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Abstract: Cast refractory alloys Mo–Nb–Si–B were prepared by centrifugal self-propagating high-
temperature synthesis (SHS) from metallothermic mixtures containing MoO3, Nb2O5, Al, Si, and B
powders, and additive of Al2O3 as a temperature-moderating and chemically inert agent. Variation
in the centrifugal acceleration and amount of the additive affected the composition and structure of
cast Mo–Nb–Si–B alloys. In a wide range of values, the combustion temperature was found to exceed
3000 K, and the combustion products were obtained as two-layer ingots of target Mo–Nb–Si–B alloy
(lower) and Al2O3 slag (upper).

Keywords: combustion; self-propagating high-temperature synthesis (SHS); Mo-based cast alloy

1. Introduction

Mo–Si alloys have high resistance to oxidation in air at temperatures of 1000–1650 ◦C;
however, at the intermediate temperatures of 600–800 ◦C, they are prone to catastrophic
oxidation [1,2]. The addition of B makes it possible to form a dense borosilicate glass that
protects ceramics against oxidation. Mo–Si–B alloys prepared by heating and subsequent
cooling were shown in [3] to represent Mo-based solid solution with Mo3Si and/or Mo5SiB2
inclusions. These alloys possess a far greater oxidation resistance than previously known
molybdenum ones, but they are not as good as Mo5Si3–Mo3Si–Mo5SiB2 alloys [4], and
yet they contain a plastic α-Mo phase. As mentioned in [5], varying the volume fraction
and morphology of the α-Mo phase in these Mo–Mo3Si–Mo5SiB2 intermetallics allows
it to achieve high values of fracture toughness and creep strength. Additional doping
with Nb strengthens the molybdenum matrix but leads to no changes in the structural
composition [6,7].

Mo–Si–B or Mo–Nb–Si–B alloys manufactured by the powder metallurgy method
exhibit high heat resistance and high-temperature strength, thereby having the potential
for turbo-engine applications. Because of the high melting points of Mo–Si-based alloys,
multistage methods of powder metallurgy are favorable over melting ones. One of them
includes the following stages: (1) mechanical activation in a vertical attritor, for 10 h, to
completely dissolve Nb, Si, and B in the Mo matrix; (2) sintering at 1450 ◦C, and (3) hot
isostatic pressing (HIP) at 1500 ◦C and under a pressure of 200 MPA [8]. An alternative route
is the cost-effective, productive, and environment-friendly centrifugal self-propagating
high-temperature synthesis (SHS) process, which provides the synthesis of Mo–Nb–Si–B
alloy from a mixture consisting of a thermite composition MoO3/Nb2O5/Al/Si/B and an
elemental composition Mo/Nb/Si/B, such as a temperature-moderating additive [9]. In
this work, we added Al2O3 instead of the costly and scarce Mo and Nb.

Thus, this work aimed at the preparation of Mo–Mo3Si–Mo5SiB2 alloy by centrifu-
gal SHS of MoO3–Nb2O5–Al–Si–B powder mixtures containing Al2O3 as a temperature-
moderating agent with special emphasis on optimizing process conditions.
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2. Thermodynamic Calculation

Table 1 shows the composition of the green mixture and nominal weight percentage
of elements (Mo, Si, B, and Nb) in a combustion product.

Table 1. Composition of the green mixture and nominal weight percentage of elements in a combus-
tion product (wt %).

Mo Si Nb B MoO3 Nb2O5 Al

Green mixture – 1.5 – 0.5 68.9 2.4 26.7

Combustion product 92.5 3.0 3.4 1.0 – – –

Thermodynamic calculation (Figure 1a, where P is mass fraction of phases in combus-
tion products), carried out using the software package TERMO 2.0, ISMAN, Chernogolovka,
Russia [10], showed that the combustion of MoO3/Nb2O5/Al/Si/B mixture occurs at high
temperatures in the range of 2225–3500 K, at which condensed combustion products—alloy
(Mo–Nb–Si–B) and slag (Al2O3)—are in a liquid phase state.
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Thermodynamic consideration predicts the formation of up to 10 wt % (P) of gaseous
Al2O, BO, B2O2, SiO2, NbO2, and so on (Figure 1a). The addition of aluminum oxide (α)
to green composition decreases the combustion temperature T and mass fraction P of gas
phase, as well as contributing to the appearance of B and Si in the combustion products
(Figure 1b, where k is the percentage of constituents in the metal phase).

3. Experimental

Green mixtures containing powders of MoO3, Nb2O5, Al, Si, and B in the amount of
40 g were ignited in a quartz tube (25 mm in diameter, 70 mm high) using a centrifugal
machine described in [11] at the centrifugal acceleration a = 1–400 g.

In our experiments, the burning velocity U, the material loss (η1) caused by sputtering,
and the yield of target metallic phase into ingot η2 were calculated using the following
relationships:

U = h/t (1)

η1 = [(m1 − m2)/m1] × 100% (2)

η2 = (mexp/mcal) × 100% (3)
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where h is the mixture height, t is the burning time, m1 is the mass of green mixture, m2 is
the mass of combustion product, and mexp and mcal are the experimental and calculated
mass of metallic ingot, respectively. mcal was worked out on the basis of chemical equation
with the complete alumothermal reduction of initial oxides and alloying elements (Si and
B) in the corresponding weighed portions.

The combustion products were characterized by scanning electron microscopy SEM
(Carl Zeiss Ultra Plus microscope, Carl Zeiss, Jena, Germany) and X-ray diffraction analysis
XRD (DRON-3M diffractometer, Cu-Kα radiation, Burevestnik, St. Petersburg, Russia).
Concentrations of Mo, Nb, Si, and Al in the final product were determined by spec-
trophotometry. The determination of boron was carried out by potentiometric titration of
mannitol-boric acid, while that of oxygen was performed by reductive melting in an inert
carrier gas flow. The Vickers hardness of the synthesized samples was measured using a
100 g load and a 15 s loading time (Instron 402MVD tester, Wilson Instruments, Norwood,
MA, USA).

4. Results

The experiments showed that the combustion of high-exothermic mixture is accom-
panied by the splashing of burning products. This was suppressed by the introduction of
Al2O3 (α) into the mixture and forces of artificial gravity. The mixtures were found to burn
within the range α = 0–50%. As α increased within the indicated range, material loss η1
significantly decreased, as seen in Figure 2. The cast product was formed for α = 0–40%. In
this case, the combustion products were prepared as two-layer ingots: Mo–Nb–Si–B target
alloy (lower) and Al2O3 slag (upper).
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As shown in Figure 3, the action of gravity forces makes it possible to increase the
product yield η2 from 80 to 90 wt %. An additional point to emphasize is that, as a/g
grows, the amount of pore space in the resultant cast Mo–Nb–Si–B material, according to
microstructural analysis, decreases. For a > 100 g, a pore-free structure is formed.

Figures 4 and 5 illustrate the influence of α and a/g on the percentage of constituents
(k) of cast Mo–Nb–Si–B material, respectively. For α = 10–40% and a = 40–400 g, EDS
analysis for Nb gives 2–2.5 wt %, which is lower than the calculated value. The measured
contents of Si and B show the values close to nominal ones (3–3.5 and 1 wt %, respectively).



Metals 2021, 11, 803 4 of 7

With increasing α and a/g, Al concentration is seen to decrease from 6 to 2 wt %. The
content of the main element (Mo) is within the range of 85–90 wt %.

Metals 2021, 11, 803 4 of 7 
 

 

 
Figure 3. The values of η1 and η2 vs. a/g (m1 = 40 g, α = 20 wt %). 

Figures 4 and 5 illustrate the influence of α and a/g on the percentage of constituents 
(k) of cast Mo–Nb–Si–B material, respectively. For α = 10–40% and a = 40–400 g, EDS 
analysis for Nb gives 2–2.5 wt %, which is lower than the calculated value. The measured 
contents of Si and B show the values close to nominal ones (3–3.5 and 1 wt %, respectively). 
With increasing α and a/g, Al concentration is seen to decrease from 6 to 2 wt %. The 
content of the main element (Mo) is within the range of 85–90 wt %. 

 
Figure 4. The percentage of constituents (k) in the resultant cast Mo–Nb–Si–B material as a 
function of α (m1 = 40 g, a = 40 g). 

  

7 14 21 28 35
0

1

2

3

4

5

6

7

8
k, %

 , %

Al

Si
O

Nb
B

8k,
 %

Figure 3. The values of η1 and η2 vs. a/g (m1 = 40 g, α = 20 wt %).

Metals 2021, 11, 803 4 of 7 
 

 

 
Figure 3. The values of η1 and η2 vs. a/g (m1 = 40 g, α = 20 wt %). 

Figures 4 and 5 illustrate the influence of α and a/g on the percentage of constituents 
(k) of cast Mo–Nb–Si–B material, respectively. For α = 10–40% and a = 40–400 g, EDS 
analysis for Nb gives 2–2.5 wt %, which is lower than the calculated value. The measured 
contents of Si and B show the values close to nominal ones (3–3.5 and 1 wt %, respectively). 
With increasing α and a/g, Al concentration is seen to decrease from 6 to 2 wt %. The 
content of the main element (Mo) is within the range of 85–90 wt %. 

 
Figure 4. The percentage of constituents (k) in the resultant cast Mo–Nb–Si–B material as a 
function of α (m1 = 40 g, a = 40 g). 

  

7 14 21 28 35
0

1

2

3

4

5

6

7

8
k, %

 , %

Al

Si
O

Nb
B

8k,
 %

Figure 4. The percentage of constituents (k) in the resultant cast Mo–Nb–Si–B material as a function
of α (m1 = 40 g, a = 40 g).

The XRD pattern of Mo–Nb–Si–B ingot collects the peaks belonging to the following
phases: (1) α-Mo, (2) Mo3Si, and (3) Mo5SiB2 (Figure 6a).

No other reacted phases were found. It is pertinent to note that XRD analysis shows
no peaks of Nb insofar as it was completely dissolved in the Mo matrix phase during
synthesis. A Mo/Si ratio in Mo3Si is 91.1/8.9 (wt %), while a Mo/Si/B ratio in Mo5SiB2
is 90.6/5.3/4/1. The slag is seen in Figure 6b to contain Mo in addition to conventional
phase (Al2O3). Optic metallography confirmed the presence of individual spherical Mo
particles in the oxide layer. Within the ranges α = 0–10% and α = 40–50%, there is a high
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Mo content that favors the formation of a metal–ceramic structure in the slag layer. Thus,
α = 10–40% was chosen as optimal.
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The SEM images presented in Figure 7 show a cast structure consisting of Mo solid
solution (marked in Figure 7b by 1) and two intermetallic phases, Mo3Si and Mo5SiB2
(2 and 3, respectively). A quantitative analysis by X-ray diffraction revealed that the main
phase is Mo3Si; its volume fraction approximates 40%. α-Mo phase has a volume fraction
of around 30%, and, as seen in Figure 7a, forms to be discontinuous. According to [5], this
fact can positively affect the creep strength of Mo–Mo3Si–Mo5SiB2 intermetallics.

In order to evaluate the mechanical properties, we measured the Vickers hardness
of ingots derived from a = 100 g and α = 20 and 30 wt %. For α = 20 wt %, the average
hardness value was 1350 HV. It is 80 HV lower than the hardness of ingot prepared at α =
30 wt %.
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5. Discussion

The process of obtaining Mo-based cast alloys by centrifugal SHS includes 3 stages:
(1) the combustion of MoO3/Nb2O5/Al/Si/B highly exothermic mixture and the formation
of two-phase—Mo–Nb–Si–B and Al2O3—melt; (2) the gravitational separation of melts
insoluble in each other under artificial gravity; and (3) the cooling, crystallization, and
formation of the composition and structure of Mo–Nb–Si–B and Al2O3.

The combustion of MoO3/Nb2O5/Al/Si/B mixture is accompanied by the splashing
of burning material. The latter is caused by the formation and release of gas under the
action of Archimedean force. Thermodynamic calculation showed (Figure 1a) that up to
10 wt % of the gas phase (G.P.: Al2O, BO, B2O2, SiO2, NbO2, and so on) can be formed.
The introduction of Al2O3 into green mixture reduces gas formation, thereby markedly
suppressing the splashing of mixture. However, as Al2O3 content increases, the combustion
temperature decreases (see Figure 1a) and, as a result, the starting mixture loses its ability
to burn.

The completion of the combustion results in a continuous Al2O3 melt containing
Mo–Nb–Si–B drops. Under the action of gravity forces, heavy drops move to the bottom of
the quartz mold and form a metal layer. The completeness of gravitational separation is
determined by the ratio of velocities of the drops and the cooling of melt. Drop velocity is
determined by the value of the centrifugal acceleration.

Under optimal conditions (α = 20–30% and a > 100 g), it is possible to suppress the
splashing and to progress to 90 wt % of the yield of the target product (see Figure 3).

At the final stage of centrifugal SHS, the metal layer containing Mo–Nb–Si–B-based
solid solution and two phases of Mo3Si and Mo5SiB2 are formed. SHS-produced Mo–
Mo3Si–Mo5SiB2 alloy is characterized by high hardness values, which far exceeds (by
approximately 3 times) those attainable in Mo–Nb–Si–B alloy fabricated by a powder
metallurgical method (425 HV) [7].

6. Conclusions

Mo-based composition materials reinforced with Nb, Si, and B, possessing good
high-temperature and heat-resistance properties, can be prepared by centrifugal SHS
from the highly exothermic composition MoO3/Nb2O5/Al/Si/B containing temperature-
moderating additive (Al2O3) under the conditions of artificial gravity. Such materials seem
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promising as a candidate for the next generation of high-temperature structural materials
and as a high-hardness coating material [12].
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