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Abstract: The effect of PTFE, continuous boron, and tungsten fibers on the combustion behavior and
strength of reactive Ni–Al compacts was examined in this study. The introduction of continuous
fibers into Ni–Al compacts according to the developed scheme was found to increase the flexural
strength from 12 to 120 MPa. Heat treatment (HT), leading to chemical interaction of the starting com-
ponents, increases the strength of compacts at temperatures not exceeding 550 ◦C. The combination of
reinforcement and HT significantly increases the strength without reducing reactivity. Experimental
results showed that strength and combustion rate increase with the reduction in PTFE to 1 wt % in
Ni–Al compacts. A favorable effect of the addition of PTFE from 5 to 10 wt % on the reduction of the
threshold for the shock-wave initiation of reactions in Ni–Al was established. The obtained results
can be used to produce reactive materials with high mechanical and energy characteristics.

Keywords: shock waves; exothermic reaction; reactive materials; reinforcement; heat treatment

1. Introduction

Energetic materials are substances or mixtures in which, under the action of external
forces, self-sustaining chemical reactions occur with the release of a large amount of
energy. A promising group of energetic materials are reactive structural materials (RSMs),
consisting of two or more solids, usually nonexplosive metallic or nonmetallic powders, in
which an exothermic reaction can occur after high-velocity impact and penetration into
a target. As a rule, thermite, intermetallic, metal-fluoropolymer systems and metastable
intermixed composites are used as RSMs [1,2].

These materials can be used in the military field as kinetic penetrators, cumulative
highly reactive fragments, shaped charge liners [3], reactive projectiles, and reactive (active)
armor and munition bodies [1,2,4]. RSMs must have mechanical properties comparable to
traditional materials, such as steel, aluminum, copper, etc., which have a tensile strength
of no less than 100 MPa. The most promising in terms of high strength are intermetallic
systems. The compositions of Ni–Al, Al–W, Al–Zr, etc., in addition to high energy concen-
tration, possess structural strength [3,5]. Since RSM components, as a rule, are powders,
they must be consolidated. There are various technologies to consolidate RSMs into a
monolithic structure: radial forging [1,6], cold and hot isostatic pressing [7,8], high-pressure
torsion [9], magnetron sputtering [10] and cold spraying [11,12], cold rolling [13,14], ac-
cumulative roll-bonding [15], and explosive compacting [5,16]. The disadvantages of
sputtering are its low rate and high cost. High-pressure processing requires large-sized
equipment and includes multi-stage plastic deformation of two materials with different
plasticity, which can eventually lead to material cracking and partial chemical interaction
between starting components.

In addition to consolidation, there are methods for strengthening metallic [1,17],
polymeric [18], and cement matrices [19], consisting of reinforcement with discrete [20] or
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continuous fibers. Data on the reinforcement of powder materials with ordered continuous
fibers to increase their strength are not available in the literature.

At present, there is an increased interest in works aimed at identifying the basic laws
of interaction between metals and polymer matrices composed of polytetrafluoroethylene
(PTFE) during heating [21,22], shock-wave loading [23–27], and dynamic and static load-
ing [28–31], with the variation in particle sizes [32]. The effect of sintering temperature
on the strength of Al–PTFE compacts was investigated in [33]. In other works [34–36], an
aluminum honeycomb was used to increase the energy release and strength of Al–PTFE
compacts. The increased interest of researchers in the Al–PTFE mixture is primarily due to
the ability of PTFE to form chemical compounds containing Al. The enthalpy of reaction for
the mixture with a ratio of 26.5% Al/73.5% PTFE with the formation of AlF3 was estimated
as −8.85 kJ/g, considering the enthalpy of PTFE decomposition (8 kJ/g) and the enthalpy
of AlF3 formation (−18 kJ/g) [37]. The combustion heat per unit mass is 8.53 MJ/kg, which
exceeds that of TNT more than twice [38]. In [39], it was found that the addition of PTFE
reduces the critical initiation pressure in the Ni–Al intermetallic system.

Producing, testing, and studying promising RSMs with a certain set of physical and
mechanical characteristics and high energy release are associated with several physical
and chemical limitations and technological difficulties. Such studies, as a rule, are purely
experimental and characterized by rapid physical and chemical processes, and high strain
rates, pressures, and temperatures in reaction mixtures during explosive loading.

This paper presents studies of the strength, ignition, combustion, and shock-wave
initiation of metal and metal-polymer powder mixtures based on Ni–Al and Ni–Al–PTFE.
The effect of reinforcement with tungsten and boron fibers, low-temperature heat treatment
(HT), and component fraction changes on the mechanical properties, phase formation, and
energy characteristics of reactive powder compacts was investigated.

2. Materials and Methods

Powders of PTFE (F-4NTD-2 grade, particle size < 5 µm), aluminum (ASD-1 grade,
particle size < 50 µm) and nickel (PNK-UT3 grade, particle size < 50 µm) were used as
starting components. Calculations of the optimal RSM composition were performed using
THERMO software [40]. Thermodynamic equilibrium conditions in a multi-component
heterogeneous system were determined using the minimization procedure of the ther-
modynamic potential (free energy) of the system, considering the restrictions associated
with the laws of conservation of mass of chemical elements. The powders were mixed
in a tumbling drum mixer for 3 h at 30 rpm with a ball-to-powder weight ratio of 5:1.
The specimens were compacted by single-action pressing using a hydraulic hand press
(PRG-10, Lab Tools, St. Petersburg, Russia).

Then, the inert and active fillers, i.e., tungsten and boron fibers with a diameter of
0.3 mm and 0.14 mm, were introduced into the powder compacts. The reinforcement
scheme and the picture of Ni–Al and Ni–Al–PTFE powder compacts are shown in Figure 1.
To prepare one specimen, the mixture was divided into 5 equal parts and placed layer by
layer into the mold. The fibers were then placed on each layer except for the last one.

The number of fiber layers was constant and was equal to four, as shown in Figure 1a,
and the number of fibers in one layer of the specimen was chosen experimentally. The
number of fibers in a monolayer was limited by the specimen’s size. The specimens had the
shape of a parallelepiped with dimensions of 5 × 5 × 20 mm. The PTFE content was chosen
experimentally and varied according to the formula (100×) (Ni–Al) + xPTFE. The types
and compositions of specimens are shown in Table 1. Three types of specimens were made
of the Ni–Al powder mixture: a, unreinforced; b, reinforced with boron; and c, reinforced
with tungsten fibers with relative densities of 0.7 and 0.8. The density of the specimens
was determined from their geometric dimensions (micrometer by Dasqua, Cornegliano
Laudense, Italy) and weight (CAS XE-300 analytical balance, CAS, East Rutherford, NJ,
USA). The relative density was calculated as the ratio of the actual to the theoretically
possible [41]. Two types of specimens were fabricated of the Ni–Al–PTFE powder mixture:
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d, unreinforced; and e, reinforced with boron fibers with a relative density ranging from
0.84 to 0.99. The specimens constructed of the Ni–Al mixture with a relative density of 0.7
were subjected to HT in the modes described in Table 2.
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Figure 1. Reinforcement scheme: (a) 1—fiber, 2—powder compact; (b) specimen after reinforcement.

Table 1. Types of specimens.

Composition Ni–Al Ni–Al +
Boron Fiber

Ni–Al +
Tungsten Fiber Ni–Al–PTFE Ni–Al–PTFE +

Boron Fiber

Type of specimens a b c d e
Relative density 0.7; 0.8 0.7; 0.8 0.7; 0.8 0.84–0.99 * 0.84–0.94 *

PTFE, wt % – – – 1; 3; 5; 10; 15; 20; 25 1; 3; 5

* As the percentage of PTFE additives increases, the relative density increases.

Table 2. HT modes for samples of the Ni–Al system.

Type of Specimens a a, b, c a, b a

Holding Time, h Temperature of Heating, ◦C

1 300 400 500 550
2 300 400 500 550
3 300 400 500 550

The flexural strength of the specimens was determined from a three-point bending test
(according to the GOST 25282-93 standard) using the universal testing machine (Instron
1195, V = 2 mm/min, Figure 2). The flexural strength was calculated according to the
following formula:

σ =
(3Pl)
(2h2b)

(1)

where P is applied load (H), l is distance between supports (mm), h is specimen height
(mm), and b is specimen width (mm).

The specimens with a diameter of 3 mm and a height of 1–2 mm were pressed to
study the ignition process. The experiments were performed in a reactor in a protective
argon (Ar) atmosphere at atmospheric pressure (Figure 3). The reactor was sealed with a
lid with a quartz viewing window. A graphite plate 10 mm in width, 1 mm in thickness,
and 20–25 mm in length served as a heater through which an electric current was passed
from an autotransformer. A boron nitride crucible with a flat thermocouple welded from
WR5/WR20 thermocouple wires with an original diameter of 100 µm was placed on the
heater, followed by rolling to a thickness of 50 µm. The specimen under study was placed
on the thermocouple and heated by convective and radiation heat flow from the crucible
at a rate of 40–60 ◦C/s. The specimen temperature was recorded on a computer using
an analog-to-digital converter (ADC) [42]. This procedure determines the intensity of
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exothermic reaction and phase transitions in the specimen, similar to differential scanning
calorimetry (DSC) and differential thermal analysis (DTA) used in the works [37,43–45].
The phase composition of the products was characterized by X-ray diffraction (XRD, DRON-
3M, Burevestnik, St. Petersburg, Russia). The samples were scanned from 20◦ to 80◦ (2Θ)
with a scanning step of 0.02◦.
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Figure 3. Schematic illustration of RSM ignition.

The temperature and linear rate of combustion were determined in a 20 L reactor with
the possibility of creating both an inert atmosphere (Ar) and vacuum up to 2 × 104 Pa. A
schematic of the reactor and experimental bench is shown in Figure 4. In this experiment,
5 × 5 × 20 mm specimens were used, and 100 µm diameter WR5/WR20 thermocouple
wires were applied to measure the exothermic reaction temperature. Two blind holes,
0.3–0.5 mm in diameter and 2 mm in depth, were predrilled in the specimens at 4–5 mm
from the top and 1–2 mm from the end. The specimen was placed on a refractory table
close to the graphite heater, and then thermocouples were introduced into it. The necessary
atmosphere was created in the reactor to activate the specimen. The thermocouple readings
were converted using ADC and sent to a computer for processing.

Experiments on shockwave initiation of reactive materials were conducted by throw-
ing a steel plate (3) (3 mm thick) accelerated by the explosive (2) to the surface of a matrix
(4) that contained cylindrical specimens (5) with a diameter of 10 mm and a height of
10 mm (Figure 5). The explosive was activated by an electric detonator placed along
the axis of the setup. Blind holes were drilled in a steel matrix with the dimensions of
20 × 100 × 100 mm equidistant from the center to ensure the same loading conditions in
all cells with specimens. During shockwave loading, a steel plate was welded to the matrix,
ensuring that the specimens were preserved and could be further examined. Flyer plate
(steel) velocities were 1.0 and 1.5 km/s.
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3. Results

The above-described procedure was used to prepare the specimens reinforced with
continuous boron and tungsten fibers with powder matrices Ni–Al and Ni–Al–PTFE.
Thermodynamic calculations were performed to select the stoichiometric composition of
Ni–Al with the highest adiabatic combustion temperature (1638 ◦C). We found that the
strength characteristics of the prepared specimens, namely the flexural strength of powder
compacts with different molar ratios of nickel and aluminum (Ni–3Al, Ni–Al, and 3Ni–Al),
are identical and lie in the range of 11 to 13 MPa at a relative density of 0.7. So, the choice
of a Ni–Al stoichiometric composition is not only due to the high adiabatic combustion
temperature, but also due to the strength.

For reinforced specimens, the optimal arrangement of fibers, which was determined
experimentally, is of great importance. Laying one or two fibers did not provide a significant
increase in strength. An excessive number of fibers reduces the strength characteristics
of the material. The optimal number of fibers per layer for each fiber type is shown in
Figure 6. Figure 7 shows the strength characteristics for different specimen types as a
function of density. We found that increasing the density of compacts by 10% increased the
strength of unreinforced specimens by 190%, with boron fibers by 170%, and with tungsten
fibers by 65%. The boron fibers increased the strength by 60% and the tungsten fibers
by 200% compared with unreinforced specimens. The reason for the increased strength
of powder compacts is related to the redistribution of the load from the matrix to the
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fiber due to mechanical interlocking and friction between the powder and the fibers. It is
necessary to note that there is a problem of insufficient adhesion of fiber with the matrix.
This phenomenon mainly occurs with boron fibers. So, when bending, they are pulled out
from the matrix without being destroyed, and as a result, are not possible to use to their
full potential.
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The dependencies of flexural strength of the specimens on the type of reinforcement
and HT modes are shown in Figure 8. HT of specimens in air provided a significant increase
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in flexural strength from 12 to 100 MPa for unreinforced specimens, but for specimens
reinforced with boron fibers, it had no positive effect due to the weakening of the fibers [46].

HT of type a specimens increased their strength by 40% at 300 ◦C for 2 h, by 350%
at 400 ◦C for 2 h, by 650% at 500 ◦C for 1 h, and by 730% at 550 ◦C for 2–3 h. Before HT,
the type b specimens had an average strength of 23 MPa. The strength of the specimens
increased by 90% at 400 ◦C for 2 h and by 250% at 500 ◦C for 2 h. The tungsten-fiber-
reinforced specimens had an average strength of 60 MPa before HT, and after HT, the
strength increased by 80% to 110 MPa at 400 ◦C for 3 h. HT of type a and c specimens
provided hardening due to sintering of material, which is caused by the reduction in voids
in the specimen, consequently resulting in denser and stronger material.
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Specimens subjected to HT for 1 h at 400 and 500 ◦C contained NiO, and at 550 ◦C,
in addition to the oxidation of nickel, a partial synthesis of the starting components with
the formation of intermetallic compounds (Ni2Al3, NiAl3) occurred, as seen in the X-ray
diffraction patterns (Figure 9). A similar effect is observed for magnetron sputtering [10]
and shockwave loading [5], which reduces the number of reactive components.

Figure 10 shows the dependence of strength of the powder Ni–Al–PTFE compacts
on the proportion of PTFE and the type of reinforcement (relative density is provided for
each specimen). The content of 1 wt % PTFE in the Ni–Al compact reinforced with boron
fibers led to an increase in strength by 30% and to a decrease in strength by 30–35% for
3–5 wt % PTFE. Increasing the proportion of PTFE in the Ni–Al specimens increased the
relative density, but it had a negative effect on their strength characteristics due to the low
friction coefficient of PTFE.
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Figure 10. Flexural strength of Ni–Al–PTFE specimens.

Figure 11 shows the fracture of Ni–Al and Ni–Al–PTFE specimens with different types
of reinforcement. The specimens of type a have a brittle and fast fracture. The specimens
of type b fractured gradually along with pulling, bending, and breaking.

The investigation of the ignition of Ni–Al and Ni–Al–PTFE specimens before and after
HT is shown in Figure 12 and Table 3, respectively. We found that the Ni–Al mixture ignited
at about 660 ◦C, which corresponds to the melting temperature of Al and agrees with the
results of DTA and DSC in the works [11,12,43,45]. After HT of the Ni–Al specimens, the
ignition temperature increased from 660 to 980 ◦C, which is associated with the formation of
oxide films on the surface of aluminum and nickel particles, preventing the aluminum from
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melting and spreading over nickel. In the Ni–Al–PTFE specimens, the ignition temperature
was about 620–640 ◦C. According to the data of [43], at a heating rate of 10 ◦C/min, the
reaction proceeded at 585 ◦C. In the present experiments, the recorded temperature was
higher due to the high heating rate, as explained by the authors in [42]. The ignition
temperature can be reduced using nanosized powders [47] or high-energy ball milling
(HEBM) [10,48] and cryomixing [49]. The use of nanopowders is associated with difficulties
such as agglomeration and autoignition in air. HEBM of powders leads to the synthesis of
some starting components and reduces the formability of powder compacts as well.
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Figure 12. Thermograms of ignition of Ni–Al and Ni–Al–PTFE powder mixtures.

Table 3. Temperature of ignition of Ni–Al specimens after HT.

Temperature of Heating ◦C 400 500 550

Holding Time, h Temperature of Ignition, ◦C

1 760 720 785
2 770 810 915
3 740 820 980

Combustion rate measurements showed that increasing the relative density of type a
compacts from 0.7 to 0.8 led to an increase in the combustion rate by 25% (Figure 13). The
addition of 1 wt % PTFE to the Ni–Al powder mixture led to an increase in the combustion
rate from 35 to 120 mm/s, which is comparable to that of thin aluminum–fluoropolymer
films studied in [50]. When the PTFE proportion increased from 15 to 25 wt %, the
combustion rate decreased to 1.5 mm/s. This effect is associated with gas evolution in the
combustion wavefront, which leads to the loosening of the specimen and interruption of
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heat exchange. Figure 14 shows the X-ray diffraction patterns of the burned Ni–Al–PTFE
specimens. The only synthesis product is NiAl. During combustion, a large amount of
gaseous products is formed, which are deposited on the reactor walls, but their presence in
the specimens was not detected.
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Figure 15 shows the video frames of combustion in the Ni–Al and Ni–Al–PTFE
powder systems with different types of reinforcement. During the combustion of the
Ni–Al specimens, there was no significant gas evolution or change in size, in contrast with
specimens with the addition of fluoroplastic which significantly changed the initial size and
mass. Combustion of the Ni–Al specimens with the introduction of boron fibers noticeably
changed, demonstrating a rapid separation of hot particles from the surface of the sample.
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Combustion of Ni–Al with the addition of 1 and 3 wt % PTFE occurred with active heat
release characterized by high temperature and high gasification of combustion products.
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Synthesis in the Ni–Al and Ni–Al–PTFE systems subjected to shockwave loading
was determined by visual inspection and XRD. Visual inspection revealed that shockwave
loading of Ni–Al specimens, as well as with the addition of 1 and 3 wt % PTFE at throwing
speeds of 1.0 and 1.5 km/s, did not result in combustion (Figure 16). At the throwing speed
of 1.5 km/s, 5 wt % PTFE addition was sufficient to initiate the reaction (Figure 17), and at
1.0 km/s–10 wt % PTFE (Figure 16). Thus, the addition of PTFE lowers the threshold of
initiation of shock waves in the Ni–Al system, positively affecting its reactivity.
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4. Conclusions

For the first time, the possibility of reinforcing reactive powder compacts with con-
tinuous fibers for increasing their strength characteristics was experimentally shown. The
optimal schemes of reinforcement of RSM with boron and tungsten fibers, which increase
the strength by 60% and 200%, were experimentally determined.

HT of Ni–Al at 400 ◦C and 550 ◦C for 3 h increased the ignition temperature to 740 ◦C
and 980 ◦C, respectively. We found that HT of Ni–Al at temperatures of 400 and 500 ◦C
for 1–3 h increases the strength by 650%, but it does not lead to chemical interaction
between starting components. HT at 550 ◦C for 2–3 h increases the strength by 730%, but it
leads to chemical interaction between starting components with the formation of NiAl3
and Ni2Al3. The obtained results can be used to control the mechanical characteristics of
reactive powder materials without reducing their reactivity. The strength of the specimens
was 100–120 MPa, which is comparable to that of aluminum.

Adding PTFE up to 1 wt % to the Ni–Al specimens reinforced with boron fibers
increases the strength by 27% by reducing porosity, but at more than 3 wt % PTFE decreases
the strength by 30%. The addition of fluoroplastic to the Ni–Al specimens makes it possible
to obtain materials with relative density up to 0.99 at relatively low pressures, which cannot
be achieved without this addition.

We found that the addition of 5% and 10% PTFE to the Ni–Al system is sufficient to
initiate an exothermic reaction at flyer plate velocities of 1.5 and 1.0 km/s.
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