Article

A Multi-Branch U-Net for Steel Surface Defect Type and
Severity Segmentation

Robby Neven *

check for

updates
Citation: Neven, R.; Goedemé, T. A
Multi-Branch U-Net for Steel Surface
Defect Type and Severity
Segmentation. Metals 2021, 11, 870.
https:/ /doi.org/10.3390/met11060870

Academic Editor: Diego Celentano

Received: 27 April 2021
Accepted: 22 May 2021
Published: 26 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Toon Goedemé

PSI-EAVISE, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium; toon.goedeme@kuleuven.be
* Correspondence: robby.neven@kuleuven.be

Abstract: Automating sheet steel visual inspection can improve quality and reduce costs during
its production. While many manufacturers still rely on manual or traditional inspection methods,
deep learning-based approaches have proven their efficiency. In this paper, we go beyond the state-
of-the-art in this domain by proposing a multi-task model that performs both pixel-based defect
segmentation and severity estimation of the defects in one two-branch network. Additionally, we
show how incorporation of the production process parameters improves the model’s performance.
After manually constructing a real-life industrial dataset, we first implemented and trained two
single-task models performing the defect segmentation and severity estimation tasks separately.
Next, we compared this to a multi-task model that simultaneously performs the two tasks at hand.
By combining the tasks into one model, both segmentation tasks improved by 2.5% and 3% mloU,
respectively. In the next step, we extended the multi-task model using sensor fusion with process pa-
rameters. We demonstrate that the incorporation of the process parameters resulted in a further mloU
increase of 6.8% and 2.9% for the defect segmentation and severity estimation tasks, respectively.

Keywords: steel surface defects; visual inspection; computer vision; deep learning; semantic
segmentation

1. Introduction

Producing sheet steel material involves a cumbersome process consisting of many
delicate steps, which include heating, rolling, drying, and cutting. In each of these steps,
different machines manipulate the sheet steel material, which can all induce surface defects
on the product. To ensure a qualitative end product, visual inspection of the sheet steel
material is a crucial part of the production process. With a rolling speed of multiple meters
per second, this remains a challenging task.

Over the years, many researchers have studied this field. In [1], a broad overview
of the most common methods that have been used to date can be found, ranging from
statistical methods, e.g., thresholding, clustering, edge-based; spectral methods, i.e., Fourier
transforms, Gabor filters, wavelet transforms; and model-based methods, i.e., Markov
random fields, Weibull models, to the latest, more modern research on machine learn-
ing, which includes supervised, unsupervised, and reinforcement learning. While the
classic approaches have proven their efficiency, these methods heavily depend on a fixed
environment, i.e., no change in lighting, surface finish, change in defect occurrence, etc.,
which will impact the performance of the algorithm drastically. On the other hand, ma-
chine learning algorithms will learn to generalize and are more robust to these changes in
the environment.

However, the downside of the machine learning methods is that these are very data-
hungry. Since these algorithms learn by example, the performance of the model will
increase with an increasing dataset that exists of manually labeled image examples. Con-
structing such a dataset is a very labor-intensive task performed by trained employees,
which is why many manufacturers still rely on the conventional computer vision ap-
proaches. However, due to publicly released datasets such as the NEU (North Eastern

Metals 2021, 11, 870. https:/ /doi.org/10.3390/met11060870

https:/ /www.mdpi.com/journal/metals

https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0003-0857-1310
https://orcid.org/0000-0002-7477-8961
https://www.mdpi.com/article/10.3390/met11060870?type=check_update&version=1
https://doi.org/10.3390/met11060870
https://doi.org/10.3390/met11060870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/met11060870
https://www.mdpi.com/journal/metals

Metals 2021, 11, 870

20f19

University) dataset [2] and the Severstal Kaggle challenge [3], researchers can investigate
this problem and implement new methods.

However, from a real-life industrial point of view, we conclude that these academic
datasets over-simplify the task. In real-life cases, the number of different defect classes to
be detected is much higher than the three or six types in these datasets. Moreover, real
quality inspection systems must also produce a severity grade for each surface defect.

In this paper, we tackled this advanced sheet steel inspection research question while
focusing on a deep learning approach using convolutional neural networks (CNNs) ([4]).
Since the rise of deep learning, many computer vision tasks such as image classification,
object detection, and image segmentation have seen significant progress for many indus-
trial applications, including autonomous driving [5], medical analysis [6], geosensing [7],
topology optimization [8], etc. This has been due to the many advancements in model
architectures and training improvements.

This paper brings three novelties in the field of visual inspection of steel sheet material:

¢ Inspired by the real-life industrial dataset that we gathered, we study the detection of
16 different types of steel surface defects, of which some are almost visually similar
but have a different root cause. Moreover, for each detected surface defect, a severity
grading is also to be produced by the inspection system in order to produce a fine-
grained quality report. We demonstrate that the joint training of these two tasks
simultaneously yields better results than when treating them separately.

e We strive towards pixel-perfect segmentation of the surface defects. We show that
our network can produce these, although some of the annotations of our dataset
are in the less precise but cheaper bounding boxes format instead of pixel-perfect
segmentation maps.

e We demonstrate that fusing the image data with steel production process param-
eters during classification is very advantageous for the detection accuracy of the
proposed system.

While recent research including [9-12] only focuses on one task, i.e., detecting or
classifying defects into 1 to up to 6 classes, our industrially inspired goal is to perform
three tasks: detect defects, classify them into 16 different types, and make an estimate of
the severity level of each defect. While the first task enables the manufacturers to improve
the quality of the end product by cutting out the detected defects, the second task provides
an insight into the occurrence of different types of defects. This can be an indicator of
process malfunction, which induces the defects. Moreover, some defect types have to be
immediately detected to prevent damage to the machinery. The last task, i.e., estimating
a severity level, is another process malfunction indicator, which can be responded to. In
addition, the severity estimation can be a deciding factor to remove certain defects or
not. This enables the manufacturer to indicate a quality label for the end product, which
indicates if there are minor defects present or more severe ones.

Some of the more popular deep learning methods that can be used to tackle this
problem are image classification and object detection. The first approach (e.g., [9,11])
classifies entire images without an indication of where the defects occur in that particular
image. The second approach (e.g., [10,12]) draws a bounding box around each defect,
which gives additional information on the location and size of the defect. However,
the bounding box is a crude estimation of the defect and will contain a significant portion
of defect-free material. Another approach is image segmentation, which segments the
image into background/foreground pixels. An extension to this method is semantic
segmentation ([13,14]), which additionally classifies the foreground pixels into different
classes. This algorithm provides a pixel-perfect defect mask, in contrast to bounding boxes,
where a large portion contains background pixels.

In our approach, we propose to use a semantic segmentation approach to segment
each defect from the camera input which comes in at a high frame rate depending on
the roller speed. The reason that we chose to segment the pixels of the images instead of
using object detection is that, besides the crude bounding box approximations that object

Metals 2021, 11, 870

30f19

Input Image

el

detection provides, the surface defects that we target are not rigid objects. Whereas object
detection methods would work better on rigid-objects datasets, our dataset consists of
non-rigid objects and is, therefore, better suited to segmentation.

Since deep learning algorithms are very data-hungry, we first constructed a real-life
industrial, manually labeled dataset containing thousands of images. Ideally, these should
all be annotated with pixel-perfect segmentation maps. However, as bounding box labels
around the defects are easier to annotate, our dataset partly contains these. In this paper, we
show that we can treat these bounding-box annotations as crude rectangular segmentation
maps and demonstrate that our network still learns to produce pixel-perfect maps.

We trained a multi-branch segmentation network that simultaneously performs two
tasks: to segment different types of defects and to estimate their severity level. The network
can segment 16 different defect types and estimates a suitable severity level between one
and three.

Additionally, we extended the multi-branch network by incorporating process pa-
rameters to improve both the defect segmentation and severity estimation. Indeed, we
know that, for human quality inspectors, the context is important in detecting some de-
fects. They know by experience that some defects have a higher chance of occurring in
certain circumstances: when the cylinder pressure is above a certain value, for a specific
material alloy, when the temperature of a certain heater is too high or too low, etc. Because,
for every image in our dataset, a large number of such process parameters are known, we
indeed successfully were able to train our neural network in order to take such context as
additional input.

Figure 1 shows an overview of our approach.

Process
parameters Defect Type

|
T

Severity level

Figure 1. Overview of our approach. A multi-task model segments the input image into 16 different defect classes while

also estimating a suitable pixel-based severity level. To enhance the segmentation performance, additional steel production

process parameters are fed into the model.

2. Method
2.1. Dataset

To train our model, we gathered a dataset of around 10K images, of which 4K have
a resolution of 280 x 780 and 6K have a varying resolution of 128 x 1920 to 1920 x 1920.
As mentioned before, some of the images are annotated with pixel-perfect masks and
the remainder with bounding box masks to speed up labeling. Figure 2a gives an overview
of the amount of bounding-box and pixel-perfect labeled pixels per defect type, while
Figure 2b shows how these defect type pixels are distributed among the different severity

Metals 2021, 11, 870 40f19

levels. Remarkably, we noticed that we are able to treat the bounding-box labels as weakly
labeled pixel-perfect labels. We use the filled-in bounding boxes as rectangular-shaped
segmentation maps, and observe that the segmentation network after training produces
maps that better shrink around the actual defect pixels. In the future, these bounding-box
labels will be fine-tuned to pixel-perfect labels using model-assisted labeling. The influence
of the bounding-box labels is slightly noticeable, with some bounding-box-like output
predictions visible. However, since some classes are highly imbalanced, these bounding-
box labels are needed in order to have extra examples for these underrepresented classes.
Nevertheless, to reduce the influence of the false-positive pixels within the bounding-
box targets, a weight is applied to the pixel-perfect labels to increase their influence
during training.

Our dataset contains 16 types of defects, which, from now on, we will further refer to
as A-P, and which can be seen in Figure 3. Some types can be easily distinguished. Other
types share visual features and are harder to distinguish from each other. Moreover, each
defect is annotated with a severity score of 1 to 3, indicating the severity of the defect.
This severity level is given by a trained labeler and is based on pre-determined quality
regulations. Some examples of different severity levels can be seen in Figure 4. While
severity 3 defects are clearly visible, low-severity defects are harder to distinguish from
the background, which makes them difficult to detect. Due to the difficulty of visually
detecting and distinguishing defects from each other, we are aware that our dataset is not
100% error-free and may contain missing or erroneous annotations, which will impact the
training of the model. Nevertheless, due to the size of our dataset, we will neglect these
deficiencies for now and this will be investigated in future work.

Figure 2 shows that the dataset deals with two imbalance problems: both the occur-
rence of different defect types and the severity levels are highly imbalanced. The first
imbalance is due to the fact that some defects occur on a regular basis, while other defects
only occur on a monthly or yearly basis, which makes it difficult to gather many examples.
The severity imbalance is due to the fact that some defect types are inherently extremely
severe (e.g., holes, folds, etc., which can cause damage to the machinery) and will primar-
ily appear as a level 3 severity defect (e.g., defect type ‘G’). Other defect types, such as
rough patches, stains, etc., are primarily classified as lower-level severity defects and will
therefore contain less severity 3 defects (e.g., defect type “A’).

%107 (a) Defect Class (b) Severity Level

B bounding-box 1.0

.0 Level 1
81 mmm pixel-perfect Level 2
N level 3
7 4
0.8
6 4
5 T 06
4
0.4 4
3
21 .
0.2

0.0

o @

number of pixels
=

pixel severity distribution (%)

]

Figure 2. (a) Number of bounding-box and pixel-perfect labeled pixels per defect type. (b) Severity occurrence per defect
type. It is clear that our dataset deals with two imbalance problems: both defect type (across dataset) and severity levels
(per defect class) are imbalanced.

Metals 2021, 11, 870 50f19

Figure 3. Defect types (first column: A-H, second column I-P). For illustration purposes only, bounding boxes are

drawn around each defect. However, during training, the segmentation label consists of either a pixel-perfect or filled-in
bounding-box mask as supervision.

Metals 2021, 11, 870

60of 19

Figure 4. Defects with different severity levels. Each column represents a certain defect class with, for each row, a different
severity. Top row shows severity level 3 defects, while the bottom shows level 1 defects. It is clear that level 3 defects are

easier to detect than the lower-severity-level defects.

Additionally, all images have a set of parameters as extra supervision. These parame-
ters include oven temperature, steel surface finish, and so on. Many works (e.g., [15-17])
have shown that, during the several processing steps needed to produce sheet steel material,
the different process settings during the melting (e.g., oven temperature), hot rolling (e.g.,
rolling speed, furnace temperature, heating time, coiling temperature), and cold rolling
steps (e.g., rolling speed, surface finish) have an influence on the defect occurrence rate.

Since we have these parameters available during inference, it is of interest to inves-
tigate whether there is any correlation between the presence of defects and the current
parameter settings. By incorporating these parameters during training by using sensor-
fusion-like approaches, the model might be able to learn these correlations and provide
better predictions.

2.2. Semantic Segmentation Using U-Net

In our approach, we will use one of the popular semantic segmentation networks
called U-Net [18] (Figure 5). The U-Net architecture follows the encoder-decoder structure.
The goal of the encoder part is to capture the global context of the image, explaining ‘what’
is in the image, by gradually reducing the size of the image while increasing the depth of
the image. This is done using only convolutional and max-pooling layers. The decoder’s
goal is to translate this information back to the original pixel location, by up-sampling the
image using transposed convolution layers. These layers increase the size of the image
while reducing the depth. Additionally, to improve the up-sampling of the image, at every
step of the decoder, skip connections are used that concatenate the feature maps of the
encoder to the output of the transposed convolution layers. These feature maps contain
the original spatial information, which was lost during the encoder’s compression and will
help the decoder to construct a more precise segmentation result. It is easy to derive its
name by looking at the symmetric U-shape of the network due to the skip connections.
As only convolutional layers are used, this model is an end-to-end fully convolutional
network and will enable us to train the model on any image resolution size.

To improve the model’s performance, instead of using U-Net’s standard encoder, we
will use a ResNet model [19] as the encoder. Specifically, our experiments showed that a
ResNet34 is a good compromise between both performance and execution time.

Metals 2021, 11, 870

7 of 19

1x224x608

ResNet
Block 1

64x112x304

1x224x608

17x224x608
(class probabilities)

p28x112x304 pecoder

ResNet
Block 2

L/ Block 4

64x56x152
64x56x152 (T 92x56x152 | pecoder
N Block 3
128x28x76
128x28x76 T\ 384x28x76 meooder
1/ Block 2
256x14x38
ResNet 256x14x38 fr\?68x14x3q Decoder
Block 4 ¢ Block 1
Upsample
@ and
512x7x19 concatenate

Figure 5. U-Net model [18] with ResNet [19] backbone.

Multi-Branch U-Net

Since we have two tasks at hand, i.e., the prediction of the defect class as well as the
defect severity, we decided to expand the U-Net segmentation model to simultaneously
output two segmentation maps. By inserting an extra decoder branch after the encoder,
the model can output both the defect class segmentation map and the defect severity map.
Each branch decoder has the same bottleneck as its input, meaning the encoder is shared
between the two tasks. We have evaluated different shared decoder levels (instead of
only sharing the encoder, some of the decoder layers can also be shared), but concluded
that splitting the branches right after the encoder gives the best results. Figure 6 gives an
overview of our approach.

Since we have to distinguish defects between 16 different classes, the first branch
will output 17 channels (background included), which will be evaluated with an argmax
function to indicate the predicted class. Similarly, the second branch will output 3 channels,
with each channel representing the probability for each severity level. Again, these channels
are evaluated with an argmax to indicate the predicted severity per pixel.

As described above, the first branch, or defect class branch, will output a probability for
the background class. This means that this branch inherently learns the binary segmentation
between back- and foreground. Since the second branch, or severity branch, learns to
predict a severity instead of a defect class, this branch could also include a probability
for the background class. This, however, would mean that both branches would learn
the binary segmentation task, which is redundant. Therefore, we let only the defect class
branch learn the semantic segmentation task including the background, while the severity
branch only learns to predict a severity for each defect pixel. To achieve this, the severity
branch will only receive gradients for defect pixels, i.e., only the pixels for which the branch
has to learn a severity, by masking out the loss function with the pixel-perfect ground truth
mask. The final severity mask can then be computed by masking out the output of the
severity decoder with the foreground-background map of the defect type decoder.

Metals 2021, 11, 870

8 of 19

-

defect type branch

Defect type

shared encoder

Severity heatmap Masked severity h P

Figure 6. An overview of our multi-branch network. We expanded the U-Net architecture by adding an additional decoder

branch. Each branch learns a specific segmentation task. The first branch (defect type branch) learns the segmentation of
defect types. The second branch (severity branch) learns to generate a severity heatmap. The defect type mask generated by
the first branch is then used to mask out the severity heatmap to generate the defect severity mask.

2.3. Loss Function

Two of the more popular loss functions for training a semantic segmentation network
are the DICE (Serensen-Dice) loss (Equation (1)) and the pixel-wise cross-entropy (CE) loss
(Equation (2)).

L1 Zszixng YtrueYpred . 1)
Zpixels Yirue + Zpixels Yopred
L=— Z ytruelog(ypred) 2)
classes

After some initial experiments, we have established that the CE loss works slightly
better than the DICE loss. Therefore, we will use the CE in all the subsequent sections.
Because of the class imbalance in our dataset, we will weigh the CE loss using the class
weights originally implemented by ENet [20], as seen in Equation (3). The main advantage
of these weights is that they are bounded as the probability approaches zero, in contrast to
the inverse class probability weighting. We adopt the same value as [20], namely 1.02, for
the ¢ hyper-parameter, meaning that the weights will be restricted to the interval of [1, 50].

1
In(c + freqciass)

We will train each branch with its CE loss weighted with the branches’ class weights.
As the severity branch is only trained on foreground pixels, the frequencies for these
severity classes are calculated with respect to the total amount of foreground pixels instead
of the total amount of pixels.

Welgss =

®)

3. Experiments and Results

In the following experiments, we will first train the two tasks (i.e., defect type and
defect severity) separately. This way, we have a benchmark for the multi-task network
when these are learned simultaneously using the multi-branch U-Net network (Figure 6).

Metals 2021, 11, 870

90f19

In the last experiment, we will incorporate the process parameters during training and
investigate the effect on the model performance. All experiments were executed using the
PyTorch framework [21] with a 80/20 training/validation dataset split on an Nvidia V100.

3.1. Single Task Networks

For both tasks, we will use the (single-branch) U-Net model together with the cross-
entropy loss (Equation (2)). The defect type model’s output consists of 17 channels, while
for the severity model, the output consists of 4 channels. Inherently, learning the back-
ground/foreground segmentation is exactly the same for both tasks. The difference is that
the two models have to learn a different classification for the foreground pixels.

To compensate for the data imbalance present in both tasks as seen in Figure 2, we
used the ENet class weighting as described in the previous section (Equation (3)). Each
model was trained using the Adam optimizer [22] with a learning rate of 3 x 10~%. To avoid
over-fitting of the models, we experimented with different data augmentation techniques.
Since our dataset consists of multiple resolutions, we already have to crop the images to
provide the model with fixed resolutions during training. However, we have found that
different crop sizes have significant effects on the segmentation output. In our experiments,
we have found that, while a binary defect segmentation model can be trained with a
small crop size, training a semantic segmentation network, which has to perform a dense
prediction, requires a larger crop size. This can be explained by the fact that cropping a
defect might make it similar to other defect types, resulting in confusion between different
classes. However, while the majority of the images have a height of 280 pixels, some
images have a height of 128. A crop size of height 128 showed a significant decrease in
performance for both tasks. Therefore, the smaller images are padded using reflective
padding to a height of 280 before taking a random crop of size 224 x 608.

Both models trained for 2500 epochs (3—4 min per epoch). An example of a training
curve can be seen in Figure 7. We evaluated the model’s performance on the validation
set after each epoch. The model with the highest mIoU (mean Intersection over Union)
validation score is chosen as the best model, since this metric is the most important for
our application. The first row of Table 1 gives an overview of the performance on the
validation set for both single-task models. Apart from the mloU scores, the table also
shows other metrics such as mean accuracy (mACC), frequency weighted IoU (fwloU),
and pixel accuracy (pACC) for comparison. Figures 8 and 9 show the pixel-wise confusion
matrices for the different classes (validation data). For each task, we have plotted both the
class matrices, i.e., the defect type and severity matrices and the background /foreground
matrices. The first gives an insight into the confusion between the foreground pixels.
The latter shows how many pixels were confused between background and foreground.

Training Run Single Task Network: Defect Type

1.8 A
r32

1.6 A

r 30
1.4 4

1.2 28

1.0 4 rae

Loss

0.8 4 —— Loss (Training data)
mioU (validation data) [2%
0.6 1
r22
0.4

r20
0.2 4

T T T T T
0 500 1000 1500 2000 2500
Epoch

Figure 7. Training curve for the single-task defect type model. The chart shows both the loss curve

on the training set and the mIoU score on the validation set for each epoch. The model with the
highest mloU validation score is chosen as the best model.

Metals 2021, 11, 870 10 of 19

(a) Defect Class (b) Background/Foreground
100
<C
o
|
.
w - 2
c O- c
o (=}
gT- T
g 3
[l &
x
-
o -
=- - -20
=z
o
e ..\\- - -0
A B CDETF GH I J K LMNOFP
Ground Truth Ground Truth

Figure 8. Confusion matrices for the defect type segmentation network (validation set). The first
chart shows the confusion matrix for the foreground pixels. Most of the defect classes (A to P) show
no or very low confusion with other classes. However, it is clear that for some classes, e.g., class
E or P, the segmentation can still improve. This is mainly due to the fact that these classes are less
represented in the dataset or that these are more difficult to detect. The second matrix shows the

background/foreground confusion matrix.
100
80
60

Figure 9. Confusion matrices for the severity segmentation network (validation set). The first chart
shows the confusion matrix for the foreground pixels. Severity level 3 has the highest accuracy,
with some confusion with level 2 defects. Severity 1 and 2 clearly show confusion with the other
severity levels, especially severity 1, which are mostly segmented as level 2 defects. The second chart
shows the background/foreground confusion matrix. Here, we can see that this network performed
better on the back- and foreground task than the defect type network shown in Figure 8.

(a) Severity Level (b) Background/Foreground

Prediction
Prediction

Ground Truth Ground Truth

Table 1. This table summarizes the performance metrics of the single-task, multi-branch, and multi-
branch model extended with process parameters on the validation set. The table shows the following
metrics: mean IoU, mean accuracy, frequency weighted IoU, and pixel accuracy. For both tasks,
the performance increased when combining the two tasks into one multi-task model (second row).
Moreover, after extending the multi-branch model with process parameters, the performance of both

tasks increased significantly (third row).

Defect Type Severity
Model mloU mACC fwloU pACC mloU mACC fwloU pACC
Single-Task 319 498 83.2 886 378 553 81.2 85.6

Multi-Branch 33.4 51.7 84.1 89.2 40.8 59.5 82.3 86.1

Multi-Branch with
Process Params

40.2 739 85.4 90.1 43.7 66.4 83.4 88.2

Metals 2021, 11, 870 11 0f 19

Some example output predictions from the validation set of the defect type and
severity models can be found in Figures 10 and 11, respectively.

Figure 10. Example predictions of the defect type segmentation model (validation data). It is clearly visible that, although a
large portion of the dataset includes rectangular target masks, the segmentation of the defects has a more confined border.
However, sometimes, the segmentation can have a rectangular shape as in the example image in the second last row.
Nevertheless, it is clear that the model is capable of segmenting most defects while also predicting the right class.

Metals 2021, 11, 870 12 of 19

O -
YR WY TR

Figure 11. Example predictions of the severity segmentation model (validation data). The model succeeds in detecting

most defects while accurately estimating the severity. However, the performance on level 1 severity defects still needs
improvement due to erroneous labels, i.e., unlabeled or wrongly labeled defects.

3.2. Multi-Branch Network Combing Defect Type and Severity

In the previous section, we trained a model to perform the defect type segmentation
as well as the defect severity segmentation tasks separately. This way, we had an idea
of how the model performs when training on only one task. We already achieved good
results using the single-task networks. However, we aim to perform a real-time quality
inspection. Having two models running simultaneously is a huge computational burden
and will slow down the pipeline. Therefore, by combining the two tasks into one model,
the computational burden can be lowered drastically. Additionally, recent works on multi-
branch learning, e.g., [23,24], have shown that if two tasks are learned together, each task
might learn from the other, resulting in increased performance.

Metals 2021, 11, 870

13 of 19

Multi-Branch U-Net

The U-Net model uses the encoder—decoder structure with skip connections between
the encoder and decoder, transferring spatial information from the encoder to the decoder
to improve the up-sampling. To achieve a multi-branch network, we will insert a second
decoder into the network. This decoder receives the same encoder’s output and skip
connections. Each decoder branch will be responsible for one task and receives gradients
from its own loss function. Since the cross-entropy loss has proven its efficiency in the
single-task setups, we will adopt the same loss for each branch of the multi-branch model.
A visual representation of the setup can be seen in Figure 6.

Having an extra decoder also introduces extra computation. This might be reduced
by, instead of only sharing the encoder’s layers between the tasks, also sharing some early
layers of the decoder. However, for our application, initial experiments have shown that
the best segmentation results are achieved by using completely separate decoders while
having a shared encoder.

The training of the network is straightforward and is similar to the single-task setup.
However, as described above, both the defect type and severity single-task models in-
herently learn the binary segmentation task. Therefore, it is only reasonable to learn this
task in one branch only. In our experiments, the defect class branch will learn the binary
segmentation task. With the background class discarded from the severity branch, this
branch now outputs a probability for only three classes, i.e., the three severity levels. Since
this is only required for foreground pixels, during training, we only provide gradients
to the foreground pixels by masking the loss out with the target label. This means that,
during inference, the output from the severity branch is only valid for foreground pixels,
which are predicted by the defect class branch. Therefore, the severity output map has to
be masked out by the background/foreground prediction of the defect type branch as seen
in Figure 6.

Again, we train the model with the Adam optimizer and a learning rate of 3 x 10~*
for both branches. Both branch losses use the ENet class weighting. However, the severity
weights are now relative to the foreground pixels only, instead of the total amount of
pixels, since the loss is only applied to the foreground. The model trained for 2500 epochs
(4-5 min per epoch) with a batch size of 16. We applied the same data augmentations as
in the single-task setups, i.e., the random scaling between 0.8 and 1.2, and the random
cropping of size 224 x 608 after conditional reflective padding if the height of the image is
smaller than the crop size. The confusion matrices of the background/foreground, defect
type and severity segmentation tasks of the trained multi-branch model can be found
in Figure 12, Figure 13 and Figure 14 respectively. The second row of Table 1 gives an
overview of the model’s performance. It is clear that both the defect type and severity tasks
have been improved by using the multi-branch setup, while reducing the computational
burden of having two separate models.

Metals 2021, 11, 870

14 of 19

(a) Background/Foreground

100

80
11.19

60

2
o
8
o]
5
2 40
o
= -20
' -0
BG
Ground Truth
(b) Improvement Defect Type (c) Improvement Severity
100
I?S
g - -8.98 -26.88 g - -5.34 -12.54 - 50
c = -25
(=] o
=)
o =) -0
B ®
& & --25
o - 8.98 26.88 - 5.34 12.54 -50
2 2
=75
' ' | ' —=100
BG FG BG FG
Ground Truth Ground Truth

Figure 12. Confusion matrices for the multi-branch model. (a) Confusion matrix of the multi-branch
model for the background/foreground task. (b,c) Confusion matrix difference between the current
confusion matrix and the matrices from the single task defect type and severity models displayed
in Figures 8 and 9. It is clear that the multi-branch model performs better than the two single-task

models on the background/foreground task.

(a) Defect Class (b) Improvement

100 100
<L < -
75
o - o -
80

o- |
W
wo- w -
o | 50 o -25
T - B - o
3 40 . | 55
¥ - ¥ -
- - -

—50
= - _20 =-
=z
o-

Prediction
Prediction
1
|

-75

-100

ABCDEFGHI JKLMNOP
Ground Truth Ground Truth
Figure 13. (a) Confusion matrix for the defect type task of the multi-branch model. (b) Accuracy
improvement of the multi-branch model compared to the single-task model (defect type) from
Figure 8. The model shows both a decrease and increase in accuracy for different classes. However,
the overall performance of the task increased, as shown in Table 1.

Metals 2021, 11, 870

15 0of 19

(a) Defect Class (b) Improvement

100 100
75
- - = 7, - - 11 0 -1
80

-50

-25

)
=]

Prediction
Prediction

i
S
=1

-50
-20

-75

| ' -0 | ' | -100
1 2 1 2 3

Ground Truth Ground Truth

Figure 14. (a) Confusion matrix for the severity estimation task of the multi-branch model. (b) Ac-
curacy improvement of the multi-branch model compared to the single-task model (severity) from
Figure 9. The model shows both a decrease and increase in accuracy for different classes. However,
the overall performance of the task increased, as shown in Table 1.

3.3. Using Process Parameters as Extra Supervision

Training the model with the annotated images supervises the model to determine
which pixels contain defects and to predict the correct type and severity. However, due to
different process parameters such as oven temperature or surface finish, the occurrence
rate of specific defects and severity levels can differ. Therefore, we believe that there is
a correlation between these parameters and the presence of certain defects which could
help to improve the semantic segmentation. Without manually deriving these statistics,
the model can learn the correlation between these parameters and the defect occurrence
by incorporating them during training as extra supervision. Since these parameters are
also available during inference, we do not have to treat them as target labels, as with the
segmentation labels, but as inputs. Therefore, this can be seen as a form of sensor fusion,
where we have both our camera images and the process parameters as inputs to our model.

There are many ways of incorporating the parameters into our model [25]. More
specifically, we can insert them at the earlier layers, mid-layers, or the last layers of our
model. Since the parameters are all integers, we have decided to insert them at the
bottleneck of the network, i.e., the output of the encoder. Here, the activation tensor codes
a very condensed, global representation of the image, in which it is logical to add other
global data such as these process parameters. This is also referred to as ‘mid-fusion’, where
the sensor’s data are fused with the output of one of the middle layers of the model. This
can be seen in Figure 15.

The parameters are a mix of discrete and analog values. However, since the analog
values are integers in the range of 0-1000, we treat them the same as the discrete parameters
and feed them directly into the model as is. As described above, the U-Net architecture is a
fully convolutional network, meaning that the network can be trained on different input
resolutions. However, the shape of the bottleneck, i.e., the output of the encoder, where we
will feed in the process parameters, will change based on the input resolution. In the case
of our U-Net model, the output of the encoder when training on 224 x 608 crops is a tensor
of size 512 x 7 x 19, meaning 512 channels of 7 x 19 size feature maps. To incorporate the
parameters, we will expand (copy) our 11 parameters into a tensor of size 11 x 7 x 9, each
of the 11 feature maps containing the corresponding parameter value at each pixel location,
and concatenate it to the bottleneck. The fused tensor will then be fed into both the defect
type and severity branch as seen in Figure 15.

Metals 2021, 11, 870

16 of 19

shared encode

Encoder output

— 512

11 5

defect type branch

Params : i

Severity branch

-p1 _ é
" L n P |
—pM i

Process parameters

Figure 15. Incorporation of process parameters to improve model performance. After expanding the
process parameter vector into a three-dimensional tensor, it is concatenated with the encoder output.
The fused tensor then goes through both branches.

We trained the model for 2000 epochs (4-5 min per epoch). The same setup as in
the previous experiment (using the multi-branch network) was used: Adam optimizer
with a learning rate of 3 x 1074, cross-entropy loss with ENet class weighing for each
branch, equally weighed. The same data augmentations were used: random scaling
between 0.8 and 1.2 and a random crop of 224 x 608 with conditional reflective padding
for images smaller than the crop size. Figures 16 and 17 compare the confusion matrices
for the networks trained with and without the process parameters. The last row of Table 1
summarizes the performance metrics for the model.

(b) Improvement

100 100
a -
o -
I "
U -

-50

(a) Defect Class

-25

-0

Prediction
Prediction
1
|

- 40 35

-50
-20 = -
-75

[T —100

o o
ABCDETFGHI] KLMNOFP
Ground Truth

Ground Truth

Figure 16. (a) Confusion matrix for the defect type segmentation task using the multi-branch model
with process parameters. The first chart shows that the accuracy has improved over the model
without the process parameters in Figure 13. (b) Improvement compared to the model without the
process parameters. Most of the classes’ accuracy has been significantly improved.

Metals 2021, 11, 870

17 of 19

(a) Defect Class (b) Improvement
100 100
75
- - 35 10 4 I
80
- 50
c 60 = -25
E=l 2
S S 28 1 9 -0
i T
& o & --25
-50
-20
- . 8 -12 13
=75
] -0 | | | -100
1 2 1 2 3
Ground Truth Ground Truth

Figure 17. (a) Confusion matrix for the severity segmentation task using the multi-branch model
with process parameters. The first chart shows that the accuracy has significantly improved over the
model without the process parameters in Figure 14. (b) Improvement compared to the model without
the process parameters. The chart shows a significant increase for severity level 1, while severity
level 3 has a slight accuracy drop, showing an increase in confusion with level 2 severity defects.

Table 1 shows that the incorporation of the parameters drastically improved the
performance on both tasks, with an increase of around 7% mloU on the defect type task
and a 3% increase on the severity task. If we look at the mean accuracy, the defect type task
increased by 22% while the severity task increased by 7%.

4. Discussion

In this work, we have shown that the multi-branch network is able to detect the
defects, classify the pixels, and estimate severity better than two single-task networks.
However, the results show that the mean IoU is still beneath 50% and that a large portion of
foreground pixels are segmented as background. Nevertheless, visual analysis of the results
shows that nearly all of the defects are detected and accurately classified. The severity
estimation is nearly as accurate as the defect type; however, there seems to be some
confusion between the lower severity levels. This will be further investigated in future
work, but we have to indicate that, due to the difficult distinction between background
and level 1 severity defects, these are easily missed by both the labeling team and the
trained model.

One other important point to make is the fact that our dataset consists of a large portion
of rectangular target masks, resulting from the coarse bounding-box annotations. This adds
confusion during the training phase, but also during the evaluation. Because the bounding
boxes encompass also a large amount of defectless pixels, a portion of the false-negative
pixels might be subjected to the wrong interpretation. Since the model is able to segment
the defects with a finer mask than a rectangular shape, a portion of the false-negative
pixels are correctly segmented as background, since these are the background pixels in
the rectangular target masks. Moreover, due to missing labels in our dataset, some of the
false-positive pixels are unlabeled defects, which the model is able to detect. Hence, we
argue that the achieved mIoU metrics are actually an underestimation of the true accuracy
of the model.

However, we have already stated that we will investigate this further and will improve
our in-house dataset using model-assisted labeling, building further on this work. This
will enable the semi-manual conversion of all bounding-box labels to full pixel-perfect
segmentation maps.

Metals 2021, 11, 870 18 of 19

5. Conclusions

In this work, we have successfully implemented and trained a multi-task U-Net seg-
mentation network to detect steel sheet surface defects. The model is able to detect and
recognize up to 16 different defect classes and also estimates a defect severity level between
1 and 3. We showed that training both tasks simultaneously yields substantially better
accuracy results as compared to separately trained distinct models. We also demonstrated
that incorporating extra context information in the form of steel production process param-
eters is also very advantageous. The resulting model achieves a mean IoU score of 40%
for the defect class task and around 43% mean IoU for the defect severity task, despite the
partially coarse training and test annotations.

Author Contributions: Methodology, R.N. and T.G.; Software, R.N.; Supervision, T.G.; Writing—
original draft, RN.; Writing—review and editing, T.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research recieved funding from the VLAIO project HBC.2017.1002 and the Flemish
Government (Al Research Program).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to thank Robbert Camps for collecting and managing the labeling
process of the training data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luo, Q; Fang, X;; Liu, L.; Yang, C.; Sun, Y. Automated Visual Defect Detection for Flat Steel Surface: A Survey. IEEE Trans.
Instrum. Meas. 2020, 69, 626—-644. [CrossRef]

2. Song, K. Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl.
Surf. Sci. 2013, 285, 858-864. [CrossRef]

3. Severstal. Severstal: Steel Defect Detection; Severstal: Cherepovets, Russia, 2019.

4. O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458.

5. Tao, A,; Sapra, K,; Catanzaro, B. Hierarchical Multi-Scale Attention for Semantic Segmentation. arXiv 2020, arXiv:2005.10821.

6. Vakanski, A.; Xian, M.; Freer, PE. Attention-Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound
Images. Ultrasound Med. Biol. 2020, 46, 2819-2833. [CrossRef] [PubMed]

7. Azimi, SM.; Henry, C.; Sommer, L.; Schumann, A.; Vig, E. SkyScapes Fine-Grained Semantic Understanding of Aerial Scenes.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October-2 November
2019; pp. 7392-7402. [CrossRef]

8. Kollmann, H.T.; Abueidda, D.W.; Koric, S.; Guleryuz, E.; Sobh, N.A. Deep learning for topology optimization of 2D metamaterials.
Mater. Des. 2020, 196, 109098. [CrossRef]

9. Konovalenko, I.; Maruschak, P.; Brezinova, J.; Vinas, J.; Brezina, J. Steel Surface Defect Classification Using Deep Residual Neural
Network. Metals 2020, 10, 846. [CrossRef]

10. Damacharla, P.; Achuth, RM.V,; Ringenberg, J.; Javaid, A.Y. TLU-Net: A Deep Learning Approach for Automatic Steel Surface
Defect Detection. arXiv 2021, arXiv:2101.06915.

11. Fu,J.; Zhu, X; Li, Y. Recognition Of Surface Defects On Steel Sheet Using Transfer Learning. arXiv 2019, arXiv:1909.03258.

12. Wang, S.; Xia, X.; Ye, L.; Yang, B. Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional
Neural Networks. Metals 2021, 11, 388. [CrossRef]

13. Minaee, S.; Boykov, Y.; Porikli, F; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning;
A Survey. arXiv 2020, arXiv:2001.05566.

14. Takos, G. A Survey on Deep Learning Methods for Semantic Image Segmentation in Real-Time. arXiv 2020, arXiv:2009.12942.

15. Naumenko, V.; Muntin, A.; Danilenko, A.; Baranova, O. Study of the Surface Defect Nature of Hot-Rolled Products in the Edge
Zone. Steel Transl. 2020, 50, 46-52. [CrossRef]

16. Yu, H,; Tieu, K; Lu, C.; Deng, G.y.; Liu, X.h. Occurrence of surface defects on strips during hot rolling process by FEM. Int.]. Adv.
Manuf. Technol. 2012, 67. [CrossRef]

17. Dhua, S. Metallurgical Analyses of Surface Defects in Cold-Rolled Steel Sheets.]. Fail. Anal. Prev. 2019, 19, 1-11. [CrossRef]

http://doi.org/10.1109/TIM.2019.2963555
http://dx.doi.org/10.1016/j.apsusc.2013.09.002
http://dx.doi.org/10.1016/j.ultrasmedbio.2020.06.015
http://www.ncbi.nlm.nih.gov/pubmed/32709519
http://dx.doi.org/10.1109/ICCV.2019.00749
http://dx.doi.org/10.1016/j.matdes.2020.109098
http://dx.doi.org/10.3390/met10060846
http://dx.doi.org/10.3390/met11030388
http://dx.doi.org/10.3103/S0967091220010088
http://dx.doi.org/10.1007/s00170-012-4556-7
http://dx.doi.org/10.1007/s11668-019-00690-2

Metals 2021, 11, 870 19 of 19

18.

19.

20.

21.

22.

23.

24.
25.

Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, ., Wells, WM., Frangi, A.EF,, Eds.; Springer:
Cham, Switzerland, 2015; pp. 234-241.

He, K,; Zhang, X; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016.

Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time Semantic
Segmentation. arXiv 2016, arXiv:1606.02147.

Paszke, A.; Gross, S.; Massa, E; Lerer, A.; Bradbury,].; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F, Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
pp- 8024-8035.

Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7-9 May 2015.

Vandenhende, S.; Georgoulis, S.; Van Gansbeke, W.; Proesmans, M.; Dai, D.; Van Gool, L. Multi-Task Learning for Dense
Prediction Tasks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef] [PubMed]

Crawshaw, M. Multi-Task Learning with Deep Neural Networks: A Survey. arXiv 2020, arXiv:2009.09796.

Zhang, Y,; Sidibé, D.; Morel, O.; Mériaudeau, F. Deep multimodal fusion for semantic image segmentation: A survey. Image Vis.
Comput. 2021, 105, 104042. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2021.3054719
http://www.ncbi.nlm.nih.gov/pubmed/33497328
http://dx.doi.org/10.1016/j.imavis.2020.104042

	Introduction
	Method
	Dataset
	Semantic Segmentation Using U-Net
	Loss Function

	Experiments and Results
	Single Task Networks
	Multi-Branch Network Combing Defect Type and Severity
	Using Process Parameters as Extra Supervision

	Discussion
	Conclusions
	References

