samples

Number of Furnace
Cooling Samples

0.1 627.33 35.48 3 3
0.1 580.15 38.14 2 2
0.1 564.30 38.03 2 2
0.1 555.70 37.03 2 2
0.1 548.70 40.57 1 1

2.5. Statistical Evaluation

The Mann-Whitney U-test was used to statistically evaluate the data collected from
the Ra, HV, and tensile measurements. Statistically significant differences between data
were considered to correspond to a p-value less than 0.01.

3. Results
3.1. Mechanical Properties

Table 3 summarizes the mechanical properties of both specimens. The mechanical
properties for the sample as-built had 1173 MPa (UTS), 839 MPa (0.2% YS) and 12.3%
(Elongation) [16]. Figure 2 shows the typical stress–strain curves. There were no significant
differences in the values of UTS and 0.2% YS between the AC and FC samples. The
elongation of the AC samples was significantly larger than that of the FC samples. The AC
samples had 1.4 times better elongation than the FC. The results of the HV tests are shown
in Table 4. There were no significant differences between the AC and FC samples.

Table 3. Statistical summary of the mechanical properties of the AC and FC conditions. (* indicates
statistical significance, p < 0.01).

Mechanical Properties AC FC

UTS (MPa) 1118 1110
0.2%YS (MPa) 622.87 635.30
Elongation (%) 33.11 * 23.37
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Figure 2. Typical stress and strain curves for the as-built sample as a reference, adapted from [16],
AC and FC samples.

Table 4. The AC and FC samples’ Vickers hardness (HV) values. No significant difference between
values labeled with similar letters (p > 0.01).

Group Mean (HV) Standard Deviation

As-built 536.80 a 7.12
AC 365.30 b 4.32
FC 371.98 b 3.92

3.2. Microstructure Analysis

CLSM images of the as-built, AC, and FC samples are shown in Figure 3. The CLSM
image of the as-built sample shows that molten pool boundaries were clearly found and
numerous fine cellular dendrites were detected in the SEM image of the as-built sample.
For both cooling conditions, the CLSM images show homogeneous equiaxed grains with
well-defined grain boundaries and no molten pool boundaries. Figure 4 shows the results of
the SEM observation. The SEM images for both groups of specimens reveal homogeneous
microstructures with precipitates at the grain boundaries. The precipitates of the AC
samples were smaller than those of the FC samples. Figure 5 shows that the chemical
compositions of the matrices of the AC and FC conditions were identical, with Co being the
most abundant, followed by Cr, Mo, C, and O. In the precipitates of the AC and FC samples,
the alloy elements appeared to segregate similarly. Compared with the matrices, the alloy
elements had higher Mo, C, and O concentrations but lower Co and Cr concentrations.
However, the concentrations of Mo and C in the AC samples were lower than those in the
FC samples.
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Figure 5. SEM images and energy-dispersive X-ray spectroscopy (EDS) result of the matrices and
precipitates of the (a) AC and (b) FC.

The EBSD results for the AC and FC samples are shown in Figure 6. In both condi-
tions, an annealing twin has a Σ3 misorientation of 60◦/{111} grain boundaries. High-
angle boundaries (HABs) with misorientation angles (MA) greater than 15◦, low-angle
boundaries (LABs) with misorientation angles between 2◦ and 15◦, and Σ3 boundaries
are depicted in red, black and blue lines, respectively, on the grain boundary (GB) maps.
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Both samples exhibit evenly colored equiaxed grains on the inverse pole figure (IPF) maps.
In other studies, annealing twin boundaries were not considered when determining the
grain sizes of face-centered cubic γ (FCC) metals [28–30], because those boundaries did not
seem to be a strong barrier for the pile-up dislocations [28]. Therefore, in this study as well,
annealing twin boundaries were not considered as grain boundaries. Figure 7 shows the
average distribution of grain size. The grain size was measured using EBSD scan data. The
average grain size of the AC samples (84.9 µm) was smaller than that of the FC samples
(109.7 µm).
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Figure 8 shows the XRD patterns for both groups of samples. The FCC cobalt phase
was detected in all samples. In addition, the XRD patterns of the AC and FC were fairly
similar to those of the MP1 powder condition. However, a small peak of the ε-HCP phase
was also detected. The volume fractions of ε-HCP (wt) calculated by employing the Sage
and Guillaud method [25], were present at 16.2% (FC) and 3.9% (AC).
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Figure 8. X-ray diffraction (XRD) patterns: powder as a reference, adapted from ref. [18], as-built
selective laser melting (SLM) specimens as a reference, adapted from ref. [18], AC sample, and
FC sample.

3.3. Fatigue Result

The mean Ra values for each specimen group are listed in Table 5; as is evident, no
statistically significant difference (p > 0.01) was present between the groups. Figure 9 shows
the S–N curve of the fatigue life of the AC and FC samples. The graph shows that the AC
samples had a higher fatigue life than the FC samples did at a stress ratio (R) of 0.1. The
lowest cycle count was observed at 627.3 MPa, where the total numbers of cycles for FC
and AC were 90,689 and 181,547, respectively. The fatigue life time of the AC sample was
2 times longer than the FC at 627.3 MPa. The largest cycle count was at 548.7 MPa, where
the total numbers of cycles for FC and AC were 1,645,574 and 2702.068, respectively. The
fatigue life time of AC sample was 1.6 times longer than the FC at 548.7 MPa.

Table 5. Surface roughness (Ra) values of the AC and FC samples. No significant difference between
values labeled with similar letters (p > 0.01).

Group Mean (µm) Standard Deviation

AC 0.27 a 0.10
FC 0.31 a 0.85

Figure 10 shows the fracture surface of the broken fatigue specimens under both
conditions. The fatigue fracture surface had three types of characteristic: (I) microcracks,
(II) cleavage fracture patterns, and (III) dimple fracture patterns. Figure 10a,b show the
crack initiation sites for the AC and FC samples. In both sets of samples, the crack propa-
gated from the outer surface to the inner region. In the crack propagation region, a mixture
of cleavage and dimple features was observed in both the AC and FC samples. However,
the number of dimples observed in the AC samples was larger than that in the FC samples.
In addition, the FC samples exhibited microcracks.
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initial point, (c,d) magnified views of the fracture propagation region. * denotes the initial crack and
the orange arrow shows the direction of crack propagation.
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4. Discussion

The tensile and fatigue test results revealed that the ductility was significantly im-
proved with an increase in the cooling rate. It is well-known that cooling conditions
influence microstructures, such as grains and precipitates. In this study, the microstruc-
tures observed in the AC samples were finer than those in the FC samples because of a
higher cooling rate in the former after the heat treatments. Previous studies have reported
the influence of grain size on mechanical properties [9,31–33]. Zhuang and Langer [34]
examined the impact of grain size changes on the fatigue crack growth rates of as-cast
CoCrMo alloy and reported that finer grains yield greater fatigue strengths than coarser
grains do. Other studies have also shown improvements in mechanical properties due to
finer grains. This phenomenon occurs because a fine-grained microstructure has a large
number of grain boundaries, which serve as crack propagation barriers that increase the
material’s crack resistance [32,35]. In this study, the finer grains in the AC samples yielded
greater fatigue life and elongation compared with the coarser grains in the FC samples.

Precipitate crystal structure, composition, size, and area fraction also significantly
affect the mechanical and fatigue properties of an alloy [36–39]. In a previous study, we
confirmed that most of the precipitates observed in SLM-fabricated CoCrMo samples
heat-treated for 1 h at 1150 ◦C exhibited the M (Cr, Mo)23C6 carbide phase [14,16]. The
chemical compositions of the precipitates in both the AC and FC samples in this study
were similar to the compositions observed in previous studies. However, the AC samples
had a lower concentration of Mo and C than the FC samples, as revealed by the coarse
M23C6 spectra (Figure 5). The coarse M23C6 carbide precipitates were observed to have
a negative impact on the ductility of the alloys [16,40]. In the as-cast condition, carbide
precipitation at grain boundaries and in inter-dendritic regions was the primary strength-
ening mechanism [22,39]. The fine M23C6 carbide particles precipitating in intragranular
regions with a homogeneous distribution increased the mechanical strength, which pinned
the grain boundaries and inhibited grain growth [22,41]. The coarse carbides at the grain
boundaries were detrimental to the ductility of the alloy [36,40]. Although studies on the
effect of precipitates in SLM-fabricated CoCrMo on the fatigue life are scarce, our previous
study also revealed that blocky carbides developing at grain boundaries reduce fatigue
strength [16,18]. In the present study, the larger precipitates at the grain boundaries in
the FC samples reduced the ductility more than the precipitates in the AC samples did.
Therefore, controlling the size of the precipitate in SLM-fabricated CoCrMo samples is
critical for improving the fatigue life.

The presence of two primary phases, ε-HCP and γ–FCC, is widely recognized in Co–
Cr–Mo alloys [5,42,43]. The ductility of those alloys increases as the volume percentage of
the γ phase increases because this phase has a greater number of independent slip systems
than does the ε phase [42,43]. In addition, the ductility of Co–Cr-based alloys is substan-
tially affected by the ε-HCP phase that occurs as a result of athermal, isothermal, and/or
strain-induced martensitic transformation [40]. Nonetheless, under normal cooling circum-
stances, the γ–FCC to ε-HCP change is rare [42]. Slow cooling (FC) leads to the ε -HCP
phase, which is more stable at room temperature due to an isothermal transition [43–45].
Some researchers reported that a metastable γ–FCC phase at room temperature can be
easily stabilized at low temperatures by rapid cooling [45,46]. In this study, the results
obtained indicate that the volume fraction of the ε-HCP phase decreases as the cooling rate
increases. Therefore, the rapid cooling condition (AC) reduced the transformation of the
γ–FCC to ε-HCP and improved the ductility of the alloy.

The morphology of the fracture surfaces also corroborated our findings regarding
the mechanical and fatigue properties. In the crack propagation region of the FC samples,
highly angular and crystallographic facets were observed, which were similar to the typical
cleavage fatigue-fractured characteristics of cast CoCrMo alloy [34]. Therefore, in the FC
samples, cleavage cracks could propagate along the {111} planes, which was indicative of
brittle fracture [9,16,47,48]. The AC samples showed fracture surfaces with cleavages as
well as more dimples than the FC samples did. This indicates an improvement in ductility
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in the former. These characteristics are congruent with the results regarding the mechanical
properties and fatigue test, based on which the AC samples showed a greater increase in
ductility than the FC samples.

The findings of this study can serve as a reference for enhancing the fatigue properties
of SLM-fabricated CoCrMo alloys and can contribute to improving the durability of bioma-
terials. Furthermore, this result is significant for dental appliances because it can help in
the improvement of the durability of the appliances. However, the number of samples was
limited in this study, thus further studies were required to clarify the fatigue limit in AC
and FC conditions.

5. Conclusions

In this study, the microstructures, mechanical properties, and fatigue life of CoCrMo
alloy samples fabricated through SLM were evaluated after heat treatment for 1 h at 1150 ◦C
under two cooling conditions. The results revealed that increasing the cooling rate enhances
the ductility and fatigue life but does not affect the tensile strength or hardness significantly.
The AC samples had a smaller average grain size (84.9 µm) than the FC samples (109.7 µm).
We believe that smaller grains and precipitates obtained by employing high cooling rates
contributed to improving the ductility and fatigue life of the alloy. In future studies, we
will apply high-cooling conditions to complex SLM-fabricated biomaterials and investigate
their dimensional accuracy.
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