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Abstract: In this paper an exhaustive scientific work is performed, by means of metallographic
and scanning electron microscope (SEM) techniques, of the microstructural defects exhibited by
pearlitic steels and their evolution with the manufacturing process by cold drawing, analyzing
the consequences of such defects on the isotropic/anisotropic fracture behavior of the different steels.
Thus, the objective is the establishment of a relation between the microstructural damage and the
fracture behavior of the different steels. To this end, samples were taken from all the intermediate
stages of the real cold drawing process, from the initial hot rolled bar (not cold drawn at all) to the
heavily drawn final commercial product (prestressing steel wire). Results show the very relevant role
of non-metallic inclusions in the fracture behavior of cold drawn pearlitic steels.

Keywords: pearlitic steel; cold drawing; second-phase particles; non-metallic inclusions

1. Introduction

High-strength cold-drawn eutectoid steel wires are important components in struc-
tural engineering [1–6]. As a consequence of the manufacture process by cold draw-
ing, these materials show an anisotropic behavior with regard to plasticity (yielding),
fracture and hydrogen embrittlement [7–18] with the result of mixed-mode fracture propa-
gation and strength anisotropy.

The microstructural evolution with cold drawing has been extensively studied in the
past [19–27], showing progressive microstructural orientation (alignment in a direction
quasi-parallel to the wire axis or cold drawing direction) and increase of packing closeness
associated with a decrease of interlamellar spacing and an orientation of the plates in the
cold drawing direction [22–25].

A materials-science relationship between microstructure and strength is usually es-
tablished through the Hall-Petch equation [28–31] to correlate the pearlite interlamellar
spacing and the material strength. However, in oriented pearlitic microstructure (as a
consequence of manufacturing by cold drawing) the Hall–Petch equation does not perform
very well [32], so that an Embury–Fisher equation has been proposed [33] to describe the
role of microstructure in material performance.

The role of inclusions in steel performance has received considerable attention in the
scientific community, from studies about metallographic techniques [34] to research about
models of void growth around inclusions [35,36], models about the spatial distribution of
MnS inclusions and the voids provoked by them [37], or determining the volume fraction
of inclusions in steel [38], as well as research on the role of inclusions in fatigue behavior in
air [39,40] and hydrogen environment [41,42].

Recent references about inclusions in steel deal with modeling inclusion formation [43],
effect of sulfur content [44], the effect of different non-metallic inclusions on the machinabil-
ity of steels [45], quality control of steel wires [46], micromechanical modeling of fatigue
crack nucleation around non-metallic inclusions [47], MnS inclusions formation in resulfu-
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rised steel [48], influence of inclusions on the mechanical properties [49] or their effect on
deformation and fracture [50].

This paper focuses on the role of inclusions (analyzed by metallographic techniques) in
the mechanical performance (evaluated by means of standard tension tests) of cold drawn
pearlitic steel with different degree of cold drawing and distinct chemical composition.
The aim of the paper is to find a possible relationship (in the sense of materials science and
engineering) between the microstructural micro-damage in the pearlitic steel (created by
the presence of inclusions) and the fracture behavior of cold drawn pearlitic steels during
tensile testing.

2. Materials

The samples used in the mechanical tests were eutectoid steel wires with different level
of cold drawing (i.e., distinct degrees of accumulated plastic strain), from the initial hot
rolled bar (not cold drawn at all) to the final commercial product (prestressing steel wire;
heavily cold drawn), all of them corresponding to real manufacturing chains, as shown in
Figures 1 and 2 that include different views of the process.
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Table 1 shows the chemical composition (wt.%) of the different steels (valid for any
drawing degree). The materials used were cold drawn pearlitic steels corresponding to
five real manufacturing processes. The five types (or families) of steels were used, with the
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names A, B, C, D and E, each of them with a specific chemical composition and manu-
facturing route (straining path). Steel of the type A undergoes six drawing steps (as shown
in Figure 2 passing through six dies), whereas the others (B, C, D, E) have undergone
seven drawing steps. A letter followed by a number will be used throughout this paper to
indicate the steel family (the letter) and the degree of cold drawing or number of drawing
steps undergone by each steel wire in particular.

Table 1. Chemical composition (wt.%) for the five families of the steels (the balance is Fe).

Steel Family A Family B Family C Family D Family E

% C 0.80 0.789 0.79 0.795 0.789
% Mn 0.69 0.698 0.670 0.624 0.681
% Si 0.23 0.226 0.20 0.224 0.21
% P 0.012 0.011 0.009 0.011 0.010
% S 0.009 0.005 0.009 0.008 0.008

% Al 0.004 0.003 0.003 0.003 0.003
% Cr 0.265 0.271 0.187 0.164 0.218
% V 0.06 0.078 0.053 0.064 0.061

Table 2 summarizes each one of the five cold drawing procedures (straining paths or
yielding histories) in terms of the wire diameter at the end of each drawing step. Table 3
offers the cumulative plastic strain εP

cum as the variable representing the drawing degree,
and it’s defined as follows [4]:

εP
cum = 2 ln

φ0

φi
(1)

where φ0 is the hot rolled bar diameter and φi is the diameter of a wire undergoing i
dra-wing steps.

Table 2. Diameter of the wires at the end of each drawing step for the five families.

Wire Diameter (mm)

Drawing Step Family A Family B Family C Family D Family E

0 12.11 12.10 10.44 8.56 11.03
1 10.80 11.23 9.52 7.78 9.90
2 9.81 10.45 8.49 6.82 8.95
3 8.94 9.68 7.68 6.17 8.21
4 8.22 9.02 6.95 5.61 7.49
5 7.56 8.54 6.36 5.08 6.80
6 6.98 8.18 5.86 4.63 6.26
7 - 7.00 5.03 3.97 5.04

Table 3. Cumulative plastic strain of the progressively drawn steels for the five families [4].

εP
cum

Drawing Step Family A Family B Family C Family D Family E

0 0 0 0 0 0
1 0.229 0.149 0.184 0.191 0.216
2 0.421 0.293 0.414 0.454 0.418
3 0.607 0.446 0.614 0.655 0.591
4 0.775 0.588 0.814 0.845 0.774
5 0.942 0.697 0.991 1.044 0.967
6 1.102 0.800 1.155 1.229 1.133
7 - 1.095 1.460 1.537 1.566
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The mechanical response of the cold drawn pearlitic steel wires is associated with a
progressive increase with cold drawing of the yield strength (σY) and of the ultimate tensile
strength (σR), as shown in Figures 3 and 4.
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Figure 3. Evolution with cold drawing of the yield strength σY.
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Figure 4. Evolution with cold drawing of the ultimate tensile strength σR.

Figure 5 plots the stress–strain curves for the progressively cold-drawn pearlitic
steels from A0 (hot rolled steel, not cold drawn at all, 0 drawing steps) to the commercial
prestressing steel wire A6 (heavily cold drawn pearlitic steel that has undergone 6 drawing
steps). It is seen that both the yield strength σY and the ultimate tensile strength (UTS σR)
increase with the drawing degree [1–6].
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Figure 5. Stress–strain curves of the progressively drawn pearlitic steels A0 to A6 (steel family A:
from 0 to 6 cold-drawing steps).

3. Metallographic Analysis
3.1. Sample Preparation

In order to proceed with the metallographic analysis of the different steels, representa-
tive samples were extracted from the wires by means of transverse cuts to prepare small
cylinders of 10 mm height and the exact diameter of each steel wire in particular. After this,
the cylinders underwent a cut in longitudinal direction (axial cut), so that the micrographs
of the present paper will always be oriented with their vertical side following the cold
drawing direction (wire axis).

The samples were mounted in resin for grinding and polishing up to mirror quality.
Finally, they were chemically attacked to reveal the microstructure of the materials (progres-
sively cold drawn pearlitic steel wires) and to observe it by scanning electron microscopy
(SEM) using a JEOL JSM-5610 LV (Jeol Ltd., Tokyo, Japan). Etching was produced by using
a solution of 4% Nital in chemical ethanol for five seconds.

3.2. Metallographic Observation

The chemical attack (etching) on the polished samples of pearlitic microstructure
produces different chemical reactions in the ferrite (softer) phase and in the cementite
(harder) phase forming the pearlite. Whereas the former is chemically attacked by the
Nital, the latter remains unaffected by it, so that it is possible to distinguish both phases of
the pearlitic microstructure of the steels by means a scanning electron microscope (SEM)
analysis: cementite lamellae exhibit a clear appearance whereas ferrite lamellae show a
darker aspect. The inclusions were observed by using energy-dispersive X-ray spectroscopy
(EDX, Oxford Instruments, mod. 6587, High Wycombe, England) assembled to the SEM.

Generally speaking (details will be analyzed in the discussion section of the present
paper), second-phase particles (inclusions) appear in all the studied pearlitic steels (five
families or groups), exhibiting different peculiarities depending on the particular chemical
composition of each family, cf. Table 1. Different types of inclusion were found, namely:
(i) manganese sulfur (MnS) inclusions with dark (non-brilliant) appearance and irregular
shape; (ii) silica (SiO2) and aluminum oxides (Al2O3) with clear brilliant appearance and
more regular shape. Two of these types of inclusions (MnS and Al2O3) are showed in
Figure 6.
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Figure 6. Second-phase particles in a hot rolled pearlitic steel.

Apart from the inclusions discussed above (those appearing more frequently), other types
of inclusions were found (although more scarcely) used mainly to create new phases during
the steel manufacturing. They were the following: (i) titanium oxides (probably in the form
Ti2O3), (ii) manganese silicates (possibly of the type 2MnO.SiO2, MnSiO3), alumina silicates
(SiO2/AlO3), (iii) titanium nitride (TiN) and (iv) vanadium nitride (VN). The main chemical
elements appearing in an inclusion can be observed in the EDX spectrum given in Figure 7.
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Figure 7. EDX spectrum of an inclusion containing several chemical elements.

The presence (in small amounts) of varying chemical elements (Ti, N and Ca), as well
as other elements that did not appear in the metallographic analysis is not surprising.
Titanium (Ti) is usually added to the steels during manufacturing, thereby producing Ti2O3
in form of small inclusions to enhance the formation of intergranular ferrite during the
austenite-perlite transformation [51].

Nitrogen (N) is added to the steels to promote the formation of new phases from the
austenite, thereby creating tiny particles of TiN. With regard to calcium (Ca), it is frequently
added to the steel in certain amount (as SiCa powder) to diminish the level of sulfur (S) and,
therefore, to diminish the volume fraction of sulfur and alumina inclusions in the steel [52].

4. Evolution of Inclusions with Cold Drawing

In the five families of steel (A, B, C, D and E) there is a common general trend in the
matter of evolution with cold drawing of the inclusions. To analyze this, the existing inclu-
sions in cold drawn pearlitic steels can be classified in two groups: (i) sulphides (MnS) able
to undergo certain plastic strain and thus become deformed in the direction of cold draw-
ing; (ii) inclusions consisting of oxides and silicates (of Al, Si, Fe, . . . ), comparatively harder
and more brittle, so that they can be fractured as the drawing degree (level of cumulative
plastic strain) increases when the wire passes through the consecutive dies.

Figures 8–12 show several longitudinal metallographic sections of some wires studied
in this work. The wire axis, or cold drawing direction, is represented by the vertical side
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of the micrographs in such figures. Figure 8 shows longitudinal metallographic sections
of two hot rolled steels (E0 and A0) with zero cold drawing degree (i.e., that are not cold
drawn at all). It is observed how the inclusions are perfectly adhered to the pearlitic
metallic matrix surrounding them, although one was fractured during manufacturing by
hot rolling.
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ing steel wire) created during the manufacturing process by cold drawing.

During manufacturing of commercial prestressing steel wires by progressive (multi-
step) cold drawing, a strain hardening mechanism is activated in the pearlitic steels.
During this process, the inclusions (second-phase particles) also evolve.

Figure 9 shows the microstructure of slightly cold drawn pearlitic steels C2 and A4
undergoing two and four cold drawing steps. It is observed how the inclusions present in
the steels become fractured after passing through two and four dies (due to the transverse
peripherical compression), thereby producing cracks at the interface between the inclusion
and the matrix as a consequence of the plastic deformation undergone by the pearlitic
matrix itself.

With regard to the differences between the five different families of the pearlitic steels
under analysis, the steels of the group E are those containing greater and more numerous
inclusions inside it. This provokes a higher density of microstructural defects (micro-
defects) generated by the combined effect of heavy cold drawing and presence of many
inclusions in the steel.

Figure 10 offers micrographs (axial or longitudinal cuts) of the microstructure of steel
E5 (family E; five cold drawing steps) with two magnification levels of 1000× and 500×,
where the frequent appearance of micro-defects (micro-cracks) generated by the presence
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of the inclusions can be observed. Such defects are potential initiators of macroscopic
fracture of the cold drawn pearlitic steels, with loss of structural integrity.

In the matter of the most heavily cold drawn steel (commercial prestressing steel
wire), obtained after passing of the initially hot rolled materials through the entire route
of strain hardening (with the maximum number of cold drawing steps), micrographs of
Figure 11 show evidence of micro-cracks aligned in the drawing direction (wire axis or
longitudinal direction) since they are more slender than in the previous pearlitic steels
(with a lower cold drawing degree). In Figure 11 the microstructure of steel families A,
D and E is represented, observing that the inclusions are very fractured (they exhibit a lot
of micro-damage) in their surrounding as a consequence of the high level of plastic strain
undergone by the most heavily cold drawn pearlitic steels.

Figure 12 includes two parallel micro-cracks generated in the vicinity of inclusions
appearing in a commercial prestressing steel wire E7 after heavy cold drawing. The in-
clusions exhibit evidence of previous fracturing during the manufacture process, and the
micro-cracks appear in the close vicinity of the existing inclusions.

5. Role of Inclusions in the Fracture Behavior

From the results obtained in the metallographic analysis of the longitudinal sections
of cold drawn pearlitic steels, a key question arises about the influence of inclusions on
material (macro-) fracture behavior. To elucidate the relevant and fundamental question of
whether (or not) the inclusions play a relevant role in fracture behavior of the steels, standard
tension tests were performed on the different steel wires with a posterior (postmortem)
fractographic analysis to elucidate the microscopic fracture modes.

In the case of hot rolled (not cold drawn at all) or slightly drawn pearlitic steels
(corresponding to the first stages of the manufacturing chain with few passes through
the dies) the fracture surface is contained in a plane perpendicular to the wire axis or
cold drawing direction and exhibits a low-roughness appearance (Figure 13; left), i.e.,
it corresponds to an isotropic fracture behavior.
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On the other hand, in the case of heavily drawn pearlitic steels (associated with the last
stages of the manufacturing chain with many passes through the dies) the fracture surface
is not contained in a plane perpendicular to the wire axis or cold drawing direction and
exhibits a high-roughness and irregular appearance (Figure 13; right), i.e., it corresponds
to an anisotropic fracture behavior with frequent local deflections representing embryos of
anisotropic fracture.

To understand such a disparity regarding fracture surface appearance, some mi-
crostructural features must be taken into account: (i) firstly, the oriented pearlitic mi-
crostructure after cold drawing in the matter of colonies and lamellae [22–25], (ii) secondly,
the presence in the drawn steel of many zones with pre-damage (after heavy drawing)
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and even with micro-cracks aligned in the drawing direction and created in the vicinity of
inclusions by debonding between the inclusion and the metallic matrix (as a consequence
of the stress concentration created by the inclusion itself), as shown in Figure 14 in which
many local regions with micro-cracks (aligned and oriented along the direction of cold
drawing represented by the wire axis) may be observed.
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Figure 14. Multiple micro-cracks aligned in longitudinal direction (axial or cold-drawing direction,
i.e., vertical side of the micrograph) in a cold drawn pearlitic steel.

During the standard tension tests performed on the wires, two main stages can
be distinguished:

(i) One first long phase (before plastic instability) during which material points are sub-
jected to a uniform uniaxial stress state. This main stage lasts up to the maximum load
point. During this phase the micro-cracks do not promote fracture since the main axial
stress (in the direction of the wire) is parallel to the micro-cracks themselves.

(ii) One second shorter phase (after plastic instability) during which material points are
subjected to a triaxial stress state. This second stage starts from the maximum load
point. During this phase the micro-cracks do promote fracture since triaxial stress
state has a hoop component that is perpendicular to the micro-cracks themselves.

An approximate classical solution for the triaxial stress state in a cylinder (bar or wire)
after necking is due to Davidenkov and Spiridonova [53] as follows:

σr

σY
=

a2 − r2

2aR
;

σz

σY
= 1 +

a2 − r2

2aR
(2)

where σY is the yield strength of the material, σz is the axial stress along the wire axis, σr is
the radial stress (equal to the hoop stress σθ, due to the very small elastic strains in the
neck compared with the plastic deformations, and due to the constant volume hypothesis
which involves εz = −2εr), R is the curvature radius of the necking surface (similar to a
blunt notch), a is the distance from the notch tip to the wire axis and r is the radial distance
between the wire axis and the considered point (see Figure 15).

The curvature radius of the necking surface R was measure by means of a profile
projector (NIKON V-12B, Tokyo, Japan). The average values obtained were 26.25 and
3.16 mm for the hot rolled steel E0 and the prestressing steel E7, respectively. With these va-
lues, and taking into account the Davidenkov and Spiridonova equations (2), it’s possible
to obtain the stress distribution (σz, σθ and σr; being σθ = σr) along the wires net section in
the previous instants to final fracture occurs. Such stress distribution is showed in Figure 16
for the case of the steels E0 and E7. The stress distribution is equal in both steels and
for all considered variables, being maximum in the center (longitudinal wire axis, r = 0)
and minimum in the periphery of the wires (deepest point in necking external surface,
where r = a). The values are greater for the case of prestressing steel wires.
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Figure 15. Scheme of the wire’s necking during a tensile test.
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Figure 16. Stress distribution of σz (left) and σθ (right) along the transversal necking surface in steel E0 and E7.

Once the distribution of stresses along the minimum neck section is known, and con-
sidering that the shear stresses are null by symmetry, it is possible to obtain the stress
triaxiality distribution along the radius r of the neck section. The stress triaxiality t (3) is
the ratio between the hydrostatic stress σh (4) and the equivalent von Mises stress σeq (5).

t =
σh
σeq

(3)

σh =
1
3
(σz + σθ + σr) (4)

σeq =

√
1
2

[
(σz − σθ)

2 + (σz − σr)
2 + (σθ − σr)

2
]

(5)

Figure 17 (left) shows that the values of hydrostatic and equivalent stresses are higher
for the case of prestressing steel (E7) in relation to the initial hot rolled bar (E0). The σh
distribution shows a continuous decrement from the longitudinal wire axis (r = 0) till it
reaches the external surface (r = a); that being said, the decrement is more pronounced in
the prestressing steel E7. The equivalent von Mises stress σeq is constant along the radial
coordinate for both steels.
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Figure 17. Distribution of hydrostatic stress (left), equivalent stress (left) and stress triaxiality (right) for the hot rolled steel
E0 and the prestressing steel E7 along the necking section.

Figure 17 (right) shows the triaxiality factor distribution along the radial coordinate of
the wire necking. The prestressing steel shows a higher level of triaxiality with respect to
the hot rolled steel. In both steels the triaxiality factor is maximum in the longitudinal wire
axis (r = 0) and minimum in the external surface of the neck.

Heavily cold drawn steels (Figure 18) exhibit locally anisotropic fracture behavior due to
the presence of multiple micro-cracks oriented and aligned along the drawing direction
(created by debonding between the inclusions and the pearlitic matrix) and the triaxial
stress state (with radial and hoop components) generated after necking. Both factors are
relevant to create an anisotropic fracture in heavily cold drawn pearlitic steels in which
there is a coexistence of:

(i) Elevated values of σY, σR and σθ (see Figures 3, 4 and 16).
(ii) High level of stress triaxiality (with σz > σθ), as indicated in Figure 17.
(iii) Many micro-cracks created from the inclusions, aligned and oriented along the draw-

ing axis (Figure 14). The hoop stress σθ during plastic instability (necking) before final
fracture induces locally anisotropic fracture with crack deflections and appearance of
crests and valleys.
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Figure 18. Anisotropic fracture behavior in a cold drawn pearlitic steel (E7).

Hot rolled (not cold drawn at all) and slightly drawn pearlitic steels (Figure 19) exhibit an
isotropic fracture behavior due to the absence of the afore-said micro-cracks. In this case the
stress state is defined by:

(i) Moderated values of σY, σR and σθ (see Figures 3, 4 and 16).
(ii) Lower level of stress triaxiality (with σz > σθ), as showed in Figure 17.
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(iii) Scarcity (or practical absence) of pre-damage and micro-cracks. Therefore, the triaxial
stress state generated during necking is unable to produce local deflections and thus
locally anisotropic fracture.
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