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Abstract: Fatigue of materials, like alloys, is basically fatigue-crack growth in small cracks nucleating
and growing from micro-structural features, such as inclusions and voids, or at micro-machining
marks, and large cracks growing to failure. Thus, the traditional fatigue-crack nucleation stage (Ni)
is basically the growth in microcracks (initial flaw sizes of 1 to 30 µm growing to about 250 µm) in
metal alloys. Fatigue and crack-growth tests were conducted on a 9310 steel under laboratory air
and room temperature conditions. Large-crack-growth-rate data were obtained from compact, C(T),
specimens over a wide range in rates from threshold to fracture for load ratios (R) of 0.1 to 0.95. New
test procedures based on compression pre-cracking were used in the near-threshold regime because
the current ASTM test method (load shedding) has been shown to cause load-history effects with
elevated thresholds and slower rates than steady-state behavior under constant-amplitude loading.
High load-ratio (R) data were used to approximate small-crack-growth-rate behavior. A crack-closure
model, FASTRAN, was used to develop the baseline crack-growth-rate curve. Fatigue tests were
conducted on single-edge-notch-bend, SEN(B), specimens under both constant-amplitude and a
Cold-Turbistan+ spectrum loading. Under spectrum loading, the model used a “Rainflow-on-the-
Fly” subroutine to account for crack-growth damage. Test results were compared to fatigue-life
calculations made under constant-amplitude loading to establish the initial microstructural flaw
size and predictions made under spectrum loading from the FASTRAN code using the same micro-
structural, semi-circular, surface-flaw size (6-µm). Thus, the model is a unified fatigue approach, from
crack nucleation (small-crack growth) and large-crack growth to failure using fracture mechanics
principles. The model was validated for both fatigue and crack-growth predictions. In general,
predictions agreed well with the test data.
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This article is dedicated to Dr. Wolf Elber and his remarkable achievements.
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On 12 January 2019, Wolf took off on his final flight. His passion was to soar in
his glider over the Blue Ridge Mountains in southwest Virginia, USA. With his passing,
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the fatigue and fracture mechanics community lost a great pioneer. Dr. Elber had a
distinguished career at the NASA Langley Research Center, and later as head of the U.S.
Army Research Laboratory at Langley. His professional accolades are immortalized by his
discovery of the “plasticity induced crack closure” phenomenon [1,2]. Thank you, Wolf,
for your friendship and brilliant mind over the years. We will greatly miss you.

Fatigue of metallic materials is divided into several phases: crack nucleation, small-
and large-crack growth, and fracture [3]. Crack nucleation is controlled by local stress and
strain concentrations and is associated with cyclic slip-band formation from dislocation
movement leading to intrusions and extrusions [4,5]. Although cyclic slip may be necessary
in pure metals, the presence of inclusions, voids, or machining marks in metal alloys greatly
affects the crack-nucleation process. (Herein, small-crack growth includes microstructurally
and physically small cracks.) The small-crack growth regime is the growth in cracks from
inclusions, voids, or machining marks, ranging from 1 to 30 µm in depth [6]. Schijve [7] has
shown that, for polished surfaces of pure metals and commercial alloys, the formation of a
small crack of about 100 µm in size can consume 60 to 80% of the fatigue life. This is the
reason that there is so much interest in the growth behavior of small cracks. Large-crack
growth and failure are regions where fracture-mechanics parameters have been successful
in correlating and predicting fatigue-crack growth and fracture. In the past three decades,
fracture-mechanics concepts have also been successful in predicting the growth in small
cracks under constant-amplitude and spectrum-loading using crack-closure theory [6].

The engineered metallic materials are inhomogeneous and anisotropic when viewed
on a microscopic scale. For example, these materials are composed of an aggregate of
small grains, inclusion particles or voids. These inclusion particles are of different chemical
compositions to the bulk material, such as silicate or alumina inclusions in steels. Because
of their nonuniform microstructure, local stresses may be concentrated at these locations
and may cause the initiation of fatigue cracks. Crack initiation is primarily a surface
phenomenon because: (1) local stresses are usually highest at the surface, (2) an inclusion
particle of the same size has a higher stress concentration at the surface than in the interior,
(3) the surface is subjected to adverse environmental conditions, and (4) the surfaces
are susceptible to inadvertent damage. The growth in “naturally” initiated cracks in
commercial aluminum alloys has been investigated by Bowles and Schijve [8], Morris
et al. [9] and Kung and Fine [10]. In some cases, small cracks initiated at inclusions and
the Stage I period of crack growth were eliminated [6]. This tendency toward inclusion
initiation rather than slip-band (Stage I) cracking was found to depend on stress level and
inclusion content [10]. Similarly, defects (such as tool marks, scratches and burrs) from
manufacturing and service-induced events will also promote initiation and Stage II crack
growth [6].

During the last three decades, test and analysis programs on “small-crack” behavior
have shown that majority of the fatigue life is consumed by small-crack growth from a
micro-structural feature for a variety of metal alloys [11–14]. The smallest measured flaw
sizes using plastic-replica methods ranged from 10 to 30 µm for aluminum alloys (2024-T3;
7075-T6), aluminum–lithium alloy (2090-T8ED41) and 4340 steel; and the crack-propagation
life was about 90 percent of the fatigue life for constant-amplitude and spectrum loading.
Thus, a large portion of nucleation life (Ni) in classical fatigue is small-crack growth,
from a micro-structural feature to about 250 µm for these materials. The exception was
the Ti-6Al-4V alloy [13], where the smallest measured flaw sizes were about 20 µm and
crack-growth lives were about 50% of the fatigue life. However, small-crack analyses of
similar Ti-6Al-4V specimens machined from two engine discs [15,16] showed that the initial
flaw sizes from 2 to 20 µm predicted the scatter band in fatigue life on open-hole fatigue
tests quite well. Therefore, the crack-growth approach provides a unified theory for the
determination of fatigue lives for these materials. However, for pure- and single-crystal
materials, nucleation cycles are required to transport dislocations at critical locations,
develop slip bands, and cracks.
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Fatigue-crack growth under variable-amplitude and spectrum loading is composed
of complex crack-shielding mechanisms (plasticity, roughness and fretting debris) and
damage accumulation due to cyclic plastic deformations around a crack front in metallic
materials. Typically, “rainflow” methods [17] are applied to variable-amplitude loading to
develop a load sequence that is used to compute damage accumulation and life because
damage relations are, generally, a non-linear function of the crack-driving parameters.
However, crack-tip damage is only a function of the current loading and load history
(material memory). Loading in the future has no bearing on the “current” damage. The
life-prediction code, FASTRAN [18], has a “rainflow-on-the-fly” methodology [19] to
compute damage as the cyclic load history is applied, and there was no need to reorder the
spectra. Herein, several variable-amplitude loading sequences were developed to test and
to validate the “rainflow-on-the-fly” subroutine.

The paper presents the results of large-crack-growth-rate tests conducted on compact,
C(T), specimens made of 9310 steel [20] over a wide range of constant-amplitude loading
to establish the baseline crack-growth-rate curve for fatigue and crack-growth analyses.
Compression pre-cracking methods [21–26] were used to generate test data in the near-
threshold regime because the ASTM E-647 test method [27,28] using the load-shedding
procedure was shown to cause load-history effects and slower crack-growth rates than
steady-state behavior [25,26]. Both compression pre-cracking constant-amplitude (CPCA)
and load-reduction (CPLR) methods were used. A crack-closure analysis was used to
collapse the rate data from C(T) specimens into a narrow band over many orders of
magnitude in rates using a plane-strain constraint factor for low rates and modeled a
constraint-loss regime to plane-stress behavior at high rates. For steels, small- and large-
crack data (without load-history effects) tend to agree well [29]. Thus, the high-R large-crack
data in the near-threshold regime is a good estimate for small-crack behavior, as proposed
by Herman et al. [30]. A Two-Parameter Fracture Criterion [31] was used to characterize
the fracture behavior. Fatigue tests were conducted on 9310 steel single-edge-notch-bend,
SEN(B), specimens [32] under both constant-amplitude and a modified Cold-Turbistan [33]
spectrum loading. The test results were compared to the life calculations or predictions
made using the FASTRAN code.

2. Material and Specimen Configurations

The Boeing Company (Seattle, WA, USA) provided a 9310 steel rod (150 mm diameter
by 950 mm length) to Mississippi State University. C(T), SEN(B), and tensile specimens
(B = 6.35 mm) were machined in the longitudinal direction (cracks perpendicular to longi-
tudinal direction) and heat-treated by special procedures [20]. The yield stress, σys, was
980 MPa, ultimate tensile strength, σu, was 1250 MPa, and modulus of elasticity was
E = 208.6 GPa. Figure 1 shows C(T) and SEN(B) specimens with back-face strain (BFS)
gauges used to monitor crack growth in the C(T) specimens and crack nucleation and
growth in the SEN(B) specimen.
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3. “Rainflow-on-the-Fly” Methodology

Since the Paris–Elber non-linear power law is used to compute crack-growth damage
in the FASTRAN life-prediction code [18], a “rainflow-on-the-fly” subroutine was devel-
oped to compute crack growth under variable-amplitude loading. Damage calculations are
illustrated in Figure 2 and they are based on calculations of stress amplitudes above the
crack-opening stress, So. Damage only occurs during the loading amplitude but unloading
may change crack-tip deformations and affect the subsequent damage during the next
loading amplitude. Crack-opening stress, So, is calculated at the minimum stress, S1, and
∆c1 is a function of ∆Seff = S2 − So. The ∆Seff value is used to compute ∆Keff and then the
crack-growth rate (dc/dN) per loading amplitude, which gives ∆c1. The next unloading
to S3 did not close the crack, and the next maximum loading was to S4. Here, damage
is ∆c2 = f(S4 − So) − ∆c1 + f(S2 − S3), which captures the larger damage due to S4. The
total damage is ∆c = ∆c1 + ∆c2. Again, each stress range is used to calculate an effective
stress-intensity factor and then the corresponding crack extension from the crack-growth-
rate relation. Application of minimum stress, S5, caused the crack surfaces to close, and
rainflow-on-the-fly logic was reset. Total damage, ∆c, captures the essence of rainflow logic
and applies damage in the proper sequence using a cycle-by-cycle calculation. (Note that a
cycle is defined as any minimum–maximum–minimum stress.)
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Figure 2. Damage calculations using crack-closure theory under variable-amplitude loading.

Herein, several specially designed spectra were developed to exercise the FASTRAN
code and calculations are shown for these spectra. Each spectrum had sequences of
stress ranges that would require “rainflow” logic to calculate the proper crack extension.
Comparisons are made between: (1) linear damage, (2) rainflow logic and (3) FASTRAN.
Linear damage is using only the stress range to calculate crack extension and ignoring
load interactions. Rainflow logic is a manual calculation of crack extension using the basic
rainflow concept principles to compute the proper crack extension. FASTRAN uses the
“rainflow-on-the-fly” subroutine to remember stress history and to compute the proper
damage as the crack-opening stress in FASTRAN was held constant, as specified, and the
crack-growth relation was a simple Paris–Elber relation as

dc/dN = 5× 10−10(∆Ke f f )
3 (1)

where ∆Ke f f = ∆Se f f
√

πc. The spectra were applied to an infinite plate under remote
uniform stress, S, with an initial crack half-length (ci) of 5 mm.

Spectrum A is a Christmas-Tree type loading sequence and is shown in Figure 3a
and was designed to severely test the Rainflow-on-the-Fly option in FASTRAN. Without
Rainflow analyses, the difference in crack-growth lives for the sequence would be several
orders-of-magnitude in error using linear damage [19]. One block of loading is defined
from point A to B, and the sequence was repeated until the final crack length was reached



Metals 2021, 11, 807 5 of 17

or the specimen failed. The analytical crack-closure model in FASTRAN was turned off by
intentionally setting the crack-opening stress, So, to a constant value of 50 MPa.
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Figure 3b shows crack-growth increments calculated for each loading amplitude. If
the crack-opening stress is greater than the minimum stress, Smin, then ∆Seff = Smax − So.
If Smin is greater than the crack-opening stress, then ∆Seff = Smax − Smin. These equations
apply only for “linear damage” (lines with a solid blue symbol) and for loadings that do
not require Rainflow methods. Diamond symbols show what a Rainflow method would
give in crack extension. (Note that a cycle is defined as any minimum to maximum to
minimum loading, and crack-growth damage only occurs during loading. The unloading
part of the cycle causes reverse plastic deformations that may affect damage during the
next load application.) FASTRAN with the Rainflow subroutine gives the solid (black)
symbols that exactly match what the Rainflow method predicted.

The second spectrum (B) was designed after some of the European standard spectra
with various stress amplitudes that have a number of constant-amplitude cycles, and
the spectrum had a number of cycles that go from maximum–minimum–maximum or
minimum–maximum–minimum loading. Some cycles had a Christmas-Tree type loading
that was interrupted with other stress amplitudes. Again, this spectrum does require
rainflow logic to calculate the correct damage.

The first case (B1) had a constant crack-opening stress (50 MPa) for the complete
spectrum, as shown in Figure 4a. The calculated crack extension using linear damage,
rainflow and FASTRAN are shown in Figure 4b. Out of the 57 cycles, 18 cycles required
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rainflow logic to compute the correct crack extension. FASTRAN agreed with the Rainflow
predicted crack extensions.
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In the FASTRAN code, crack-opening stresses will change as a function of stress
history. Thus, to simulate a changing crack-opening stress, the second case (B2) had a
constant crack-opening stress of 50 MPa for the first 22 cycles and then So = 90 MPa for
the remainder of loading, as shown in Figure 5a. Of course, the first 22 cycles have the
same behavior as Case B1, but now cycles 23 to 34 do not require rainflow logic (Smin < So)
and crack extensions were computed directly from the Paris–Elber relation (Equation (1)).
These crack-extension comparisons are shown in Figure 5b. However, the crack extensions
during cycles 35 to 37 were much less than in Case B1 due to the higher crack-opening
stress and lower ∆Keff values.

Figure 6 shows the calculated crack-opening stresses from FASTRAN (α = 2) using the
full crack-closure model for load sequence B using the cycle-by-cycle option. The results
for Block 1 are shown as the dashed (red) lines. The crack-opening stresses are calculated
at a minimum applied stress and remain constant until the crack closes again at the next
minimum applied stress. In many cycles, the crack-tip region was open (Smin > So) during
the applied stress amplitudes. The model starts with a “zero” crack-opening stress and the
opening stresses increase as the crack grows and leaves plastically deformed material in
the wake of the crack tip.
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a factor of 8 larger than that during the 400th block because of the higher crack-opening
stress. Most of the damage from cycles 1 to 5 was from the loading on cycle 1.

4. Fatigue-Crack-Growth and Fracture Tests on 9310 Steel

Compact, C(T), specimens were used to generate the ∆K against rate (dc/dN) data on
the 9310 steel at room temperature and 20 Hertz [20] over a wide range in stress ratios
(R = 0.1 to 0.95). These ∆K-rate data are shown in Figure 7. Tests were conducted from near
threshold to fracture. A BFS gauge was used to monitor crack growth and to measure crack-
opening loads using the compliance-offset method. In the low-rate regime, compression
pre-cracking constant amplitude (CPCA) and load reduction (CPLR) methods were used
to generate the ∆K-rate data. In general, the test frequency was dropped to about 5 to
8 Hertz as the cracks were grown to failure. The data show the normal spread with the R
value but shows more spread in the threshold and fracture regions. In the fracture region,
the spread is due to the fracture being controlled by the maximum stress-intensity factor
and would not collapse on a ∆K-rate plot. For example, the stress-intensity-factor range
at failure, ∆Kc = KIe (1 − R), where KIe is the elastic fracture toughness. Thus, high R tests
would fracture at a lower ∆Kc value than low R tests. The spread in the threshold region
is suspected to be due to the load-history effects caused by the load-reduction procedure
used in the CPLR method. Load-reduction tests, as specified in ASTM E-647 [28], have
been shown [25,26] to induce more spread in ∆K in the threshold region than the mid-rate
region. The spread has been associated with a rise in the crack-closure behavior during
load-reduction tests [34,35].
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Figure 7. Stress-intensity-factor range against rate for 9310 steel over range in stress ratio (R).

To evaluate the fracture toughness of the material, only the fatigue-crack-growth
tests were available. In most tests, the cracks in the C(T) specimens were grown to failure
under cyclic loading. Here, the final recorded crack length and the maximum fatigue load
were used to calculate KIe (elastic stress-intensity factor at failure), and these results are
shown in Figure 8, as solid (blue) circular symbols. Most tests failed at large ci/w ratios
(>0.7). For comparison, similar test results conducted on a 4340 steel [36] are shown as
open circular symbols. Here, one 4340 steel specimen was fatigue cracked to a lower
crack-length-to-width ratio and statically pulled to failure (solid square symbol).
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The solid curve in Figure 8 was based on the Two-Parameter Fracture Criterion (TPFC).
A fracture criterion was derived [37] that accounted for the elastic-plastic behavior of a
cracked material based on notch-strength analysis. The criterion was based on expressing
the elastic stress-intensity factor at failure in terms of net-section stress as

KIe = Pf /
√

BW F = Sn
√

πc Fn (2)

where Fn is the usual boundary-correction factor based on net-section stress. Equations for
Sn and Fn are given in [37] for the C(T) specimen. The fracture criterion is

KF = KIe/Φ (3)

Φ = 1−m Sn/Su f or Sn ≤ σys
(4)

Φ =
(
σys/Sn

)
(1−m Sn/Su) f or Sn > σys

(5)
where KF and m are the two material fracture parameters. The stress Su (ultimate value of
elastic net-section stress) was computed from the load required to produce a fully plastic
region or hinge on the net section based on the ultimate tensile strength, σu. For the
compact specimen, Su is a function of load eccentricity and is 1.62σu for c/w = 0.5 [37]. The
fracture parameters, KF and m, are assumed to be constant in the same sense as the ultimate
tensile strength; that is, the parameters may vary with material thickness, state of stress,
temperature, and rate of loading. If m is equal to zero in Equations (3) and (4), then KF is
equal to the elastic stress-intensity factor at failure, and the equation represents the behavior
of low-toughness (brittle) materials under plane-strain behavior. If m is equal to unity, the
equation represents fracture behavior of high-toughness materials (plane-stress fracture).

For given fracture-toughness parameters, KF, and m, the elastic stress-intensity factor
at failure is

KIe = KF/
(
1 + 2mγ/σys

)
f or Sn ≤ σys

(6)

KIe =

{√
(mγ)2 + 2γSu −mγ

}√
πc Fn f or Su > Sn ≤ σys

(7)
KIe = Su

√
πc Fn f or Sn = Su

(8)
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where γ = KFσys/
[
2 Su
√

πc Fn
]
. In 1973, a relationship between KF/E and m [37] was

found for many materials and crack configurations. Herein, the relationship was used to
help select an m value. As the 9310 steel exhibited a high toughness, an m-value of 0.5
was selected. The corresponding KF value was 500 MPa-

√
m to fit the 9310 steel fracture

data. Solid curve in Figure 8 was calculated from the TPFC for the 76.2 mm wide compact
specimens. These calculations show how the initial crack length affects the elastic fracture
toughness. In addition, the variation in specimen width (not shown) would greatly affect
the elastic fracture toughness, in that larger width specimens produce large KIe values.

5. Fatigue-Crack-Growth and Crack-Closure Analyses

Crack-opening-stress equations for constant-amplitude loading were developed from
an early analytical crack-closure model (So) calculations [38]. As the number of elements
within the plastic-zone region in the model was increased to 20 [18] and the crack-growth
increment was modelled on a cycle-by-cyclic basis, new So equations were made for a
single crack in a very wide plate under uniform remote applied stress, S. The new set of
equations was developed to fit the results from the revised closure model and, again, gave
So as a function of stress ratio (R), maximum stress level (Smax/σo) and the constraint factor
(α). The new equations are

So/Smax = A0 + A1R+ A2R2 + A3R3 f or R ≥ 0
(9)

So/Smax = A0 + A1R f or R < 0
(10)

where R = Smin/Smax, Smax < 0.8 σo, and Smin > −σo. The Ai coefficients are functions of α
and Smax/σo and are given by

A0 =
(

0.9453− 0.514 α + 0.1355 α2 − 0.0133 α3
)
[cos(β)](0.8 α−0.1) (11)

β = πSmax/(2ασo)

A1

(
= 0.5719− 0.1726 α + 0.019 α2

)
Smax/σo (12)

A2 = 0.975− A0 − A1 − A3 (13)

A3 = 2A0 + A1 − 1 (14)

A crack-closure analysis was then performed on the fatigue-crack growth (∆K-rate)
data from C(T) specimens in Figure 7 to determine the ∆Keff-rate relation. The K-analogy
concept [18] was used to calculate the crack-opening stresses (or loads) for C(T) specimens
from the above equations. The ∆Keff-rate data are shown in Figure 9. Selection of the lower
constraint factor, 2.5, was found to reasonably collapse the ∆K-rate data into an almost
unique relation.

In the threshold region, the lower R tests exhibited a rise in crack-opening loads
as the ∆K level was reduced in a load-reduction test. Even the CPLR method showed
a load-history effect, but not as much as the current ASTM procedure [28]. The upper
constraint factor, 1.15, and constraint-loss range was selected to help fit spectrum crack-
growth tests [20]. The lower vertical dashed line at (∆Keff)th is the estimated threshold for
the steel [39], and the upper vertical dashed line at (∆Keff)T is the location of constraint loss
from plane-strain to plane-stress behavior [40]. The solid (blue) lines with circular (yellow)
symbols shows the baseline crack-growth-rate curve for FASTRAN. Fatigue-crack-growth,
fracture and tensile properties for the 6.35-mm thick 9310 steel are given in Table 1.



Metals 2021, 11, 807 11 of 17Metals 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 9. Effective stress-intensity factor range against rate for 9310 steel C(T) specimens. 

Table 1. Effective stress-intensity factor range against rate, fracture and tensile properties for 9310 
steel (B = 6.35 mm). 

ΔKeff, (MPa-m1/2) da/dN and dc/dN (m/cycle) Crack-Growth, Fracture and 
Tensile Properties 

2.30 1.0 × 10−11 ΔKo = 0  q = 6 
2.45 1.5 × 10−10 α1 = 2.5 at 1.0 × 10−7 m/cycle 
2.80 4.0 × 10−10 α2 = 1.15 at 1.0 × 10−5 m/cycle 
3.50 1.0 × 10−9 KF = 500 MPa-m1/2 
4.40 2.0 × 10−9 m = 0.5 
9.50 1.0 × 10−8 σys = 980 MPa 
20.0 1.0 × 10−7 σu = 1250 MPa 
50.0 8.0 × 10−7 σo = 1115 MPa 

120.0 6.0 × 10−6 E = 208.6 GPa 

6. Fatigue Behavior of Notched Specimens 
For most fatigue-crack-growth analyses, linear-elastic analyses have been found to 

be adequate. The linear-elastic effective stress-intensity factor range developed by Elber 
[2] is given by Δ𝐾 = (𝑆 − 𝑆 ) √𝜋𝑐 𝐹(𝑐/𝑤) (14)

where Smax is maximum stress, So is crack-opening stress, and F(c/w) is the boundary cor-
rection factor. However, for high-stress intensity factors and low-cycle fatigue conditions, 
linear-elastic analyses are inadequate and nonlinear crack-growth parameters are needed. 
To account for plasticity, a portion of the Dugdale [41] cyclic-plastic-zone size (ω) has been 
added to the crack length, c. The cyclic-plastic-zone-corrected effective stress-intensity fac-
tor [42,43] is (Δ𝐾 ) = (𝑆 − 𝑆 ) √𝜋𝑑 𝐹(𝑑/𝑤) (15)

where d = c + ω/4 and F(d/w) is the cyclic-plastic-zone-corrected boundary-correction fac-
tor. The cyclic plastic zone is given by 𝜛 = (1 − 𝑅 )  𝜌/4 (16)

where Reff = So/Smax and plastic-zone size (ρ) for a crack in a large plate [41] is 

Figure 9. Effective stress-intensity factor range against rate for 9310 steel C(T) specimens.

Table 1. Effective stress-intensity factor range against rate, fracture and tensile properties for 9310 steel
(B = 6.35 mm).

∆Keff, (MPa-m1/2) da/dN and dc/dN (m/cycle) Crack-Growth, Fracture and
Tensile Properties

2.30 1.0 × 10−11 ∆Ko = 0 q = 6
2.45 1.5 × 10−10 α1 = 2.5 at 1.0 × 10−7 m/cycle
2.80 4.0 × 10−10 α2 = 1.15 at 1.0 × 10−5 m/cycle
3.50 1.0 × 10−9 KF = 500 MPa-m1/2

4.40 2.0 × 10−9 m = 0.5
9.50 1.0 × 10−8 σys = 980 MPa
20.0 1.0 × 10−7 σu = 1250 MPa
50.0 8.0 × 10−7 σo = 1115 MPa
120.0 6.0 × 10−6 E = 208.6 GPa

6. Fatigue Behavior of Notched Specimens

For most fatigue-crack-growth analyses, linear-elastic analyses have been found to be
adequate. The linear-elastic effective stress-intensity factor range developed by Elber [2] is
given by

∆Ke f f = (Smax − So)
√

πc F(c/w) (15)

where Smax is maximum stress, So is crack-opening stress, and F(c/w) is the boundary cor-
rection factor. However, for high-stress intensity factors and low-cycle fatigue conditions,
linear-elastic analyses are inadequate and nonlinear crack-growth parameters are needed.
To account for plasticity, a portion of the Dugdale [41] cyclic-plastic-zone size (ω) has been
added to the crack length, c. The cyclic-plastic-zone-corrected effective stress-intensity
factor [42,43] is

(∆Kp)e f f = (Smax − So)
√

πd F(d/w) (16)

where d = c + ω/4 and F(d/w) is the cyclic-plastic-zone-corrected boundary-correction
factor. The cyclic plastic zone is given by

v = (1− Re f f )
2 ρ/4 (17)

where Reff = So/Smax and plastic-zone size (ρ) for a crack in a large plate [41] is

ρ = c {sec[πSmax/(2ασo)]− 1} (18)
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where flow stress, σo, is multiplied by the constraint factor (α). Herein, the cyclic-plastic-
zone corrected effective stress-intensity factor range (Equation (17)) will be used in the
fatigue-life predictions.

The FASTRAN life-prediction code [18] was used to model crack growth from an
initial micro-structural flaw size to failure and the crack-growth relation used is

dc/dN = C1i[(∆Kp)e f f ]
C2i
{

1− [∆Ko/(∆Kp)e f f ]
p
}

/[1− (Kmax/KIe)
q] (19)

where C1i and C2i are coefficient and exponent for each linear segment (i = 1 to n), respec-
tively. The (∆Kp)eff is cyclic-plastic-zone corrected effective stress-intensity factor, ∆Ko is
effective threshold, Kmax is maximum stress-intensity factor, KIe is elastic fracture toughness
(which is, generally, a function of crack length, specimen width, and specimen type), p
and q are constants selected to fit test data in either the threshold or fracture regimes,
respectively. Herein, no threshold was modeled and ∆Ko was set equal to zero; thus, p
was not needed. Near-threshold behavior was modeled with the multi-linear equation
(independent of R). Fracture was modeled using the TPFC (KF and m) [31,37].

Fatigue tests were conducted on SEN(B) specimens under: (1) constant-amplitude
loading (R = 0.1) and (2) Cold-Turbistan+ loading. The semi-circular edge notch was chem-
ically polished. The Cold-Turbistan+ spectrum was obtained from [33], adding a constant
load to make the overall R = 0.1 (compression loads not allowed on SEN(B) specimens).
Figure 10 shows the constant-amplitude tests plotting σmax (notch root elastic stress) against
cycles to failure (Nf). The square symbols are single-edge-notch tension, SEN(T), speci-
mens [44], whereas the solid circular symbols are from the current study. A trial-and-error
procedure was used to find the 6-µm semi-circular surface flaw at the center of the notch
to fit the fatigue data. Herein, the 6-µm flaw is considered an equivalent initial flaw size
(EIFS) to fit the S-N behavior under constant-amplitude loading. The solid curve shows
calculated lives that used available crack-growth-rate data (rates ≥ 4 × 10−11 m/cycle) for
σmax ≥ 980 MPa. The dashed (blue) curve used the estimated ∆Keff-rate relation for rates
below 4 × 10−11 m/cycle (see Figure 9). On Figure 10, the horizontal dashed (black) line
is where ∆Keff = (∆Keff)th = 2.3 MPa

√
m. Upper and lower bound calculations were made

with 4- and 10-µm, respectively.
Figure 11 shows the test data (solid circular symbols) under the Cold-Turbistan+

spectrum. The open symbols are the retest of the two runout tests, but at higher applied
notch elastic stress. FASTRAN predictions using the same 6-µm surface flaw fell at the
lower bound of the test data using the baseline curve from Figure 9 (Table 1). If a threshold
of 2.3 MPa

√
m (no crack growth) was selected, then the cycles to failure were near the

upper bound of the test data. Selecting a ∆Keff-rate relation between the vertical dashed
line and the baseline (blue) curve below 10−10 m/cycle, would have given a more accurate
predicted fatigue strength. These results indicate that the selection of the baseline curve
in Figure 9 for rates below 10−10 m/cycle is very important. In addition, in the fatigue
endurance-limit region, there could also be some build-up of fretting oxide debris on the
small-crack surfaces, which could increase the fatigue life by elevating the crack-opening
loads. Further study is required to include fretting debris on the crack surfaces in the
FASTRAN model.

To study the crack-closure behavior and life predictions under the Cold-Turbistan+
spectrum, the predicted crack-opening-stress ratios are shown in Figure 12 for a small
portion of the spectrum (first 80 cycles). Here, the FASTRAN code used the full crack-
closure model with a constraint factor of 2.5. Calculated crack-opening stresses began at
the minimum stress in the spectrum and the crack-opening stress increases as the crack
grows and leaves plastically deformed material in the wake of the crack tip. Calculations
were also made at Block 35 (about half-life) and show that the crack-opening stresses
are, generally, higher than Block 1. These results are somewhat surprising, in that the
predicted crack-opening stresses were generally at the minimum applied stress values
for the larger cyclic amplitudes. This would imply that the loading cycle would be fully
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effective in growing the crack. Thus, the Cold-Turbistan+ spectrum would be classified as
an “accelerating” spectra.
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These results are important, in that Rainflow analyses for fatigue-crack growth are a
function of load history. Fortunately, the current Rainflow analyses, used in the literature,
would be conservative without considering crack-closure load-history effects. However,
the accuracy of fatigue-crack-growth calculations under spectrum loading would be greatly
improved with “Rainflow-on-the-Fly” methodology.

7. Concluding Remarks

Fatigue of materials, like alloys, is basically the fatigue-crack growth in small cracks
nucleating at micro-structural features, such as inclusions and voids, or at micro-machining
marks, and large cracks growing to failure. Thus, the traditional fatigue-crack nucleation
stage (Ni) is basically the growth in microcracks (initial flaw sizes of 1 to 30 µm growing
to about 250 µm) in a variety of metal alloys. Large-crack growth and failure are regions
where fracture-mechanic parameters were successful in correlating and predicting fatigue-
crack growth and fracture. In the last three decades, fracture-mechanics concepts have also
been successful in predicting “fatigue” (growth of small cracks) under constant-amplitude
and spectrum loading using crack-closure theory. Therefore, the crack-growth approach
provides a unified theory for the determination of fatigue lives for metal alloys. However,
for pure- and single-crystal materials, there are nucleation cycles required to transport
dislocations at critical locations, develop slip bands, and cracks.

Tests were conducted on compact, C(T), and single-edge-notch-bend, SEN(B), spec-
imens made of a 9310 steel (B = 6.35 mm) under laboratory air and room temperature
conditions. The C(T) crack-growth specimens were tested over a wide range in stress ratios
(R = 0.1 to 0.95) and crack-growth rates from threshold to fracture. A crack-closure model
(FASTRAN) was used to collapse the ∆K-rate data onto an almost unique ∆Keff-rate relation
over more than four orders-of-magnitude in rates.

Fatigue tests were conducted on the SEN(B) specimens under constant-amplitude
loading (R = 0.1) and a Cold-Turbistan+ spectrum loading. The ∆Keff-rate crack-growth
relation was used to calculate or predict fatigue behavior on the SEN(B) specimens using
the crack-closure model and small-crack theory. The constant-amplitude fatigue tests
were used to determine an initial semi-circular surface flaw size (6-µm) to fit the test data.
The 6-µm flaw is considered an equivalent initial flaw size (EIFS). Using the same initial
flaw size enabled the FASTRAN code to predict the fatigue behavior under the Cold-
Turbistan+ spectrum loading quite well. Rainflow-on-the-Fly methodology was validated
on a complex spectrum loading and indicated that the calculated damage was a function of
load history and that the usual Rainflow methods would not capture correct crack-growth
damage, unless the method was updated during crack-growth history.
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Nomenclature

a crack depth in thickness direction, mm
ai initial crack depth in thickness direction, mm
B specimen thickness, mm
c crack length in width direction, mm
ci initial crack length in width direction, mm
D single-edge-notch diameter, mm
da/dN crack-growth rate in depth direction, m/cycle
dc/dN crack-growth rate in width direction, m/cycle
E modulus of elasticity, GPa
F boundary-correction factor
Fn boundary-correction factor based on net-section stress
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K stress-intensity factor, MPa
√

m
KF elastic-plastic fracture toughness, MPa

√
m

KIe elastic fracture toughness, MPa
√

m
Kmax maximum stress-intensity factor, MPa

√
m

KT elastic stress-concentration factor
m fracture toughness parameter
N number of cycles
Nf number of cycles to failure
P applied load, kN
Pf failure load, kN
Pmax maximum applied load, kN
Pmin minimum applied load, kN
R load ratio (Pmin/Pmax)
S applied remote stress, MPa
Smax maximum applied stress, MPa
Smin minimum applied stress, MPa
So crack-opening stress, MPa
w specimen width, mm
α tensile constraint factor
∆K stress-intensity factor range, MPa

√
m

∆Kc stress-intensity-factor range at failure, MPa
√

m
∆Keff effective stress-intensity factor range, MPa

√
m

(∆Keff)th effective stress-intensity factor range threshold, MPa
√

m
(∆Keff)T effective stress-intensity factor range transition, MPa

√
m

∆Ko effective threshold as a function of R, MPa
√

m
ρ plastic-zone size, mm
σo flow stress (average of σys and σu), MPa
σys yield stress (0.2 percent offset), MPa
σu ultimate tensile strength, MPa
ω cyclic plastic-zone size, mm

Abbreviations

BFS back-face strain
CPCA compression pre-cracking constant amplitude
CPLR compression pre-cracking load reduction
C(T) compact (tension) specimen
SEN(B) single-edge-notch (bend) specimen
SEN(T) single-edge-notch (tension) specimen
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