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Abstract: An option to improve the leaching efficiency of chalcopyrite is pretreatment prior to
leaching. Pretreatment variables, such as the curing time and the addition of chloride, can increase
the kinetics of copper extraction, particularly for sulphide ores. However, there has been little research
on the topic. The reactions that govern this phenomenon have not been clearly identified. In this
study, the effects of sulphuric acid and sodium chloride agglomeration and curing on chalcopyrite
leaching were evaluated at various temperatures: 25, 50, 70, and 90 ◦C. The pretreated ore and leach
residues were characterised by X-ray diffraction, scanning electron microscopy, and reflected light
microscopy. Under the conditions of 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing time
(as pretreatment), the following products were identified: CuSO4, NaFe3(SO4)2(OH)6, Cu2Cl(OH),
and S0. Increasing the curing time and leaching temperature increased copper leaching. The copper
extraction was 94% when leaching at 90 ◦C after pretreatment with 50 g/L of Cl− and 0.2 M of H2SO4.
Elemental sulphur, jarosite, and copper polysulphide (CuS2) were detected in the leaching residues.

Keywords: pretreatment; curing time; chalcopyrite; chloride; leaching

1. Introduction

In the transition of Chile from a developing economy to a developed economy, mining
plays a key role in sustaining the economy with care to minimise the ecological impact on
the environment and to promote social growth [1]. Innovation and new mineral processing
alternatives are essential to maintaining copper production [2,3].

According to the Chilean Copper Commission (Cochilco), 27.3% of Chilean copper is
produced using hydrometallurgy [4]. However, copper production by hydrometallurgy
is expected to decrease 11.6% by 2029 owing to the depletion of the copper oxide ores in
Chilean copper deposits. As a consequence, copper producers in Chile are switching to
use concentration processes due to the mineralogy shifting to primary copper sulphides—
mainly chalcopyrite. Chalcopyrite (CuFeS2) is the most abundant copper-bearing resource,
accounting for more than 70% of global copper reserves [5].

One of the challenges for hydrometallurgy is the treatment of refractory copper
minerals under conventional leaching conditions, such as black copper oxides [6,7] and
primary sulphides (mainly chalcopyrite (CuFeS2)) [8,9]. The slow dissolution kinetics of
chalcopyrite are due to the formation of a product layer that inhibits the contact of the
solution with the mineral [10]. Many researchers have studied this layer [11–13].

Several leaching media have been proposed to improve the copper extraction and dis-
solution kinetics from copper sulphide ores, including chloride [14–16], nitrate [17,18], and
ammonia [19–22]. Furthermore, the bioleaching alternative has also been studied [23–27].
Chloride media are some of the most widely studied and effective media due to the reactiv-
ity of the Cl− with sulphide ores [28]. Although chloride generates corrosive media, there
are processes that successfully use chloride at an industrial scale [29,30].
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Leaching pretreatments and, particularly, curing have been identified as beneficial in
the dissolution of copper sulphide minerals [18,31–33]. According to Dhawan et al. [34],
curing time generates a homogeneous distribution of acid in the mineral bed, increases the
kinetics of copper dissolution, and inhibits the dissolution of aluminium-silicate minerals
(acid consumers). However, [35] indicated that there has been limited research into the
effect of curing time on the dissolution of copper ores. In recent years, the effect of acid
curing has been studied mainly for chalcopyrite in chloride media. Most studies on
pretreatments (especially curing time) have been conducted on chalcopyrite [18,31,32].

The results obtained by Quezada et al. [33] point to the benefits of curing time for
leaching chalcocite/covellite minerals in columns. The authors demonstrated that an
extended curing period, together with the addition of sulphuric acid and chloride, enhanced
the dissolution rate of a secondary copper sulphide ore. They also found that it was
possible to obtain a 72% Cu extraction when the ore was agglomerated and cured for
50 days in chloride media. According to the variance analysis, the curing time made a
significantly more important contribution to the copper extraction (92.37%) than did the
chloride concentration (7.05%) under the studied conditions. Similar results were obtained
with the column leaching of chalcopyrite ore with a P80 of 5 mm achieving a maximum
copper extraction of 43% using chloride media at room temperature and 100 days of
curing [32].

Cerda et al. [31] studied the role of temperature in pretreatment [31]. The authors
demonstrated that a copper extraction of 93% was obtained when the ore (mainly chalcopy-
rite) was treated with 90 kg of Cl−/t ore, with 40 days of curing at 50 ◦C in flask leaching.
Cerda el al. [31] proposed pretreatment reactions that considered the effect of Cu2+ and Cl−

on chalcopyrite, generating covellite and CuCl as products (Table 1, Reaction (1)). Covellite
reacts in the presence of H+ and O2. According to Reaction (2), covellite does not generate
Cu2+, necessary for the reaction of chalcopyrite (Reaction (1)). However, chalcocite may
be a source of Cu2+ given the proposed reaction generated in the pretreatment (Table 1,
Reaction (3)). Cu2+ can also be added to the solution. The corresponding Gibbs energy
values are negative; therefore, these reactions are thermodynamically feasible (See Table 1).

Table 1. Proposed reactions for copper sulphide pretreatment (adapted from [31]).

N◦ Reactions ∆G 25 ◦C (kcal/mol) ∆G 50 ◦C (kcal/mol)

(1) CuFeS2 + 2Cu2+ + 2Cl− → 2CuCl + CuS + Fe2+ + S −15.6 −16.4
(2) 2CuS + 4H+ + O2 + 2Cl− → 2CuCl+ + 2H20 + 2S −55.2 −53.2
(3) 2Cu2S + 4H+ + O2 → 2CuS + 2Cu2+ + 2H20 −68.1 −65.9

This research evaluated the effects of sulphuric acid and sodium chloride agglom-
eration and curing on the chalcopyrite leaching efficiency at various temperatures. The
agglomerated ore and leaching residues were characterised using X-ray diffraction (XRD),
scanning electron microscopy (SEM), reflected light microscopy, and a stereographic
zoom microscope.

2. Materials and Methods
2.1. Chalcopyrite Ore

Chalcopyrite was obtained from an operating plant in Antofagasta, Chile. The sample
was initially crushed by a jaw crusher, followed by a secondary and tertiary cone crusher,
and it was then dry milled in a ball mill to−38 + 25 µm. The mineral particles were reduced
in size with a closed crushing and grinding circuit.

The chemical composition of the screened sample was determined using inductively
coupled plasma-optical emission spectroscopy (ICP-OES, Optima 8300, Perkin Elmer,
Waltham, MA, USA). Before ICP-OES analysis, the solid sample was digested using a 1 g
sample in 20% aqua regia solution and reached the boiling point.
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Mineralogical data were obtained through X-ray diffraction (XRD) analysis using a
diffractometer (PANalytical X’Pert PRO MPD Alpha1, Malvern, UK), operated from 4◦ to
100◦ 2θ, at 45 kV, 40 mA, Kα 1.54 Å, a step size of 0.017◦, and a time per step of 150 s. X-ray
diffractogram sand crystalline phase identification was interpreted using the software
X’pert HighScore Plus v.3.0e (PANalytical, Almelo, Netherland).

Qemscan analysis was performed using a Model Zeiss EVO 50 (Zeiss, Oberkochen,
Germany), with Bruker AXS XFlash 4010 detectors (Bruker, Billerica, MA, USA) and Soft-
ware iDiscover 5.3.2.501 (FEI Company, Brisbane, Australia). Additionally, a reflected light
microscope (Zeiss, Axiovert 100, Milan, Italy) was used. A Stereographic Zoom Micro-
scope (Motic, SMZ-168, Richmond, British Columbia, Canada) was used for a superficial
visual analysis. The microscope had a halogen fibre optic illuminator light box (Motic,
MLC-150C, Xiamen, China). Finally, morphological characterisation was performed using
a scanning electron microscope (SEM, JEOL J-7100F, Tokyo, Japan), operated at 20 kV under
high vacuum conditions (Emitech K-950X, Lohmar, Germany) coupled with an energy-
dispersive X-ray spectroscopy (EDS) microanalysis system (Oxford Instruments INCA,
Oxfordshire, UK). Mineral samples were coated with a thin layer of carbon to improve
their conductivity. A carbon source, in the form of a rod, was mounted in a vacuum system
between two high-current electrical terminals. When the carbon source was heated to its
evaporation temperature, a fine stream of carbon was deposited onto specimens, before
SEM characterisation.

2.2. Curing Experiments

Two grams of chalcopyrite sample was used in each curing test. The mineral was
agglomerated on an impermeable plastic surface by manually mixing the mineral with
the solution. The samples were agglomerated with a solution of 15 kg/t of H2SO4 and
25 kg/t of NaCl using a solid/liquid ratio of 10/1 (mass/volume), namely using 0.1 mL
of solution per 1 g of ore (Figure 1). After agglomeration, the samples were placed on
watch glasses, covered with a protective film (thermoplastic) and cured in the dark at room
temperature for 15 days. The cured samples were used for mineralogical characterisation
and leaching tests. After the curing time, briquettes were formed for the mineralogical
characterisation using a stereographic microscope, reflected light microscope, XRD, and
SEM. The briquettes were prepared and polished without contact with water to avoid
dissolving the soluble phases. Finally, cured samples were also used to evaluate the effect
of pretreatment on the chalcopyrite dissolution.
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Figure 1. Agglomeration and curing procedure.

2.3. Leaching Test

The pretreated and untreated chalcopyrite samples were leached in 200 mL (Figure 2)
vessels using 100 mL of leaching solution containing 0.2 M of H2SO4 (19.6 g/L) and 50 g/L
of Cl ions. The vessels were agitated using a hot plate magnetic stirrer IKA C-MAG HS7
at 200 min−1. When the solution reached desired temperatures of 25, 50, 70, and 90 ◦C
(±1 ◦C), the 2 g sample of cured or noncured ore was added to the solution, and leaching
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was carried for a period of 48 h. During the leaching process, the holes in the vessel lid
were not covered. Evaporation loss was compensated by adding deionised water.
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Solution samples (3 mL aliquots) were periodically withdrawn for chemical analysis.
The samples were filtered (0.2 µm), and the metal concentrations in the filtrate were deter-
mined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The pH
and redox potential were regularly measured (only during sampling time) using a Crison
pH meter (Crison Instruments S.A, Basic 20, Barcelona, Spain). The pH measurements
were carried out by using a Crison electrode, series 52 03, with a ceramic diaphragm
and a reference element of Ag/AgCl crystals. The oxidation–reduction potential (ORP)
measurements were carried out by using a Crison electrode, series 53 61, with platinum as
the metal indicator and a silver wire coated by AgCl as the reference element. All solution
potentials were converted to values against the standard hydrogen electrode (SHE). The
solid residues from the leaching experiments were analysed using XRD and SEM.

3. Results and Discussion
3.1. Chalcopyrite Ore Characteristics

The sample used in this study was characterised in a previous study by the same
authors [36]. The chemical composition of the sample was 28.5% Cu, 22.8% Fe, and 29.7% S
(main elements). Other elements were detected in small percentages, namely, Na (0.220%),
Ca (0.180%), and Zn (0.0800%). Chemical characterisation showed that insoluble residues
represented 21.0% of the total mass, which suggests the presence of quartz and some
silicates as insoluble phases in the sample.

Figure 3 (X-ray diffractogram) shows that the sample was mainly composed of chal-
copyrite, together with quartz, pyrite, and chalcanthite. Sulphur can be associated with
chalcopyrite and other species, such as chalcocite, covellite, and pyrite. Table 2 shows
the mineralogical composition obtained via Qemscan analysis. The main species were
chalcopyrite (73.7%), followed by quartz (16.3%) and covellite (1.80%). According to the
Qemscan analysis, quartz was present at 16.3%, which is consistent with the insoluble
residue product of the chemical characterisation (21.0%).

SEM analysis showed the dominance of chalcopyrite, quartz, and copper sulphate in
the initial sample (Figure 4). The presence of chalcanthite was measured by washing the
sample with water, and a copper extraction of 9% was obtained.
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3.2. Characteristics of Cured Ore Samples

In a previous work [36], the authors obtained a copper extraction of 22.66% with a
pretreatment using 25 kg/t of NaCl and 15 kg/t of H2SO4 with 15 days of curing time.

The pretreatment products obtained (agglomerated solids) were characterised to
propose a mechanism for the pretreatment of chalcopyrite. The briquette formed and used
for characterisation was observed using a stereographic microscope (Figure 5).
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The agglomerated ore samples were characterised with a reflected light microscope
to detect possible changes in the mineral composition as a result of the pretreatment.
Several cracks were observed on the surface of the chalcopyrite particles as products of the
pretreatment (Figure 6a). The cracks and products generated in Figure 6a suggest that they
were caused by the reactivity of the system and chemical crushing. Figure 6b shows an
area with the eventual formation of copper sulphate or a copper-chloride complex (green
and white area). The formation of these products was subsequently confirmed by SEM and
X-ray analysis.
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The copper extraction achieved, using 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days
of curing, was 22.66% before leaching, evidencing the formation of new soluble phases.
Figure 6b suggests the formation of a new soluble phase, such as CuCl, as suggested
by [31], while the formation of a CuCl2 complex is also possible in nitrate and chloride
media according to [18] (Reaction (4)).

2CuFeS2 + 10H2SO4 + 10NaNO3 + 4NaCl→ 2CuCl2 + Fe2(SO4)3 + 10NO2 + 4S

+ 10H2O + 7Na2SO4.
(4)

The results of applying X-ray diffraction to the pretreatment products are presented
in Figure 7, which indicated the presence of quartz and chalcopyrite. Quartz contin-
ued to remain present because it is not reactive in acid solutions [37]. Chalcopyrite was
most abundant, and it is evident that not all CuFeS2 reacted during the pretreatment,
which concurs with what is shown in Figure 6. Additionally, the presence of natrojarosite
(NaFe3(SO4)2(OH)6) was evidenced, and it was formed from the association of Na and Fe
(derived from NaCl and chalcopyrite).
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Figure 7. X-ray diffractogram for chalcopyrite agglomerated with 15 kg/t of H2SO4, 25 kg/t of NaCl,
and 15 days of curing time at room temperature.

Quartz, chalcopyrite, and natrojarosite are the most abundant species in the pretreat-
ment product. Other products, such as CuSO4, Cu2ClOH, and S0, were also identified.
The presence of iron sulphate was reported as probable [18] (according to Reaction (4)).
Likewise, the presence of elemental sulphur was proposed by [18,31]. These authors pro-
posed the formation of a CuCl or CuCl2 complex, which differs from what was identified
in this investigation.

The presence of CuSO4, NaFe3(SO4)2(OH)6, S0, and Cu2Cl(OH) was confirmed by
comparing the X-ray diffractogram of the original chalcopyrite with the diffractogram of
the pretreatment products. With the software X’pert HighScore Plus v.3.0e, the main angles
of the peak characteristics of the different species were identified. The angle (in 2 theta)
of 16.16◦ was characteristic of CuSO4. Although CuSO4 was present in the initial sample
as chalcanthite, the peak at 16.16◦ denotes a greater presence of this species (or, at least, a
similar species in the structure) (Figure 8). A copper extraction of 22.66% was obtained with
the use of 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing at room temperature.
Considering that 9% of the copper extraction was associated with chalcanthite, more than
10% of the copper dissolved as a result of generating a new soluble species.
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Figure 8. Identification of CuSO4 by X-ray diffraction analysis in chalcopyrite pretreated with 15 kg/t
of H2SO4, 25 kg/t of NaCl, and 15 days of curing at room temperature.

Figure 9 shows the characteristic angles of natrojarosite, such as 28.65◦ (Figure 9a) and
49.79◦ (Figure 9b), with the peak at 28.65◦ being the angle associated with an intensity
of 95%. According to [38], only four phases have been reported for the Na–Fe–SO4–
OH system: the natrojarosite NaFe3(SO4)2(OH)6, the jarosite Na0.84Fe2.86(SO4)2(OH)6,
and two hydrated phases, the sideronatrite Na2FeOH(SO4)2·3H2O and metasideronatrite
Na2FeOH(SO4)2·H2O. These phases are minerals but could be prepared via precipitation or
under hydrothermal conditions. Therefore, an iron hydrosulphate natrojarosite can form.
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Figure 9. NaFe3(SO4)2(OH)6 identified by X-ray diffraction, a product of the pretreatment of chal-
copyrite mineral with 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing at room temperature.
In (a,b) the new presence of NaFe3(SO4)2(OH)6 was identified as (1), compared with the initial
diffractogram of the sample.

The presence of S0 was identified by XRD and was compared with the initial chal-
copyrite sample. In Figure 10a, the presence of S0 is demonstrated by the main angle of
23.07◦, which represents an intensity of 100% in the case of S0. According to [39], when no
strong oxidative conditions are available to produce SO4

2−, the predominant S product of
chalcopyrite leaching is S0.

Cu2Cl(OH) was also identified by X-ray diffraction in the pretreated sample. Although
the presence of this compound is demonstrated in Figure 11, the presence of other similar
compounds, such as Cu2ClO3 or Cu2Cl(OH)3, cannot be ruled out. Under the studied
conditions, the Cu2Cl(OH) had a better fit and recognition with the software used. The
main peak was associated with the position 16.23◦, which overlaps with the CuSO4 peak.
However, other major peaks, such as 39.81◦ and 32.42◦, were identified and are shown in
Figure 11a,b, respectively.
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Figure 10. Elemental sulphur identified by X-ray diffraction, a product of the pretreatment of
chalcopyrite mineral with 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing at room
temperature. In (a,b) the new presence of elemental sulphur was identified as (1), compared with the
initial diffractogram of the sample.
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Figure 11. Cu2Cl(OH) identified by X-ray diffraction, a product of the pretreatment of chalcopyrite
mineral with 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing at room temperature. In (a,b)
the new presence of Cu2Cl(OH) was identified as (1), compared with the initial diffractogram of
the sample.

The pretreated sample was also analysed by SEM. Figure 12 shows two images
of unreacted or partially attacked chalcopyrite particles. Figure 12b,d include the EDS
analysis of zone 1 shown in Figure 12a,c. Through the semi-quantitative reporting of
elements, copper and iron depletion in chalcopyrite were identified. Figure 12a shows
an atomic Cu:Fe:S ratio of 1:1:2, which indicates original or unreacted chalcopyrite, while
Figure 12c shows an atomic ratio Cu:Fe:S of 1:1:5, which denotes a lower atomic ratio
against the chemical formula of chalcopyrite due to the dissolution of copper and iron.
Cracks were evident on the surface of the particles and surrounding them.

Nicol et al. [40] reported that surface cracks and fissures appeared during electrolysis
in tests in which a massive chalcopyrite electrode was cathodically leached at 20 ◦C in
100 g/L of H2SO4 at −900 mV. The authors attributed the formation of cracks to the
change in molar volume as chalcopyrite transformed into chalcocite and a copper-deficient
sulphide, CuS.

Figure 13a shows the presence of chalcopyrite (1), copper sulphate (2), and natro-
jarosite (3). Figure 13b shows an enlargement of the area where the natrojarosite was found.
The EDS analysis associated with copper sulphate is reported in Figure 13c. Si and Al
were identified, which would be associated with a silicate, such as albite (NaAlSi3O8),
and the sodium was overlapped by copper with a low presence. The semiquantitative
analysis indicated that, in terms of the atomic %, the Cu:S:O ratio was 1:1:5 to make up the
formula for CuSO4. Figure 13d shows the EDS analysis of the detected natrojarosite (3).
The semiquantitative analysis indicated an Na:Fe:S:O atomic ratio of 0.8:2.3:3:7.6 ratio close
to the natrojarosite NaFe2.3(SO4)2(OH)6 formula of 1:2.3:2:14, as observed in other natural
and synthetic jarosites.
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Figure 12. SEM images (a,c) and EDS analysis (b,d) of chalcopyrite in (1) after treatment with 15 kg/t
of H2SO4, 25 kg/t NaCl, and 15 days of curing time at room temperature. In (a) at a magnification of
×1.600 and (c) at ×1.700.
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Figure 13. SEM images (a,b) and EDS analysis of chalcopyrite (1) and reaction products, such as
CuSO4 (2) (EDS in (c)) and NaFe3(SO4)2(OH)6 (3) (EDS in (d)), products of the pretreatment of
chalcopyrite mineral with 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing time at room
temperature. In (a) at a magnification of ×3.300 and (b) at ×10.000.
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Figure 14a identifies a compound associated with Cu2Cl(OH). Figure 14b presents
the EDS analysis associated with Figure 14a. The atomic ratio of Cu:Cl:O of 1.9:1:3.3 is
sufficient for the formation of the proposed compound. However, because H was not
reported by the EDS analysis, the formation of Cu2ClO should not be discarded.
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Figure 14. SEM image (a) and EDS analysis (b) of zone 1. The EDS confirms the formation of
Cu2Cl(OH) (1) in the products of the pretreatment of chalcopyrite mineral with 15 kg/t of H2SO4,
25 kg/t NaCl, and 15 days of curing at room temperature. In (a) at a magnification of ×5.500.

Considering all the characterisation techniques applied on the chalcopyrite pretreat-
ment products, the following reaction is proposed under the conditions used in this study.
The treatment of a sample of natural chalcopyrite with concentrations of 15 kg/t of H2SO4,
25 kg/t of NaCl, and 15 days of curing is governed by Reaction (5).

3CuFeS2 + 3.5H2SO4 + NaCl + 2.5O2 → CuSO4 + NaFe3(SO4)2(OH)6 + 6.5S + Cu2Cl(OH) (5)

3.3. Leaching Yields

To evaluate the effects of the curing time, chalcopyrite samples with pretreatment
(agglomerated and cured with 15 kg/t of H2SO4 and 25 kg/t of NaCl for a period of
15 days) and without pretreatment were leached at 25, 50, 70, and 90 ◦C.

Figure 15a shows the results of the leaching tests without pretreatment. A tendency
was observed that the copper extraction benefitted from increases in the temperature.
At temperatures above 25 ◦C (ambient), a less protective and more porous passivating
layer was formed, which allowed the dissolution of chalcopyrite [41]. Tests without
pretreatment behaved almost identically in the first two hours of leaching, reaching a
copper extraction of about 16%, considering that 9% of the copper was initially soluble
(copper sulphate dissolution). The copper extraction curves changed after four hours
owing to the effect of temperature. The tests at 90 and 70 ◦C yielded copper extractions of
90% and 87%, respectively, while the tests at 50 and 25 ◦C yielded copper extractions of
71% and 30%, respectively.

The test at 25 ◦C copper extraction reached a plateau at 24 h of leaching (by passiva-
tion), while the test at 50 ◦C achieved a plateau at 36 h. The test at 70◦C did not clearly
demonstrate passivation. The test at 90 ◦C had the highest copper extraction, although not
as much higher than the test at 70 ◦C. A similar trend in the results was shown in [42] in a
chalcopyrite leaching test between 85 and 95 ◦C. For tests performed at 25 ◦C, there was
a limited dissolution of copper, which is consistent with the view that the dissolution of
chalcopyrite requires temperatures between 35 and 95 ◦C [14,41].
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Figure 15. The dissolution of copper from chalcopyrite without pretreatment (a) in 0.2 M of H2SO4

and 50 g/L of Cl− ions from NaCl in deionised water at 25 ◦C (•25), 50 ◦C (N50), 70 ◦C (�70), and
90 ◦C (�90) and with pretreatment (b) at 25 ◦C (#25P), 50 ◦C (450P), 70 ◦C (�70P), and 90 ◦C (♦90P).

As chalcanthite is present in the system, it is possible to rapidly obtain a fraction of
dissolved copper. A 9% copper extraction is associated with the presence of chalcanthite,
which represents 0.5 g/L of Cu2+ in the initial stage of leaching. Although this work did
not include tests to evaluate the effect of cupric, other authors [43,44] have demonstrated
the benefit of Cu2+ in the initial stage of chalcopyrite dissolution. According to [45], the
presence of a small amount of cupric is important in achieving an acceptable chalcopyrite
leaching; however, concentrations above 0.1 g/L did not increase the dissolution.

Figure 15b shows the results of the leaching tests with pretreatment. Tests with
pretreatment are indicated by (P). As can be seen, the tests at 90, 70, 50, and 25 ◦C yielded
copper extractions of 94%, 92%, 77%, and 29%, respectively. The copper extraction yields
in the tests without pretreatment also increased with higher temperatures. However, the
extraction yields of the pretreated tests at 70 and 50 ◦C were almost 5% higher than those
of the untreated tests at the same temperature, while the test at 90 ◦C achieved an almost
complete copper dissolution. A passivation curve can be seen at 24 h of leaching in the test
at 25 ◦C. However, the dissolution kinetics, which benefitted from the soluble phases in the
pretreatment, were identical to the dissolution kinetics in the first four hours of leaching in
the test at 50 ◦C [46].

Comparing the tests with and without pretreatment, the curing time increased the
copper extraction by 6% on average, compared to the rates in the tests without pretreatment
(at 50 and 70 ◦C). The curing time benefitted copper extraction over time, favouring the
oxidation of sulphide minerals [47]. Stable copper extraction curves were reached earlier
in the tests with curing than in those without curing, which was due to the sulphation
generated with pretreatment, which mainly formed copper sulphate.

Tests with acid curing accelerated the dissolution kinetics in the first 4 h of treatment.
The results concur with those proposed by [32], who found that curing time increased the
copper extraction by about 5% in column leaching tests using a chalcopyrite mineral. The
same copper extraction was obtained in much less time at 90 ◦C compared with at 70 ◦C, or
at 70 ◦C compared with at 50 ◦C. For comparative purposes, and during leaching at 70 ◦C,
copper extractions of 75% in 24 h with pretreatment and in 32 h without pretreatment were
obtained. During leaching at 90 ◦C, copper extractions of 84% in 24 h with pretreatment
and in 32 h without pretreatment were obtained. Thus, the curing treatment significantly
reduced the leaching time. Consequently, curing is considered beneficial to save agitated
reactor and energy inputs. Curing processes only require time for the reactivity of the
mineral and the solution (reagents). Table 3 shows a summary of the copper yields obtained
via leaching test.
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Table 3. Summary of the copper yields obtained via leaching test with and without pretreatment.

Test Pretreatment % Copper Extraction

•25 No 28.5
#25P Yes 27.5
N50 No 51.5
450P Yes 56.0
�70 No 65.0
�70P Yes 74.8
�90 No 79.8
♦90P Yes 83.9

Characteristics of Leach Residues

Leach residues from all the tests were characterised using XRD and SEM. Table 4
shows the main species identified in the corresponding diffractograms. Figures 16 and 17
show the information from the diffractograms of the residue, respectively, from the tests
with the lowest copper extraction (at 25 ◦C without pretreatment) and the highest copper
extraction (at 90 ◦C with pretreatment).

Table 4. Summary of the species identified using X-ray diffraction analysis. Tests with pretreatment
are indicated by (P).

Test More Abundant Species Less Abundant Species

25 ◦C (P) CuFeS2, SiO2, S, and FeS2 CuS, NaFe3(SO4)2(OH)6, and CuS2
25 ◦C CuFeS2, SiO2, S, and FeS2 CuS, NaFe3(SO4)2(OH)6, and CuS2

50 ◦C (P) CuFeS2, SiO2, S, CuS, and FeS2 NaFe3(SO4)2(OH)6 and CuS2
50 ◦C CuFeS2, SiO2, S, CuS, and FeS2 NaFe3(SO4)2(OH)6 and CuS2

70 ◦C (P) SiO2, S, and FeS2 CuFeS2, CuS, NaFe3(SO4)2(OH)6, and CuS2
70 ◦C SiO2, S, and FeS2 CuFeS2, CuS, NaFe3(SO4)2(OH)6, and CuS2

90 ◦C (P) SiO2 and S CuFeS2, FeS2, CuS, and NaFe3(SO4)2(OH)6
90 ◦C SiO2 and S CuFeS2, FeS2, CuS, and NaFe3(SO4)2(OH)6
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The X-ray diffractions of residues obtained at 25 ◦C indicated that they were composed
mainly of chalcopyrite and quartz. Small amounts of CuS2 polysulphide and natrojarosite
species were observed to inhibit chalcopyrite leaching under these experimental condi-
tions [10,48,49]. Elemental sulphur was also detected by XRD.

The same tendency was observed in the tests with and without pretreatment at 50 ◦C,
although with a notable increase in elemental sulphur. In tests at 70 ◦C, the dominance of
elemental sulphur and quartz was observed, while minor quantities of chalcopyrite and
natrojarosite were also detected. At this temperature, CuS2 in small amounts was also
observed. The main angle of CuS2 overlapped with that of sulphur (31.4◦); other angles of
these species were also detected.

Although it is unclear if CuS2 was present, this cannot be ruled out. Clearly, the
increased presence of S0 was due to the product released by the leached chalcopyrite,
which benefited from temperature and pretreatment. Leaching tests at 50 and 70 ◦C also
showed the presence of covellite, which may be a product of the dissolution of chalcopyrite.
Tests carried out at 90 ◦C showed the presence of an abundant amount of elemental sulphur
and quartz. The presence of unreacted chalcopyrite and natrojarosite was also evident.

Temperature [50] is a key factor in the formation of jarosite (MFe3(SO4)(OH)6 where
M = Na, K, Rb, or NH4). Iron precipitation increases significantly with higher temperatures,
especially in the range of 70 to 110 ◦C. According to [42], the formation of natrojarosite
occurred at pH values close to 0.9 in tests at 95 ◦C. Natrojarosite can form in chloride
media, in accordance with Reaction (6). A problem associated with the precipitation of
natrojarosite is that decreasing the acid concentration also slightly decreases the rate of
copper extraction due to chalcopyrite passivation [49,51,52].

3Fe3+ + 2SO4
2− + 6H2O + Na+ → NaFe3(SO4)2(OH)6 + 6H+ (6)

In summary, elemental sulphur and natrojarosite appeared in all leaching experiments
by XRD analysis, and their content was more abundant at higher temperatures. Copper
polysulphide was identified by XRD analysis in leach residues at 25, 50, and 70 ◦ C.

Figure 18 shows an SEM image of the leaching residue at 70 ◦C with pretreatment.
Unreacted chalcopyrite particles (1) were observed appearing as leaching products on
the surface. Figure 19 shows a sequence of SEM images and mapping analysis for four
chalcopyrite particles remaining in the residue from leaching at 70 ◦C with pretreatment
(Figure 18). The elements analysed were Cu, Fe, and S. Figure 19b,d show the presence,
respectively, of Cu and S around the chalcopyrite particles.
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The presence of copper and sulphur around the chalcopyrite were associated with
CuS2 or a similar polysulphide. The passivation associated with polysulphides (CuS2) is
explained in terms of the selective dissolution of iron as in a conventional process to form
a thick layer of copper polysulphide over time. Additionally, in all the tests at 70 ◦C, the
oxidation–reduction potential was measured in the range of 600–700 mV (SHE). This range
is considered appropriate to form CuS2 or other polysulphides [48].
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While Figure 19 shows an abundance of elemental sulphur, the authors, including [49]
with chalcopyrite leaching tests at 68 ◦C, proposed that the elemental sulphur formed
during chalcopyrite dissolution is porous and does not contribute to the passivation
of the surface of chalcopyrite. The authors proposed that species, such as jarosite, are
responsible for passivating chalcopyrite. Based on tests at 90 ◦C using FeCl3 and HCl, other
researchers [53] indicated that the elemental sulphur layer formed on the chalcopyrite
surface after leaching in a ferric chloride solution is porous and is not a barrier to further
leaching. The results obtained in the present study confirmed that the porosity of the
products layer increased with temperature.

4. Conclusions

The pretreatment of chalcopyrite with a sodium chloride–sulphuric acid media
system (15 kg/t of H2SO4 and 25 kg/t of NaCl with 15 days of curing) resulted in a
copper extraction of 22.66% prior to leaching. The presence of copper sulphate, natro-
jarosite, elemental sulphur, and copper hydroxychloride was detected by characterisa-
tion of the curing products. The stoichiometry proposed for this process is Reaction (5):
3CuFeS2 + 3.5H2SO4 + NaCl + 2.5O2·→ CuSO4 + NaFe3(SO4)2(OH)6 + 6.5S + Cu2Cl(OH).

Curing time benefits the kinetics of leaching copper from pretreated chalcopyrite. In
synergy with temperatures of 50 and 90 ◦C, curing resulted in a copper extraction that
was 6% higher than the extraction obtained without any curing time. A copper extraction
of 94% was obtained at 90 ◦C with a pretreatment of 15 kg/t of H2SO4 and 25 kg/t of
NaCl with 15 days of curing time, while an extraction of 90% was obtained at the same
temperature but without pretreatment.

Copper extractions of 75% were obtained in 24 h at 70 ◦C with pretreatment and in
32 h at the same temperature without pretreatment, while at 90 ◦C, extractions of 84% were
obtained in 24 h with pretreatment and in 32 h without pretreatment. Thus, the curing
applied significantly reduced the leaching time.

The test at 25 ◦C led to a copper extraction close to 30%, with or without curing pre-
treatment, which confirms that the surface of chalcopyrite is passivated at this temperature
by the formation of a compact layer of sulphur, likely with the formation of jarosite and
copper polysulphides.

The surface of elemental sulphur formed at 70 ◦C appeared to have a more porous and
less rigid surface than the surfaces of the leaching products at 25 ◦C. A more porous film of
sulphur bordering the surface of the chalcopyrite allowed contact between the leaching
solution and the mineral.

Abundant elemental sulphur and natrojarosite were identified in all the leaching
products, and these are proposed as responsible for the passivation of chalcopyrite. The
presence of CuS2 was observed in the tests at 25 and 50 ◦C.
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