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Abstract: Selective Laser Melting was successfully used as a fabrication method to produce Ni-Mn-
Ga and Ni-Mn-Ga-Fe ferromagnetic shape memory alloys. The starting material in a powder form
with an average particle size of about 17.6 µm was produced by milling of as melt-spun ribbons.
The microstructure, phase composition, and martensitic transformation behavior of both powder
precursors and laser melted alloys were investigated by several methods, including high energy X-ray
diffraction, electron microscopy, and vibrating sample magnetometry. The as laser melted materials
are chemically homogenous and show a typical layered microstructure. Both alloy compositions
have a duplex structure consisting either of austenite and 10M martensite (Ni-Mn-Ga) or a mixture
of 14M and NM martensitic phases (Ni-Mn-Ga-Fe), contrary to the as milled powder precursors
showing fcc structure in both cases. The forward martensitic transformation takes place at 336 and
325 K for Ni-Mn-Ga and Ni-Mn-Ga-Fe, respectively, while the magnetic response is much stronger
for Ni-Mn-Ga than for the quaternary alloy. The results show that Selective Laser Melting allows
for producing of good quality, homogenous materials. However, their microstructural features and
consequently shape memory behavior should be tailored by additional heat treatment.

Keywords: Ni-Mn-Ga; selective laser melting; microstructure; additive manufacturing

1. Introduction

Ferromagnetic Ni-Mn-Ga shape memory alloys capable of 12% magnetic field induced
strain, high-frequency response (kHz), and extended fatigue lifetime (~2 × 109 cycles)
were widely studied in the past two decades as promising candidates for smart materials
devices [1,2]. Most often, they come in a form of single crystals, and as such, free of any
grain boundary constraint, they can offer up to the maximum allowable strain. However,
more recently, semi-constrained polycrystalline Ni-Mn-Ga alloys, produced as foams, have
been shown to yield up to 8.7% recoverable strain [3], which has subsequently triggered
vivid research interest in the development of alternative synthesis routes for Ni-Mn-Ga
alloys. This interest is increased by prospects of a less time-consuming and more predefined
geometry-specific manufacturing approach as opposed to single crystal growth. In this
light, additive manufacturing has come forth with its high potential [4–22].

There are various ways of 3D printing, but most of them rely fundamentally on
fine powder precursor feedstock [23–26]. For producing such fine powder, one may
again turn to a number of different techniques, but the common pre-requirement that
a good quality powder has to meet is ideally a spherical shape of particles, uniform
particle size distribution, and homogeneity—if starting from a pre-alloyed source. In
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terms of preserving the starting composition, vital for the highly composition sensitive
functional performance of Ni-Mn-Ga alloys, melt spinning technique has been frequently
highlighted as a viable option. Its major advantage, apart from ensuring homogeneity, is
scalability and intrinsic brittleness of resulting as melt spun Ni-Mn-Ga ribbons. Owing
to that, brittleness melt-spun ribbons can be further easily pulverized to a predefined
particle size before final loading onto a 3D printer. One has to bear in mind though, that
heavy pulverization, although improving powder size and particle shape uniformity, can
simultaneously severely degrade the structure, stabilize the martensite phase, or even
suppress martensitic transformation [27,28]. Such radical structure interference would then
entail careful optimization of 3D printing regime and application of additional heating stage
for homogenization and structure recovery [26]. In this work, we, therefore, examine the
evolution of microstructure and magnetic properties in as milled, as milled and annealed
and selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders originating in as melt
spun ribbons. Microstructure and magnetic response of the powders following different
thermomechanical histories are compared. It is demonstrated that through 3D printing,
some functional behavior of Ni-Mn-Ga and Ni-Mn-Ga-Fe is restored, but additional heat
treatment is unavoidable for maximizing the ultimate response.

2. Materials and Methods

Ni50.2Mn28.3Ga21.5 and Ni50Mn25Ga20Fe5 powders were produced by mechanical
milling of melt-spun ribbons in a vibration mill (Fritsch PULVERISETTE 0) with 1 ball
50 mm in diameter and under 0.5 mm vibration amplitude for 8 h. The ball powder ratio
was 95:1. Small amounts of each powder were separately heat-treated at 1170 K for 1 h
in an argon atmosphere. Subsequently, powders were used for 3D printing employing
Selective Laser Melting (SLM) technique using the ReaLizer 50 with laser beam of 120 W
and 1064 nm wavelength. The scanning parameters were as follows: beam power 37.5 W,
beam speed 250 mm/s, and line spacing 50 µm. Samples were created via single line
melting. There were two types of melting strategies implemented: laser patch along the
plate direction (N) and laser patch oscillating with 100 um amplitude (O). There was
no rotation involved. Layer thickness was 25 um. Build plate was AISI 304 steel. As a
result, samples having 6 mm in length, 3 mm in width, and thickness of about 500 µm
were produced.

Microstructure and structure of the samples were studied using FEI-SEM XL30 scan-
ning electron microscope (SEM) equipped with an X-ray energy dispersive spectrometry
(EDS) analyzer, dual beam high-resolution Scanning Electron Microscopy FEI Quanta FEG
SEM integrated with the EDAX Trident system (Apollo 40 EDS spectrometer, TEXS WDXS
spectrometer, and Hikari EBSD camera) and Tecnai G2 (200 kV) transmission electron
microscope (TEM) fitted with an Energy Dispersive X-ray (EDX) microanalyzer coupled
with a High Angle Annular Dark Field Detector (HAADF). Powder samples for TEM
observations were prepared by placing a small amount of powder particles on the 3 mm
diameter copper grid with the amorphous carbon thin film. For the preparation of thin foil
from printed alloys, electro-polishing with TenuPol-5 double jet electropolisher (electrolyte
of nitric acid (1/3) and methanol (2/3)) at temperature ~240 K was applied. For EBSD 3D
printed alloys’, the surface was mechanically polished and then electropolished using an
electrolyte of perchloric acid (1/5) and ethanol (4/5) at ambient temperature. Structure
evolution was further elaborated by X-ray diffraction employing high-energy synchrotron
radiation (87.1 keV) and a 2-dimensional detector at a distance of 1230 mm at HZG materi-
als science beamline P07B at DESY in Hamburg, Germany. Mass magnetic susceptibility
and magnetization were measured using the vibrating sample magnetometer (VSM) option
of the Quantum Design Physical Property Measurement System (PPMS-9) between 5 K
and 380 K temperature and under a magnetic field of 50 mT (and 5 T).
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3. Results and Discussion

Particle shape and size distribution of the initial powder source is illustrated through
the exemplary Ni-Mn-Ga powder (Figure 1a); the results for the Ni-Mn-Ga-Fe powders
were similar and thus are not shown. Powder characteristics were evaluated from SEM
image analysis (Figure 1a). It has been found that particles exhibit a typical coarse mor-
phology, and their mean size, estimated based on normal asymmetric size distribution, was
17.3 µm (Figure 1b). The highest frequency of particle sizes was in the range of 1–25 µm,
while a small amount of particles was above 40 µm (Figure 1b). A fraction of particles
with rounded edges and a size of about 0.5 µm was also noted. For detailed structural
examination, TEM was applied (Figure 2). The TEM studied particles had ca. 0.5 µm
in diameter (Figure 2a) and the corresponding SAED pattern (Figure 2c) indicated that
particles possessed a nanocrystalline fcc structure. The size of crystallites measured in the
dark field image—DF (Figure 2b) performed from the (111) fcc planes was in the range of 5
to 20 nm. Regardless of the size and shape, the particles have a high chemical homogeneity,
which was confirmed by the EDS analyses made in the area marked by a black square
frame (Figure 2d). The average chemical composition is Ni50.3±0.5Mn28.0±0.8Ga21.7±0.6, and
it was very close to the nominal alloy composition. After annealing (Figure 3), crystallite
size, measured in DF on the (220) L21 planes (Figure 3b), was larger than 100 nm and
crystallites show a characteristic contrast close to the banded microstructure. It can then be
assumed that there was some martensite in the annealed powder sample. The structure
of particles changed from fcc to the L21 (Figure 3c), pointing to a phase transformation
from fcc to the L21 Heusler phase. Similar to the case of as milled powders without heat
treatment, the chemical composition in annealed powders was close to nominal.
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Phase compositions of as milled, as milled and annealed and selected laser melted Ni-
Mn-Ga and Ni-Mn-Ga-Fe powders were further examined with high-energy synchrotron
radiation (Figure 4). The crystal structure of both as milled powders was virtually the same
and it was determined to be the fcc structure. The diffraction patterns obtained for the as
laser melted Ni-Mn-Ga alloy revealed a duplex structure well indexable according to the
coexisting L21 austenite and 10M modulated martensite structures, whereas the Ni-Mn-
Ga-Fe laser melted powder developed a mixture of modulated 14M and non-modulated
(NM) structures (Figure 4). Similar phase composition was found with powders annealed
for 1 h at 1173 K. Besides the qualitative comparison, a good quantitative agreement using
Rietveld refinement was also obtained. In NiMnGa alloys, a volume fraction of about 63%
of 10M martensite was found in the annealed state, while the amount of 10M martensite
in the 3D printed sample was close to 55%. These values for NiMnGaFe alloys and 14M
martensite reach 95.5% in the annealed state, and about 88% in as laser melted one. This
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disparity in the amount of martensite fraction implies at least two technical issues. On the
one hand, laser melting had no inhibitory influence on martensitic transformation, and on
the other hand, a further annealing process was required to fully restore the 10M or 14M
single-phase structure in selected laser melted samples.
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Morphologically the microstructure, inspected with scanning electron microscopy in
a backscatter mode (SEM/BSE) (Figure 5), had a striped-like appearance, typical for 3D
printed materials. It encompasses martensitic plates with subplate, fine twin-microstructure
in consistence with XRD (Figure 4). In terms of chemical composition, there were no
variations, what was confirmed from EDS analysis, and overall the chemical composition
was coherent with the nominal composition, what deserves mention when taking into
account the compositional complexity of the powders and volatility of Mn. For more
in-depth scrutiny of martensitic microstructure, an electron backscatter diffraction (EBSD)
was applied (Figure 6). The EBSD also confirmed striped microstructure and a large
density of twin boundaries associated with the 10M martensite [29]. It appears that
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each layer was composed of a single austenite orientation that grows within a particular
layer. However, they show different twin configurations constituting distinct variant
colonies. In addition, some faint lines observed may be related to intense epitaxial grow
effects or recrystallization of neighboring stripes occurring during the material production.
Interestingly, the microstructures in Figure 6 were dominated by 10M martensite, which
was not fully consistent with X-ray volume fraction calculations. It appears that these
regions undergo martensitic transformation because they are less defected and thereby
more easily indexed by EBSD system. Even though they were less representative, they
were selected for EBSD measurements in order to reveal twin configurations. However, for
proper phase indication, synchrotron measurements were used.
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Furthermore, detailed microstructural examination of as 3D printed alloys was con-
ducted with TEM. Scanning Transmission STEM-HAADF (Figure 7) also confirms plate-like
microstructure typical for the martensite phase. The average plate thickness was circa
150 nm. Inside the macroplates, finer microscopic features were found, among them a
high density of stacking faults or modulations. It was interesting to note two groups of
variants belonging to two different colonies with orientation perpendicular to one another
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(Figure 7a). Both groups of variants differed morphologically, which may indicate that
rather than from self-accommodation, their arrangement results from a layer by layer
melting process. In terms of chemical composition in consistence with SEM/EDS there
were no transparent fluctuations in the distribution of chemical elements, and the average
composition for the two starting alloys was in agreement with nominal composition, and
it was in the range Ni (48–51 at.%), Mn (23–25 at.%), Ga (18–19 at.%), and (Fe 6–8 at.%)
(Figure 7b,c). Apart from the martensitic plates, the microstructure contained a fair number
of circular spots with dark contrast in HAADF-STEM. Their size oscillated around 100 nm.
The EDS chemical composition analysis confirmed that they were primarily composed
of Mn and O, which suggests that these spots may be associated with manganese oxides
frequently encountered in Heusler based Ni-Mn alloys following thermal treatment under
no protective atmosphere. Plate morphology was also well visible from bright field images
(Figures 8 and 9), demonstrating distinct zones, one populated with martensitic plates and
the other free of any plates. In general, two types of plates can be distinguished. One type
has defined plate boundaries, most likely twin boundaries, and a high density of stacking
faults or modulations. The second type has more diffused boundaries with a high density
of dislocations. It can thus be assumed that in terms of morphology, the resulting as printed
materials were inhomogeneous, which was related to heat distribution and occurrence of
individual melting zones during the printing process.

Metals 2021, 11, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 7. Scanning transmission electron microscopy image (a) and energy dispersive spectra from areas (b,c) correspond-
ing to area marked with rectangle in (a) of as laser melted Ni-Mn-Ga-Fe powder. 

Figures 8 and 9 collect a number of BF images and the corresponding selected area 
electron diffraction patterns (SAED). The SAED in Figure 8 can be well indexed according 
to the L21 austenite structure along the [001] zone axis. Interestingly this SAED shows 
diffuse streaking, indicated by arrows and originating from (202) planes, which were often 
found with premartensitic phenomena. The SAED in Figure 9, on the other hand, can be 
well indexed according to the 14M modulated martensite structure, which was given 
away by six satellite diffraction spots and the 91.5º angle between (202) planes, indicating 
monoclinic symmetry. It slightly deviates from the value obtained for the 14M single crys-
tals (93.1°), indicating the presence of NM phase and the fact that 14M martensite was not 
fully developed. However, this type of structure prevails in plates with well-defined 
boundaries. For a closer inspection of the atomic arrangement, High Resolution Electron 
Microscopy (HREM) was applied, and a few of the obtained images are shown in Figure 
10 together with the corresponding Fast Fourier Transform (FFT) and inverse FFT. From 
the HREM image in Figure 10, one can notice an interface between austenite and marten-
site. The FFTs taken from the marked areas (white rectangle in Figure 10), as well as from 
the overall area, confirm a large number of microstructural faults within the studied area. 
Most prominent of these faults are plane discontinuities and plane bending witnessed for 
martensite structure. A typical tweed microstructure attributed to pre-martensitic phe-
nomena is also well visible from Figure 10 in agreement with satellite streaking noted in 
Figure 8. 

 
Figure 8. Bright field (BF) and the corresponding selected area electron diffraction (SAED) of as laser melted Ni-Mn-Ga-
Fe powder taken from an area dominated with the L21 austenite phase. 

Figure 7. Scanning transmission electron microscopy image (a) and energy dispersive spectra from areas (b,c) corresponding
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Figures 8 and 9 collect a number of BF images and the corresponding selected area
electron diffraction patterns (SAED). The SAED in Figure 8 can be well indexed according
to the L21 austenite structure along the [001] zone axis. Interestingly this SAED shows
diffuse streaking, indicated by arrows and originating from (202) planes, which were often
found with premartensitic phenomena. The SAED in Figure 9, on the other hand, can
be well indexed according to the 14M modulated martensite structure, which was given
away by six satellite diffraction spots and the 91.5º angle between (202) planes, indicating
monoclinic symmetry. It slightly deviates from the value obtained for the 14M single
crystals (93.1◦), indicating the presence of NM phase and the fact that 14M martensite was
not fully developed. However, this type of structure prevails in plates with well-defined
boundaries. For a closer inspection of the atomic arrangement, High Resolution Electron
Microscopy (HREM) was applied, and a few of the obtained images are shown in Figure 10
together with the corresponding Fast Fourier Transform (FFT) and inverse FFT. From the
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HREM image in Figure 10, one can notice an interface between austenite and martensite.
The FFTs taken from the marked areas (white rectangle in Figure 10), as well as from the
overall area, confirm a large number of microstructural faults within the studied area.
Most prominent of these faults are plane discontinuities and plane bending witnessed
for martensite structure. A typical tweed microstructure attributed to pre-martensitic
phenomena is also well visible from Figure 10 in agreement with satellite streaking noted
in Figure 8.
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The thermomagnetic measurements for the starting as milled and milled and annealed
as well as 3D printed Ni-Mn-Ga and Ni-Mn-Ga-Fe alloys are shown in Figure 11. The
magnetic susceptibility and detailed magnetization response of as milled powders were
evaluated elsewhere [29], it only needs to be remarked that milling suppresses martensitic
transformation, and secondary annealing was required for its restoration. Irrespective of the
powders, the magnetic susceptibilities versus temperature for the as laser melted Ni-Mn-Ga
and Ni-Mn-Ga-Fe alloys are shown in Figure 11a. In consistence with the microstructural
examination, the appearance of martensitic transformation was well recognisable from the
hysteretic splitting between the field cooling and field heating curves, indicated with arrows
in the Figure 11a. The Curie temperature inferred from the inflection point on the field
cooling curve for the Ni-Mn-Ga alloys was 350 K, the forward transformation took place at
336 K, while the reverse transformation deducted from the field heating curve occurred
at 339 K. The forward and reverse martensitic transformation temperature difference
indicated a small hysteresis on the order of 3 K. The Curie temperature for the Ni-Mn-Ga-
Fe alloy was found at 358 K, while the forward transformation in this printed alloy powder
appears at 325 K and the reverse at 331 K. The hysteresis worked out from the temperature
difference was then 6 K. For illustration of the magnetic response, we have put together the
magnetization measured at 5 K under 2 T for the as milled, milled and annealed Ni-Mn-Ga
powders, and both the Ni-Mn-Ga and Ni-Mn-Ga-Fe printed alloys. The magnetization
of the two latter alloys located in between the as milled (2.3 Am2/kg) and milled and
annealed (73 Am2/kg) NiMnGa powders and assumed the value of 34 Am2/kg in the
case of the Ni-Mn-Ga and 20 Am2/kg in the case of the Ni-Mn-Ga-Fe alloy (Figure 11b).
The remnant magnetization in both 3D printed alloys was at the similar level of 1.25 and
1.33 Am2/kg, whereas the coercivity was 588 Oe and 1198 Oe for the Ni-Mn-Ga and
Ni-Mn-Ga-Fe alloys, respectively.
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Overall, it was well demonstrated that milling deteriorates the functional perfor-
mance of Ni-Mn-Ga base alloys. This was largely due to significant internal strains and
disordering, which can stabilize the martensite phase or inhibit the transformation. Sub-
sequent annealing restores the crystal structure, promotes ordering, and relieves internal
strains, which then promotes the martensite transformation. This was also well evidenced
form thermomagnetic measurements sensitive in general to the average Mn-Mn inter-
atomic spacing, which was modified by mechanical milling. Interestingly from the same
microstructural observations as well as magnetization measurements, it turns out that
selected laser melting process applied to Ni-Mn-Ga and Ni-Mn-Ga-Fe as milled powders
does not allow for full recovery of their functionality although it permits for compositional
homogeneity. It further restores their ability to undergo a martensitic transformation in the
ferromagnetic state, but in order to harness full functional performance, an additional heat
treatment is necessary for improving their magnetic and overall response.

4. Summary

Ni-Mn-Ga and Ni-Mn-Ga-Fe were produced by selected laser melting from powdered
as melt spun precursors. The resulting materials have a uniform chemical composition
and are capable of martensitic transformation. At room temperature, both alloys display
typical plate-like martensitic microstructure with an average plate thickness of 150 nm. The
subplate microstructure shows more complexity resulting from the self-accommodation
process of martensite. Apart from martensite plates, the microstructure contains high
density of stacking faults and dislocations. The martensite phase is found with dominating
10M and 14M modulated structure for NiMnGa and NiMnGaFe as laser melted samples,
respectively, and they coexist with the parent L21 and NM phase. From the magnetic
susceptibility and magnetization measurement, it turns out that the ternary Ni-Mn-Ga
shows a stronger magnetic response than the quaternary Ni-Mn-Ga-Fe, and both alloys
undergo a martensitic transformation in the ferromagnetic state. Additional heat treatment
is necessary for improving magnetization of the as printed alloys.
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