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Abstract: Developing accurate design data to enable the effective use of new materials is undoubtedly
an essential goal in the gear industry. To speed up this process, Single Tooth Bending Fatigue (STBF)
tests can be conducted. However, STBF tests tend to overestimate the material properties with
respect to tests conducted on Running Gears (RG). Therefore, it is common practice to use a constant
correction factor fkorr, of value 0.9 to exploit STBF results to design actual gears, e.g., through ISO
6336. In this paper, the assumption that this coefficient can be considered independent from the gear
material, geometry, and loading condition was questioned, and through the combination of numerical
simulations with a multiaxial fatigue criterion, a method for the calculation of fkorr was proposed.
The implementation of this method using different gear geometries and material properties shows
that fkorr varies with the gears geometrical characteristics, the material fatigue strength, and the load
ratio (R) set in STBF tests. In particular, by applying the Findley criterion, it was found that, for the
same gear geometry, fkorr depends on the material as well. Specifically, fkorr increases with the ratio
between the bending and torsional fatigue limits. Moreover, through this method it was shown that
the characteristics related to the material and the geometry have a relevant effect in determining the
critical point (at the tooth root) where the fracture nucleates.

Keywords: STBF; FEM; Findley; gears; multiaxial fatigue; material characterization

1. Introduction

Gears are widespread components commonly used for transferring mechanical power
between noncoaxial rotating shafts [1]. The working principle is based on the meshing
of teeth with a conjugate profile that, on the one hand, allows the transmission of torque
and motion and, on the other hand, undergoes the teeth to fatigue and to different failure
modes [2,3]. According to [4], the repeated contacts between gear flanks lead to fatigue
failure modes such as scuffing [5], wear [6], pitting [7], and micropitting [8]. Whereas the
repeated pulsating bending loading of the teeth root leads to a failure mode called Tooth
(Root) Bending Fatigue (TBF) [9].

The TBF phenomenon emerges due to the variation of the load entity (transmit-
ted force) and position along the active profile of the tooth [9]. In other words, the
rolling/sliding contact between the tooth flanks leads the tooth root fillet stresses to vary
continuously, pulsating from zero to a maximum. Moreover, the stress value is amplified
by the tooth root notch effect [10]. The crack propagation leads to the tooth root breakage,
and therefore, to the endangerment of the entire system [11]. For this reason, the TBF is
considered one of the most dangerous failure modes, and it could potentially lead to catas-
trophic consequences [12]. Therefore, TBF life, through the calculation of Tooth Bending
Strength (TBS) to determine the load capacity ISO 6336-1 [13], is a fundamental aspect in
gear design [14].
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To rate the TBS, standards exploit an uniaxial strength criterion, i.e., the maximum
tensile (positive) stress σF at the tooth root due to pure bending has to not exceed the
permissible bending stress σFP ISO 6336-3 [15]. According to the Method B of ISO 6336-
3 [15], σFP is a function of the material strength σFlim. The maximum tensile stress due to
bending σF can be determined through several calculation methods, e.g., (ISO 6336-3 [15];
ANSI/AGMA [16]), starting from the gear geometry and the applied loads. Reference
values for σFlim for different materials are available in the same standards, e.g., (ISO 6336-
5 [17]; ANSI/AGMA [16]). However, the values reported in [17] are representative of
common materials and finishing treatments only. For new materials and/or more reliable
values, the standard suggests performing dedicated tests. Therefore, it is common practice
for newly developed materials (or specific chemical compositions) to characterize the
material strength σFlim through experimental testing.

Three kind of tests can be found in the literature to characterize the TBS. (1) tests
on Running Gears (RG), e.g., [14,18]; (2) tests on Single Tooth Bending Fatigue (STBF),
e.g., [19–21], and (3) tests on notched specimens, e.g., [22–24].

Tests on RG can reproduce the exact stress state of the actual gears, so through this
method, it is possible to characterize the fatigue behavior of the material with excellent
reliability [25]. The actual TBS obtained from tests on RG (σFlimRG) is exactly the value
σFlim as intended in the standard. However, to perform these kinds of tests, specific test
rigs are needed, e.g., [14,26]. Moreover, the breakage of a tooth makes the gear unusable
for further tests, and since each tooth is loaded once every rotation of the tested gear, the
experimental campaign results are particularly long and expensive.

On the other hand, tests on notched specimens can be performed quickly on any
universal testing machines in a relatively economical manner. However, due to the different
geometries and loading modalities, the stress state history in these specimens is very
different to the one on actual gears. Therefore, to be used in combination with the standard,
the results obtained from these tests require a series of corrective coefficients. As a direct
consequence, this approach leads to the greatest uncertainty [27].

A good tradeoff for the effectiveness of the experimental campaign in terms of
time/costs, and reliability of results is to conduct STBF tests. Using gears as samples
allows having a specimen that is representative of the same manufacturing process used
on actual gears, i.e., it encompasses surface finishing effects, etc.; like the tests on RG. The
concept behind STBF tests is to apply a variable force to two teeth of the same gear. In
particular, the forces are applied through two anvils with parallel faces. These forces are
tangent to the base circumference, and at the same time, normal to the tested teeth flanks
(Wildhaber property). This kind of test can be carried out by means of a universal testing
machine (e.g., a pulsator). In addition, the STBF configuration allows for the performance
of multiple tests on a single gear specimen (depending on the number of teeth) with evi-
dent cost savings. Moreover, STBF tests do not require lubrication, ensuring a much more
effective management with respect to RG tests. On the other hand, experimental evidence
showed that the results of STBF tests in terms of material properties (σFlimSTBF) cannot be
directly compared to the ones obtained on RG σFlimRG, even if the two values should repre-
sent the same material property σFlim [28,29]. Indeed, as better explained in the following
sections, RG and STBF have nonidentical stress states. In particular, the results of an inverse
application of the standard [15] in terms of σFlimSTBF and σFlimRG by setting a consistent
force (in STBF) and torque (in RG) highlight that σFlimSTBF > σFlimRG. To compensate this
effect, Rettig first [28] and then Stahl [29] proposed to use the constant correction coefficient
( fkorr = 0.9) defined as fkorr = σFlimRG/σFlimSTBF. However, this coefficient was estimated
without investigating the effect of modulus, geometry, and material. Indeed, conducting
an experimental campaign to investigate these effects would be extremely time-consuming
and expensive if not impossible due to the mostly infinite possible combinations.

The present paper has a twofold objective. Firstly, to describe an innovative method
for the estimation of fkorr. In particular, through the combination of (1) material data
obtained with standard tests (i.e., bending fatigue, torsional fatigue, STBF); (2) results of
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FEM simulations of STBF tests and RG conditions, and (3) the exploitation of a multiaxial
fatigue criterion able to take into account nonproportional load histories, it is possible to
obtain a more accurate estimation of fkorr. Secondly, to prove that the correction coefficient
fkorr is a function of the geometry of the gears as well as the material properties. Indeed,
by implementing the proposed method by varying the abovementioned parameters, it
emerged that fkorr is not constant.

2. Background
2.1. Causes of Different Stress States in STBF and RG Tests

STBF tests are widely exploited in technical and scientific literature; there are many
papers presenting the design and the results of STBF tests carried out on gears with different
modules and geometries and made of different materials. In Table 1, there are more than
20 references classified based on the normal module tested. Considering that the results of
those tests should be used as the results performed on RG, in combination with standards
(e.g., [15]), it is important to have a reliable and effective method to translate these data in
the form adopted by the standards, namely σFlim.

Table 1. Relevant literature presenting Single Tooth Bending Fatigue (STBF) tests.

Normal Module mn Relevant Papers Presenting STBF Tests

mn < 1 [21,30]
1 ≤ mn < 2 [31,32]
2 ≤ mn < 3 [33]
3 ≤ mn < 4 [27,34–38]
4 ≤ mn < 5 [34,39–43]

mn = 5 [20,26,32,44–46]
mn > 5 [32,47,48]

The results of the STBF and RG tests differ for two main reasons. Firstly, in STBF
tests, to avoid undesired displacement of the gear, a minimum compressive load is usually
present; the typical ratio between the minimum and maximum force applied to the teeth is
(R = 0.1), e.g., the STBF tests conducted in [26,37,45,47,49]. Naturally, this differs from RG,
where R = 0, and therefore, it alters the average stress present in the tooth [18,19,50,51].

Secondly, the loading condition in STBF tests are similar but not identical to the RG
situation (as illustrated in Figure 1). On the one hand, in STBF tests, the loads are applied
with a fixed direction and position, and they vary in a sinusoidal way with a constant
amplitude. In addition, the relative angle between the force and the loaded tooth axis (αFen),
which depends on the number of teeth included in the Wildhaber distance, is constant
for the entire tests and can be significantly different from the one in the Outer Point of
Single pair tooth Contact (OPSC) used for the calculation of σF on RG (according to the
standard). This leads to the occurrence of a different share between pure bending and pure
compressive stresses (the latter are neglected by the ISO 6336 approach). On the other hand,
in RG tests, not only the force magnitude, but also the force direction is variable. This is
related to the position of the contact, which moves along the tooth flank (while the standard
is applied to the most critical engagement position only, namely the OPSC). Moreover, the
variable number of mating teeth pairs leads to an uneven force sharing. Consequently, the
stress time history at the tooth root is not sinusoidal as in the STBF tests [18,19]. Therefore,
in RG the stress state is multiaxial and nonproportional [52] with the stress components
varying as shown in Figure 1a. In Figure 1, it is possible to notice the theoretical trends of
each component of the stress tensor calculated, along the time, in a point within the tooth
root region in RG and STBF conditions. In these graphs, differences in terms of trends and
nonproportionality are evident.
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2.2. Multiaxial Fatigue Criteria in Nonproportional Loading Conditions

From a general perspective, predicting the fatigue life of structural components under
multiaxial loads is one of the most challenging tasks in the engineering field. Different
scholars proposed numerous fatigue criteria with the aim of considering the influence
of multiaxial conditions, e.g., [53–72]. Among the others, the most advanced models are
based on the critical plane approach, i.e., the fatigue failure is assumed to take place on
a specific plane on which both normal and shear components contribute to the fatigue
failure. However, only a subset of methods is capable of considering nonproportional
loadings [56–65,67,68,70–72] while others were just limited to cases where the loading is
proportional. In addition, only few papers can be found in the literature investigating
the phenomenon of tooth root bending through multiaxial fatigue criteria. Among them,
Benedetti et al. [20] exploited the Sines fatigue criterion [55] where the stress field due to
external loading was determined by means of finite element (FE) modeling of the gear tooth.
However, the applicability of the Sines criterion is limited to proportional loading, and
therefore, its application to rotating gears requires the assumption to consider the stresses
amplitude proportional among them. As shown in Figure 1, this assumption is true only
for STBF tests with R = 0. A further step in the state of the art was presented by [73] and [74]
that introduced a multiaxial fatigue criterion capable of considering the nonproportionality
of stresses. Specifically, in [73], the load carrying capacity of hypoid gears was determined
through a method combining the Liu & Mahadevan fatigue criterion [67] and an FE
approach. In [74,75], the Crossland fatigue criterion [54] was adopted to characterize the
state of stress in spur gears. It is notable that while the Liu & Mahadevan fatigue criterion
is based on the critical plane approach, the Crossland fatigue criterion is not.

3. Materials and Methods
3.1. Description of the General Framework

According to the standard ISO 6336-3 [15], the maximum tensile stress σF at the tooth
root is the cause of the failure for TBF, and therefore, can be considered the critical damage
parameter. Due to its intrinsic formulations, the standard is effective only as far as mating
gears are concerned. Consequently, when used to convert results from STBF tests, this
assumption’s results are too simplistic. This is due to the following reasons. Firstly, the
standard considers only the tensile stress due to bending, neglecting the radial compression
force. This is acceptable in RG because it does not affect the calculation (the shear between
the tangential and the radial force is almost constant for typical gears geometries). In STBF
tests, the ratio between the radial-force to total-force changes, and therefore, neglecting the
compression is no longer acceptable. Secondly, the standard does not consider the whole
stress tensor; namely, it approximates the gears as planar (2D), neglecting the out of plane
stresses. Thirdly, it is acknowledged that for a reliable calculation, the complete stress cycle
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should be considered. As mentioned in the introduction, RG and STBF tests show different
loading cycles, and therefore, the related stress histories (more in general nonproportional).

To convert the experimental results obtained through STBF tests into usable data in
the standard, the fkorr was introduced [29]. Although this coefficient is representative of the
ratio of the two stresses responsible for the TBF failure in RG and in STBF, its estimation was
only carried out empirically. The present paper aims to propose a numerical approach to
calculate the fkorr for any possible configuration. The method proposed involves two steps.

In the first step, by means of FE analysis, it is possible to obtain the stress histories
in the two loading conditions (i.e., RG and STBF), and therefore, to consider the overall
stresses exerted on the tooth root along the loading cycles. Naturally, the modelled RG test
and an STBF test have the same gear geometry and material properties. It is fundamental to
impose a loading condition (torque in the RG simulation and force in the STBF simulation)
that, according to the standard [15], leads to the same maximum stress σF at the tooth root.
Moreover, to simulate a critical condition, σF should achieve values comparable to the
permissible stress σFP.

In this way, the two configurations are identical from the perspective of the standard,
but as mentioned in the previous sections, the two stress histories are not equivalent.
Therefore, by means of FE simulations, it is possible to quantify these differences. To do
this, the stress tensor history σ(t) (a symmetric matrix showed in Equation (1)) must be
extracted for each point where fracture could nucleate, i.e., each point within the root fillet
region for both the FE analyses. Thus, through the numerical analysis, it is possible to
obtain the stress tensor σ(t) of the most critical points that can be analyzed through a
fatigue criterion.

σ(t) =

 σxx(t) τxy(t) τxz(t)
τyx(t) σyy(t) τyz(t)
τzx(t) τzy(t) σzz(t)

 (1)

Indeed, the second step of the method lies in the analysis of the extracted σ(t) through
a multiaxial fatigue criterion. As discussed in the previous sections, the most advanced
fatigue criteria are based on the critical plane. The selected one must be able to consider the
nonproportional loading condition. One of the criteria that fulfills these characteristics is
the Findley criterion, which will be introduced in more detail in Section 3.3. However, any
multiaxial fatigue criterion capable of accounting for nonproportional loading conditions
can be implemented in the presented method.

Through the study of σ(t) using an appropriate criterion, it is possible to identify
the most critical point and quantify the damage parameter responsible of the TBF failure
in the two simulated conditions. The ratio between the most critical damage parameters
emerged in the STBF condition, and those that emerged in the RG condition are equivalent
to the fkorr.

By repeating the presented procedure for different gear geometries and for different
materials, it is possible to study if and how the fkorr is related to these parameters. To calcu-
late fkorr, several typical gear materials (according to [76]) were exploited. The simulations
and the application of the fatigue criteria were conducted for two kinds of STBF tests, i.e.,
R = 0 and R = 0.1.

Details on the FE analysis performed in this work can be found in Section 3.2, while
the σ(t) elaboration through the Findley criterion to calculate the fkorr is presented in
Section 3.3.

3.2. Finite Element Analysis

In the present paper, nine different gear geometries were simulated in both the RG
and STBF conditions. The main geometrical parameters were picked up from the scientific
literature presenting STBF tests. In Table 2, the main geometrical characteristics of each
gear tested (A to I) are listed as well as the reference paper presenting STBF tests on such
geometries. Based on these geometrical parameters, the three-dimensional models were
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created through the commercial software KISSsoft® and imported into the open source FE
software (Salome—Meca/Code_Aster).

Table 2. Geometrical characteristics of simulated gears.

Geometrical Parameters Sym
Gears

A B C D E F G H I

Normal module [mm] mn 0.45 1 2 3 3 4 5 5 8
Normal pressure angle [◦] αn 20 20 20 20 20 20 20 20 20

Number of teeth z 29 19 26 24 23 28 24 24 32
Face width [mm] b 6.75 10.3 10 15 30 30 10 30 20

Profile shift coefficient x 0.45 0 0.3 0 0.442 0 −0.2 0 0.223
Dedendum coefficient h∗f P 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

Root radius factor ρ∗f P 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
Addendum coefficient h∗aP 1 1 1 1 1 1 1 1 1

Wildhaber w 4 4 5 5 4 4 3 3 4
Angle STBF [◦] αFen 19 28 27.7 22 23 19 15 15 17

Reference [21] [31] [77] [35] [27] [42] [44] [20] [48]

In the model, symmetries were exploited to reduce the computational effort, i.e., in
STBF simulations a quarter of each gear was meshed while in the RG ones the whole
gear profile was modelled for half of the width. For each gear geometry, an extruded
mesh was created. The mesh quality was improved in teeth subjected to loads in terms of
mesh density and exploiting hexahedral elements in that region (as illustrated in Figure 2).
Nonlinear simulations were carried out setting 40 time-steps for each loading cycle.
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Figure 2. Finite Element (FE) modeling of RG (a) and STBF (b) tests.

In Figure 2a, it is possible to see the configuration of an RG simulation, while in
Figure 2b, the configuration of an STBF simulation is shown. With respect to the RG
simulations, the mating gears were positioned with the appropriate center distance and the
axes of rotation were fixed. The motion was assigned to the driving gear and a resistant
torque to the driven once accordingly. In the STBF simulation, the radial symmetry was
exploited as a fixed constraint, while a pulsating force was applied to the anvil. The force (in
STBF) and the torque (in RG) were set to lead to the same σF, according to the standard [15].
For each simulation, the σ(t) in the nodes within the tooth root fillet subjected to bending
were extracted. These nodes are not involved in the meshing area and are highlighted in
red in Figure 2.

3.3. Implementation of the Findley Criterion for the Calculation of fkorr

As mentioned in the previous sections, the method proposed requires elaborating the
σ(t) through a fatigue criterion capable of considering nonproportional loading condition.
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In this section, the concepts behind the fatigue criteria based on the critical plane are
illustrated as well as the steps to apply the Findley criterion.

The stress exerted on a plane defined by a normal vector n, of spherical coordinates
φn, θn, is constituted by a vector Pn having modulus and direction varying in time (as
illustrated in Figure 3a). Pn can be determined through the relation showed in Equation (2).

Pn(φn, θn, t) = σ(t) n(φn, θn) (2)

In Figure 3a, Pn can be decomposed into a normal component σn, with time-varying
modulus and fixed direction, and a tangential component τn with time-varying modulus
and direction. In the case of periodic stresses, the vertex of the vector Pn describes a
three-dimensional closed curve in the space, whose minimum and maximum distance
from the plane correspond to the values of σn,min and σn,max, respectively (as illustrated in
Figure 3b). In Figure 3b, it is possible to notice that the projection of this three-dimensional
curve into the plane, which corresponds to the positions of τn assumed in a load cycle, is
defined as Γn.
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Through the geometrical properties of the curve Γn, it is possible to determine that
in the plane with normal n, the alternative (average) component of the tangential stress
τn,a (τn,m) could be representative of the entire shear cycle. Several methods can be found
in the literature to determine the τn,a and τn,m values for a given curve Γn. However,
the most diffused method is the Minimum Circumscribed Circle (MCC) [78], i.e., τn,a is
calculated as the radius of the smallest circle that can entirely contain the curve Γn, while
τn,m correspond to the distance between the center of the MCC and the origin of τn (as
illustrated in Figure 4).
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τn,a and τn,m.

At this point, for each plane having normal n that can be defined by varying the
parameters (φn, θn), it is possible to evaluate the relevant stress values, e.g., τn,a and σn,max.
More specifically, for the critical plane, the corresponding spherical coordinates and the
related stresses will be labelled with the subscript c (Equations (3) and (4)).

σc,max = σn,max(φC, θC) (3)

τc,a = τn,a(φC, θC) (4)

The determination of the critical plane (φc, θc) differs for the different fatigue criteria.
For example, the Findley criterion, shown in Equation (5), defines the critical plane as the
ones in which the damage parameter (Equation (6)) is maximum. It can be individuated
iteratively by varying φ and θ in the range [0, π/2].

τc,a + kσc,max ≤ f (5)

(φC, θC)→ max
φ,θ
{τn,a(φ, θ) + kσn,max(φ, θ)} (6)

where k is a constant related to the different response of the material to bending and
torsion (in terms of fracture propagation) (Equation (7)) and f is a constant related to the
fatigue limits of the material (Equation (8)). Materials with marked ductility, for which
the propagation of the damage is little affected by the normal stress, typically show low
k values. Both these constants can be calculated by knowing the material fatigue limit at
symmetrical alternating bending loading (σf ), and the material fatigue limit at symmetrical
alternating torsional loading (τf ) (Equation (9)).

k =
2rτ/σ − 1

2
√

rτ/σ − r2
τ/σ

(7)

f =
1

2
√

rτ/σ − r2
τ/σ

τf (8)

rτ/σ =
τf

σf
(9)

Applying the Findley criterion, it is possible to evaluate the damage parameter on
each point of the tooth root (where data on σ(t) were extracted from the FE analysis). While
σF (ISO 6336) is representative of the most critical stress state within both RG and STBF
tests (and lies in the same position for both configurations), the representative damage
parameter is calculated as the maximum among all the calculated ones within the fillet
regions. Therefore, the most critical geometrical point, where the cracks are expected
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to nucleate, could also be different for RG and STBF configurations. By knowing the
representative damage parameters for the two configurations, the fkorr can be calculated
according to Equation (10). Since tests on STBF tend to overestimate the material properties
with respect to the RG tests, it means that the actual damage parameter in RG is higher
than the damage parameter in STBF.

fkorr =
(τc,a + kσc,max)|STBF
(τc,a + kσc,max)|RG

(10)

The framework presented in this section was implemented in a Matlab routine. In
this way, starting from the σ(t) of each grid point within the root fillet region (extracted
by both the FE analysis), it was possible to evaluate the maximum values of the damage
parameters (according to the Findley criterion) in RG and STBF conditions, and therefore,
to calculate the fkorr. To have a wider overview, the algorithm was applied to different
materials typically used for gear applications (as illustrated in Table 3). The properties
of these materials in terms of σf and τf were collected from [76], while the k values were
calculated through Equation (7). It is possible to notice that these materials cover the range
from k = 0.2 to k ≈ 0.3.

Table 3. Fatigue limits and resulting Findley’s k parameter according to [76].

Material σf τf k

42CrMo4 525.7 336.3 0.29
20MnCr5 410.0 258.0 0.27

34Cr4 410.0 256.0 0.26
30NCD16 690.0 428.0 0.25

C35N 250.0 150.0 0.20

4. Results and Discussion

In Table 4, the maximum Huber–Mises stresses within the tooth root fillet region
extracted from the FE simulations are reported. The σEq

∣∣
RG is the maximum Huber–Mises

stress recorded in the OPSC condition in RG simulations while σEq
∣∣
STBF is the maximum

Huber–Mises stress observed when the applied force has achieved its maximum value
in STBF simulations. It is interesting that for some gear geometries (i.e., A, C, E, and I)
the σEq

∣∣STBF > σEq
∣∣
RG, while for others (i.e., B, D, F, and G), the σEq

∣∣STBF < σEq
∣∣
RG. With

respect to the gear geometry H, the two values of maximum Huber–Mises stresses are
the same. More specifically, taking as reference σEq

∣∣
STBF, the ∆σEq% is the percentage

difference among the measured stresses in the STBF and RG simulations. This value ranges
from a minimum of –9.5% (Gear B) to a maximum of +8.4% (Gear E). The Huber-Mises
stress does not consider the stress history but includes the compression stress that is
neglected by the standard. While the RG and STBF are equivalent from the perspective of
the standard, by considering not only the tensile stress induced by bending but also the
effect of the compression force, it emerges that the loading conditions could significantly
differ. Moreover, the differences do not show a typical trend but oscillate depending on
the considered geometry. The reason behind a positive or negative value of ∆σEq% can
be individuated in the share between pure bending and pure compressive stresses (the
latter are neglected by the ISO 6336 approach), namely, different αFen values in the most
critical loading position. While this evidence already shows a limitation of the present
standard, the Huber-Mises approach still does not consider the stress cycle which could be
considered by applying the Findley’s criterion.
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Table 4. Maximum Huber-Mises stresses within tooth root fillet region in critical position for STBF
and RG simulations.

Gear σEq|RG σEq|STBF ∆σEq%

A 394 402 2.0%
B 475 430 −9.5%
C 380 402 5.8%
D 471 436 −7.4%
E 332 360 8.4%
F 428 399 −6.8%
G 522 483 −7.5%
H 408 408 0.0%
I 409 420 2.7%

In Figure 5, the results of fkorr for different gear modulus, materials, and load ratio
are reported. The two graphs are related to two different load ratios, i.e., R = 0 (left) and
R = 0.1 (right). The results are shown for five different materials (according to Table 3) and
for seven different modules (according to Table 2). It is noticeable that the application of
the presented method leads to the estimation of fkorr, which assumes values even different
from 0.9. For the materials and the geometries studied, all results for R = 0.1 do not exceed
values of 1. This value is slightly exceeded in some cases of R = 0 (effect of the different
shares between pure bending and pure compressive stresses).

Metals 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 

Table 4. Maximum Huber-Mises stresses within tooth root fillet region in critical position for STBF 
and RG simulations. 

Gear 𝝈𝑬𝒒|𝑹𝑮 𝝈𝑬𝒒|𝑺𝑻𝑩𝑭 𝚫𝝈𝑬𝒒% 
A 394 402 2.0% 
B 475 430 −9.5% 
C 380 402 5.8% 
D 471 436 −7.4% 
E 332 360 8.4% 
F 428 399 −6.8% 
G 522 483 −7.5% 
H 408 408 0.0% 
I 409 420 2.7% 

In Figure 5, the results of 𝑓  for different gear modulus, materials, and load ratio 
are reported. The two graphs are related to two different load ratios, i.e., R = 0 (left) and R 
= 0.1 (right). The results are shown for five different materials (according to Table 3) and 
for seven different modules (according to Table 2). It is noticeable that the application of 
the presented method leads to the estimation of 𝑓  , which assumes values even dif-
ferent from 0.9. For the materials and the geometries studied, all results for R = 0.1 do not 
exceed values of 1. This value is slightly exceeded in some cases of R = 0 (effect of the 
different shares between pure bending and pure compressive stresses). 

The results vary according to load ratio and the material properties. Gears with the 
same modulus (i.e., Gear D, E having 𝑚 = 3 and G, H having  𝑚 = 5) present different 
values of fkorr. With respect to  𝑚 = 3, the lowest values of 𝑓  are related to the Gear 
E, while for  𝑚 = 5, the lowest values of fkorr are related to the Gear G. This evidence 
points out the importance of having a general-purpose method to estimate the appropri-
ate value of fkorr for the specific configuration used in the tests. 

With respect to the effect of the load ratio, the relation 𝑓 . < 𝑓  is always 
valid for the same combination of material and gear geometry. Indeed, a minimum load 
of zero leads to zero tangential stresses on the critical plane, and this results in a possible 
extension of the curve 𝛤 . This effect is translated into an increase in the radius of the 
MMC, and therefore, to a greater damage parameter in the STBF condition due to the 
increase of  𝜏 , . The difference between the two loading conditions in terms of fkorr is more 
pronounced for materials having low k values. For instance, the C35N shows differences 
of 7% between the two loading ratios, while for 42CrMo4, the maximum difference 
achieved for the two R is around 5%. This is because as k decreases, the  𝜏 ,   becomes 
predominant in the value of the damage parameter. 

Considering results on the same gear geometry, it is noticeable that materials having 
higher k values results in higher value of fkorr. Indeed, the damage parameter is propor-
tional to k. 

 
Figure 5. fkorr values for different modules, materials, and load ratios. In (a) R = 0 and (b) R = 0.1.

The results vary according to load ratio and the material properties. Gears with the
same modulus (i.e., Gear D, E having mn = 3 and G, H having mn = 5) present different
values of fkorr. With respect to mn = 3, the lowest values of fkorr are related to the Gear E,
while for mn = 5, the lowest values of fkorr are related to the Gear G. This evidence points
out the importance of having a general-purpose method to estimate the appropriate value
of fkorr for the specific configuration used in the tests.

With respect to the effect of the load ratio, the relation fkorrR=0.1 < fkorrR=0 is always
valid for the same combination of material and gear geometry. Indeed, a minimum load
of zero leads to zero tangential stresses on the critical plane, and this results in a possible
extension of the curve Γc. This effect is translated into an increase in the radius of the
MMC, and therefore, to a greater damage parameter in the STBF condition due to the
increase of τc,a. The difference between the two loading conditions in terms of fkorr is more
pronounced for materials having low k values. For instance, the C35N shows differences of
7% between the two loading ratios, while for 42CrMo4, the maximum difference achieved
for the two R is around 5%. This is because as k decreases, the τc,a becomes predominant
in the value of the damage parameter.

Considering results on the same gear geometry, it is noticeable that materials having
higher k values results in higher value of fkorr. Indeed, the damage parameter is proportional
to k.
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Through the method proposed in this paper, it is possible to individuate (for each
simulation performed) the node within the tooth root fillet in which the damage parameter
is maximum. We observed that for most of the studied gears’ geometries, the critical point
is near the center of the fillet arc, and the RG and STBF conditions lead to similar results in
terms of position of the critical point. However, in some cases, for the same gear geometry,
the position of the critical point in STBF and RG simulations differs. For instance, the gear
geometries G, E, and H present the higher difference.

In general, most of the combinations of geometry-material show a fkorr value that
for the R = 0 STBF tests lies above 0.9. It’s safe to use a constant value of 0.9; however,
this could lead to significant underestimations of the real material performances. Most
importantly, there are some specific combinations for which the values of fkorr signifi-
cantly decreased below 0.9, leading to an overestimation of the material strength, and
consequently, safety issues.

5. Conclusions

To date, a constant correction coefficient (fkorr = 0.9) is usually applied to use σFlim
values obtained through STBF tests in the ISO 6336. This correction coefficient is represen-
tative of the different loading conditions and stress states that lead to failures in STBF and
RG tests. In the present paper, a method for estimating fkorr by combining numerical results
through a fatigue criterion was presented. The concept behind the method proposed is
to simulate, for the same geometry, the STBF and the RG conditions with applied loads
that lead, according to ISO 6336, to the same σF. In this way, through the results of the
FE models, it is possible to obtain the stress histories (in terms of stress tensors) for all
the nodes that discretize the fillet of the tooth root. At this point, by analyzing the stress
histories through a fatigue criterion, in this case the Findley one, it is possible to individuate
the critical plane for each point, to evaluate the damage parameter in each critical plane,
and therefore, to identify the critical point at which the damage parameter assumes the
maximum value. This process can be followed for the RG and the STBF simulation. The
ratio between the maximum damage parameter observed in the STBF condition and the
one recorded for the RG condition corresponds to the fkorr, as it represents the ratio between
the different effects that cause failure for TBF.

This method was applied to nine different gear geometries combined with five differ-
ent gear materials. The geometries were selected considering what was already used in
the past for STBF tests. The materials are representative of the most diffused gear steels.
The dynamic FE simulations were carried out through Salome–Meca/Code_Aster, and the
Findley criterion was implemented in a Matlab routine developed ad hoc to elaborate the
FE results. Two typical load ratios exploited in the STBF tests were considered, i.e., R = 0
and R = 0.1. Preliminary results showed that fkorr is not a constant but varies according to
the gear geometry, the load ratio, and the ratio between the torsional τf and bending σf
fatigue limits of the material. The results achieved can lead to some considerations about
the effect of material properties and the load ratio. For instance, STBF tests carried out with
R = 0 lead to higher fkorr values (the results are close to the one performed on RG) with
respect to the STBF tests conducted with R = 0.1 on the same geometries and materials.
This is because R = 0 can lead to alternative tangential stresses (on the critical plane) of
higher value than those arising with R = 0.1. Another interesting result is that for the
same gear geometry, materials with a higher k present higher fkorr. This is because as
k increases, the damage parameter increases accordingly. However, no specific relation
between the analyzed geometrical parameters and fkorr emerged. One of the main reasons
for the differences between the two configurations can be individuated in the different
angles αFen and the related share between pure bending and pure compressive stresses
that arise between RG and STBF. Indeed, it affects the compressive stresses at the tooth
root that, currently, are not accounted for by the ISO 6336. Moreover, in the presented
method, the Findley criterion was exploited since it can take into account multiaxial stress
states and nonproportional loading conditions. However, other criteria with the same
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capability can be simply implemented, such as the criterion of Matake [57], McDiarmid [59],
or Papadopoulos [62]. Future studies will focus on comparing the results achieved with
that of the application of different fatigue criteria.

In general, most of the studied configurations (geometry + material) show a fkorr value
(for the R = 0 STBF tests) above 0.9. A fixed valued of 0.9 is on the side of safety, but it could
lead to significant underestimations of the real material performances. Moreover, for some
specific combinations, fkorr was found to be below 0.9. This leads to an overestimation of
the material strength, and consequently, safety issues. For this reason, having a general-
purpose method capable of predicting the value of fkorr for a specific configuration is
fundamental to reliably assessing the material properties throughout STBF tests.
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Nomenclature

TBF Tooth Bending Fatigue
TBS Tooth Bending Strength
STBF Single Tooth Bending Fatigue
RG Running Gears
FE Finite Element
mn Normal module
αn Normal pressure angle
z Number of teeth
b Face width
x Profile shift coefficient
h∗f P Dedendum coefficient
ρ∗f P Root radius factor
h∗aP Addendum coefficient
w Wildhaber
αFen Relative angle between the force and the loaded tooth axis
R Load ratio
OPSC Outer Point of Single pair tooth Contact
MCC Minimum Circumscribed Circle
σF Maximum tensile stress
σFP Permissible bending stress
σFlim Material strength
σFlimSTBF Material strength calculated through Single Tooth Bending Fatigue tests
σFlimRG Material strength calculated through Running Gear tests
fkorr Correction coefficient
σ(t) Stress tensor history
Pn Stress exerting on a plane defined by a normal vector n
φn, θn Spherical coordinates of the plane defined by a normal vector n
σn Stress component normal to the plane defined by a normal vector n
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τn Stress component tangential to the plane defined by a normal vector n
σn,min Minimum value assumed by σn
σn,max Maximum value assumed by σn
Γn Curve determined by τn along the time
τn,a Alternating tangential stress on the plane defined by a normal vector n
τn,m Average tangential stress on the plane defined by a normal vector n
σc,max Maximum stress component normal to the critical plane
τc,a Alternating tangential stress on the critical plane
k Material constant related to the different response to bending and torsion
f Constant related to the fatigue limits of the material
σf Material fatigue limit at symmetrical alternating bending loading
τf Material fatigue limit at symmetrical alternating torsional loading
rτ/σ Ratio between τf and σf
σEq Equivalent stress
∆σEq% Percentage variation of the equivalent stress
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38. Vučković, K.; Galić, I.; Božić, Ž.; Glodež, S. Effect of friction in a single-tooth fatigue test. Int. J. Fatigue 2018, 114, 148–158.
[CrossRef]

39. Daniewicz, S.R.; Moore, D.H. Increasing the bending fatigue resistance of spur gear teeth using a presetting process. Int. J. Fatigue
1998, 20, 537–542. [CrossRef]

40. Bian, X.X.; Zhou, G.; Liwei; Tan, J.Z. Investigation of bending fatigue strength limit of alloy steel gear teeth. J. Mech. Eng. Sci.
2012, 226, 615–625. [CrossRef]

41. Zhang, J.; Zhang, Q.; Xu, Z.Z.; Shin, G.S.; Lyu, S. A study on the evaluation of bending fatigue strength for 20CrMoH gear. IJPEM
2013, 14, 1339–1343. [CrossRef]

42. Conrado, E.; Gorla, C.; Davoli, P.; Boniardi, M. A comparison of bending fatigue strength of carburized and nitrided gears for
industrial applications. Eng. Fail. Anal. 2017, 78, 41–54. [CrossRef]
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