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Abstract: Accurate residual lattice strain measurements are highly dependent upon the precision
of the diffraction peak location and the underlying microstructure suitability. The suitability of the
microstructure is related to the requirement for valid powder diffraction sampling statistics and
the associated number of appropriately orientated illuminated. In this work, these two sources
of uncertainty are separated, and a method given for both the quantification of errors associated
with insufficient grain sampling statistics and minimization of the total lattice strain measurement
uncertainty. It is possible to reduce the total lattice strain measurement uncertainty by leveraging
diffraction peak measurements made at multiple azimuthal angles. Lattice strain measurement
data acquired during eight synchrotron X-ray diffraction experiments, monochromatic and energy
dispersive, has been assessed as per this approach, with microstructural suitability being seen to
dominate total measurement uncertainty when the number of illuminated grains was <106. More
than half of the studied experimental data fell into this category, with a severe underestimation of total
strain measurement uncertainty being possible when microstructural suitability is not considered.
To achieve a strain measurement uncertainty under 10−4, approximately 3× 105 grains must be
within the sampled gauge volume, with this value varying with the multiplicity of the family of
lattice planes under study. Where additional azimuthally arrayed data are available an in-plane
lattice strain tensor can be extracted. This improves overall strain measurement accuracy and an
uncertainty under 10−4 can then be achieved with just 4× 104 grains.

Keywords: synchrotron X-ray diffraction; uncertainty; strain; grain size; monochromatic; energy
dispersive

1. Introduction

Accurate evaluation of the development and distribution of residual lattice strain (and
the associated quantification of residual stress) is a key consideration in structural integrity
assessment procedures, such as R6 [1] and BS7910 [2,3]. Experimental measurement of
lattice strain is typically achieved through either X-ray or neutron diffraction and the
associated determination of Bragg diffraction peak locations, with these measurements
routinely being made at large scale synchrotron X-ray or neutron facilities. In both cases
accurate strain measurement is typically dominated by (a) the accurate location of the
diffraction peak center and (b) microstructure suitability. While the former has been
covered in great depth by Withers et al. [4], the latter has not been systematically explored
to the best of authors’ knowledge.

In this case, microstructure suitability refers to the interplay between the microstruc-
ture and the experimental setup, with this being most broadly determined by the sampled
gauge volume and size of the material’s crystallographic units (nominally the grain size).
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More specifically, a suitable microstructure would be one in which the number of appropri-
ately orientated grains illuminated by the incoming beam are enough for a precise measure
of the bulk strain in the measured location and orientation. Requisite strain measurement
accuracy will clearly vary with experimental need, but is typically of the order of 10−4 to
10−5 [4]. This level of accuracy is reliant upon precise diffraction peak definition and high
microstructure suitability, these rely upon good counting and powder diffraction sampling
statistics, respectively.

While both described sources of uncertainty are present irrespective of radiation
source, the balance between them is, however, likely to shift with technique. Neutron
diffraction (ND) can reasonably be considered a flux (photon count) limited acquisition
method. In this case, a relatively large gauge volume is required (typically > 10 mm3 [5–7]),
which will help satisfy the microstructure suitability criterion, with uncertainty therefore [8]
being dominated by counting statistics and the associated precision of the diffraction peak
location. The opposite is more likely, although not always guaranteed, in synchrotron
X-ray diffraction, where beam flux is orders of magnitude higher and measurement gauge
volumes are often orders of magnitude lower (<<1 mm3). In either case, it is critical that
the dominant factor is identified and controlled for prior to the start of any experimental
session and, furthermore, that true measurement uncertainty is precisely captured and
not underestimated.

There have been several attempts to study variance and measurement uncertainty in
ND measurements. The most notable examples of which is through the European Network
on neutron techniques standardization for structural integrity task group 1 (NET TG1) [9]
and task group 4 (NET TG4) [10]. These were round robin measurement exercises carried
out on a single weld bead applied on a 316L(N) plate. While uncertainty in the peak
center location was quoted as giving rise to a residual stress uncertainty of 20 MPa, a true
measurement uncertainty (taken from the inter-laboratory variance in measured stress)
approximately twice this was observed. The authors suggest that this additional uncertainty
could be linked to a grain size effect, although no grain size was explicitly defined.

1.1. Peak Location Precision

It is common to approximate diffraction peaks with a Gaussian or Lorentzian profile
(or some combination thereof), defined by X, the peak center location, ux, the standard
deviation of the peak and H, the peak height. This profile is applied onto a background
function, which is typically a constant term, B [4]. The associated uncertainty in the center
of a Gaussian peak with either a low signal to background ratio (H:B > 10) has been
analytically evaluated by Withers et al. [4] and shown to be inversely proportional to the
square root of the integrated intensity, such that:

∆X ∼=
ux

I1/2 (1)

where ∆X is the uncertainty in the peak position and I is the total integrated intensity. This
relationship is supported by empirical data provided by both Withers et al. [4] and Webster
and Kang [11]. There is, however, a significant deviation from this relationship and the
associated expected precision with increasing background signal and, more specifically,
where H : B < 10. Nevertheless, in both cases, uncertainty decreases as counting time and
total integrated intensity increases. Given the very high brilliance and flux in synchrotron
diffraction, it is often trivial (and not overly costly in terms of time) to produce high
intensity peaks with low peak fitting errors.

1.2. Microstructure Suitability

When a small number of grains are sampled grain-scale strain heterogeneity is appar-
ent and pseudo-strains are introduced through the uneven distribution of grains throughout
the gauge volume. The latter of these effects is associated with a variation in the effective
sample-to-detector distance [12]. The uncertainty associated with powder diffraction sam-
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pling statistics is linked to the number of sampled grains and also to the degree of internal
crystallographic misorientation within those grain, often referred to as mosaicity [13]. With
increased mosaicity the number of diffracting units within a grain increases, with this
internal misorientation itself increasing as a function of deformation and plasticity. As a
lattice is deformed the uncertainty associated with the grain sampling statistics would be
expected to decrease.

The lattice strain uncertainty associated with the microstructure suitability is also
determined by the multiplicity of the studied diffraction peak, with the multiplicity being
the number of symmetry equivalent reflections for a given combination of crystal structure
and lattice family. For close-packed fcc and bcc materials, i.e., those regularly the subject
of SXRD and ND residual strain measurements, commonly studied lattice plane families,
{hkl}, have multiplicities ranging from 6 to 24. Selecting a diffraction peak associated with
a family of planes with a higher multiplicity is equivalent to sampling a refined grain
structure (or increasing the sampled gauge volume). Note that destructive interference
limits the number of {hkl} families that produce diffraction peaks, and the high energy
beam typically precludes the study of lattice families with large plane spacings.

It is difficult to quantify material mosaicity a priori and it more practical to simply
consider the number of grains illuminated by the X-ray (or indeed neutron) beam, Ni,
or a multiplicity normalized equivalent Ni = Ni × M/10, where M is the multiplicity
of the lattice plane family and dividing by 10 scales the values into a sensible range.
Hutchings et al. [12] suggest that a grain size in the tens of microns should limit this
source of measurement uncertainty for a gauge volume of 1 mm3, with tens to hundreds
of thousands of grains lying within that gauge volume. The authors also suggest a more
qualitative approach, which involves looking at how spotty or continuous that diffraction
pattern is or assessing the intensity variance with respect to azimuthal angle.

2. Methodology
2.1. Systematic Analysis of SXRD Experimental Error

A broad study of measurement uncertainty has been carried out on previously pub-
lished experimental work [14–19], with SXRD data from a total of 8 experiments being
systematically analyzed. These experiments ran across 7 synchrotron beamtime sessions
and are detailed in Table 1. A grain size range between 0.5 and 100 µm is covered, with
each experiment focusing on a different alloy or material system. In Table 1 there is a brief
description of each experiment, alongside the gauge volume and grain size, the combina-
tion of which allows the number of grains illuminated to be calculated. The number of
illuminated grains, Ni, ranges across four orders of magnitude, from 104 to >107 grains.
The precise details for each experiment to be found within the associated experiments.
Note that both monochromatic, or angular dispersive, and energy dispersive data have
been considered with the methodology noted in Table 1. A full description of both methods
and SXRD strain measurement in general can be found in detail elsewhere (e.g., [20]) but
briefly, in monochromatic X-ray diffraction, an area detector is typically used to collect
the Debye-Scherrer cones produced using a fixed energy/wavelength (λ) beam, with the
Bragg angle, 2θ, associated with diffraction peaks varying with lattice plane spacing, d,
according to the well-known Bragg’s Law:

2d sin
(

2θ

2

)
= nλ (2)

With energy dispersive X-ray diffraction (EDXRD) a fixed Bragg angle is defined and
a polychromatic beam is used to illuminate the sample, with photons being collected on an
energy sensitive detector(s). In this case the energy at which the diffracted peaks lie is a
function of lattice spacing.
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Table 1. A list of the experiments analyzed as part of this work with the associated uncertainty in the measured lattice strain for varying lattice plane families, in this case referenced by
their multiplicity, M.

ID Material Mode D (µm) V (µm3) Ni
∆ε ∆εX

Description of
Measurements Reference

M = 6 M = 8 M = 12 M = 24 M = 6 M = 8 M = 12 M = 24

OL Bainitic
Steel ED 5 50 × 50 × 4000 7.0 × 104 2.1 × 10−4 - 1.7 × 10−4 1.7 × 10−4 1.2 × 10−4 - 7.6 × 10−5 5.5 × 10−5

Crack tip stress
mapping to quantify
and separate fatigue

overload mechanisms

(Simpson et al., 2018)

UFG
Ultra-
Fine

Grain Ni
Mono 0.5 50 × 50 × 1200 3.0 × 107 6.9 × 10−4 3.2 × 10−5 8.0 × 10−5 5.7 × 10−5 5.2 × 10−5 5.0 × 10−5 3.8 × 10−5 3.5 × 10−5

Crack tip stress
mapping to study

effect of anisotropic
microstructure

on overload
crack growth

(Zhang et al., 2019)

SR 316H Mono 130 500 × 500 ×
5000 9.0 × 103 3.8 × 10−4 3.3 × 10−4 3.1 × 10−4 2.3 × 10−4 3.5 × 10−5 3.9 × 10−5 2.8 × 10−5 2.3 × 10−5

Intergranular strain
development

measurements
made during

high temperature
stress relaxation

(Mamun et al., 2019)

ROL AISI
52100 ED 15 150 × 150 ×

3200 4.1 × 104 2.3 × 10−4 - - 1.7 × 10−4 1.9 × 10−4 - - 1.0 × 10−4

Stroboscopic analysis
of contact stress

development (and
crack initiation) in

roller bearings

(Reid et al., 2019)

NPV
SA508
Grade

4N
Mono 4 200 × 200 ×

2000 2.4 × 106 8.6 × 10−5 - 6.0 × 10−5 3.1 × 10−5 3.7 × 10−5 - 2.4 × 10−5 2.7 × 10−5

High speed crack tip
stress tracking to
study effects of
thermal shock

in nuclear
pressure vessels

(Oliver et al., 2018)

EBW 316L ED 25 1000 × 1000 ×
3200 3.9 × 105 - - 1.2 × 10−4 8.8 × 10−5 - - 1.6 × 10−5 1.3 × 10−5

Residual stress
measurements in

electron beam welded
steel plates

(Mokhtarishirazabad
et al., 2019)

FCAW

ASTM
A131
Grade
DH36

ED 20 500 × 500 ×
3200 1.2 × 105 1.9 × 10−4 - 1.6 × 10−4 1.5 × 10−4 2.6 × 10−5 - 2.1 × 10−5 2.3 × 10−5

Residual stress
measurements in flux

core arc welded
steel plates

Unpublished

P91 P91 Steel Mono 20 500 × 500 ×
5000 3.0 × 105 1.1 × 10−4 - 1.0 × 10−4 4.5 × 10−4 1.5 × 10−5 - 3.4 × 10−5 1.6 × 10−5

Intergranular strain
development

measurements
made during

high temperature
stress relaxation

Unpublished
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In monochromatic X-ray diffraction (using a 2D area detector), the initial process-
ing step requires the azimuthal integration of Debye-Scherrer rings, resulting in a set of
azimuthally spaced 1D line profiles. This procedure is typically well integrated into the
beamline workflow and is best done as part of the acquisition pipeline. For instance,
the data analysis DAWN [21,22]’s WorkbeNch, software package has the option to run
azimuthal integration and output integrated profiles in convenient, multi-dimensional
arrays. The ESRF have also invested significant resource into the development of ESRF’s
Python Fast Azimuthal Integration (PyFAI [1]), which also offers this functionality and
is particularly sophisticated and feature rich [23]. Note that in energy dispersive X-ray
diffraction, the raw data are already in this 1D form (albeit with respect to energy rather
than angle) and no initial processing step is required.

For the monochromatic data assessed in this work (UFG, SR, MMC, NPY, P91), the
integration step was completed using DAWN, with the diffraction rings being separated
and integrated across 10◦ slices. An example of the separation and integration of diffraction
rings associated with ultra-fine grain Ni (UFG) can be seen in Figure 1. Integrating across
10◦ azimuthal slices nominally results in 36 1D line profiles. The notable exception to
this is for the 316H stress relaxation experiment, SR [18,24] and the associated, previously
unpublished, stress relaxation data acquired for a high temperature ferritic steel, P91. In
both cases, approximately half the outgoing Debye-Scherrer cone was blocked by auxiliary
heating equipment, with the number of azimuthal bins being reduced in proportion to this,
i.e., just 18 slices were analyzed.

Once the data are in the form shown in Figure 1b, all subsequent analysis was com-
pleted using the pyXe strain analysis software [25]. pyXe [25] is an in-house software
developed by the authors which has been described and used elsewhere in detail. For
completeness, the process followed by pyXe is briefly described in detail in Section 2.2.
The software has been used previously to analyze the data from a number of synchrotron
experiments (e.g., see [14–17,24]) results of which were possible compared with widely
used software such as Fit2D [23]. While the code was evaluated against other results to
the best of authors’ ability, it is difficult to carry out a full evaluation of the code without
significant resources thus care should be taken when using it.

2.2. Lattice Strain Analysis

User defined scripting and analysis of diffraction peaks is most optimally and sensibly
applied to the assessment of 1D diffraction profiles rather than to raw 2D Debye-Scherrer
rings. The steps required to efficiently analyze large volumes of 1D line profile data (and to
duly convert to strain) are not currently well provided for at synchrotron facilities. In this
series of experiments analysis of 1D line profiles was carried out using pyXe [25], which
is a strain analysis software developed using Python’s SciPy ecosystem (NumPy, SciPy,
matplotlib, etc.). It is aimed at reducing bottlenecks in the strain analysis pipeline, most
notably for use in synchrotron experiments, where the volume and velocity of incoming
data is typically high. During large scale facility experiments it is key that analysis and
visualization are carried out on-the-fly, or as near to this as possible, to allow beamline
users to make informed decisions about their experiments. The pyXe analysis pipeline is
shown in Figure 2.
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The format in which the data are served to synchrotron beamline users varies with
acquisition mode, i.e., monochromatic vs. energy dispersive, experimental facility, and
beamline, and even with the experimental session (for a nominally identical setup). For this
reason, a pre-processing step was used to convert the data from each of the experiments
detailed in Table 1 to a common data format for consistent, convenient analysis. Key to this
transformation is that the angular or energy axis is redefined with respect to the scattering
vector Q, such that [20]:

Q =
2π

d
=

4π E sin
(

2θ
2

)
hc

. (3)

where E is the energy in eV, h is Planck’s constant, and c is the speed of light. The conversion
to Q allows for a consistent analysis pipeline irrespective of input data format.

2.3. D Line Profile Analysis

Non-linear least-squares regression was used to fit a Gaussian profile to the acquired
diffraction peaks, with a five-parameter fit being employed. The peak height, H, peak
center, X, and standard deviation, ux, were all refined, with the background being taken to
be a linear function rather than a constant value. A higher order background fit was seen
to degrade the ability of the least square regression to converge.

A Poisson weighting was applied to the refinement; if a weighting system is not
implemented then widening the analysis range tends to unrealistically decrease the un-
certainty [4]. An unweighted fit assumes variance of all data points are equal, which
is increasingly unrealistic as you move further from the peak center (and the intensity
tends towards the background). While the weighted fit uncertainty is independent of
fitting range (above 7− 8ux), the processing time is not. Increasing the analysis window
from 5ux to 20ux increased processing time by a factor of 3. A fit range of ∼7− 8ux is
recommended by Withers et al. [4] as this is sufficient for minimum weighted uncertainties
in the key diffraction peak parameters. An analysis window width of approximately 8ux
was therefore employed for all data assessed in this study.

The peaks were converted to strain by comparison to a stress free equivalent (a subject
covered in great detail in [26]). In the analysis presented in this work, a stress-free lattice
spacing or parameter that varies with detector or azimuthal angle has been utilized. This is
not to account for a physical variation in the stress-free parameter/spacing but rather to
account for, and cancel out, errors in detector alignment or setup. This approach is strongly
recommended as errors introduced by incorrectly identifying the precise beam center,
can lead to large to the introduction of large pseudo-strains. For example, at a sample to
detector distance of 1.2 m and a Bragg angle, 2θ = 5◦, a center misalignment of 0.1 mm
(just over 0.5 pixel for a Pilatus 2M detector), results in pseudo-strains of 1× 10−3, which
equates to a pseudo-stress of around 200 MPa for a steel alloy. When using an azimuthally
varying stress-free lattice spacing, the lattice strain at a given azimuthal angle, ε(ϕ,hkl), is
calculated according to the following relationship [20]:

ε′ ij(hkl) = QεijQT (4)

where Q (ϕ, hkl) is the lattice plane specific scattering vector at the same azimuthal angle
and Q0 (ϕ, hkl) is its stress free equivalent.

Strain Tensor Extraction

A key aspect of the analysis used in this work is the calculation and subsequent use of
the in-plane lattice strain tensor, εij(hkl), which for brevity will be referred to as εij. That
is to say that rather than solely looking at the 1D line profile associated with the strain
orientation of interest (typically 0◦ and/or 90◦), an in-plane strain tensor is first calculated
from the full set of azimuthally arrayed data. The stress state does not change as function
of azimuthal angle, rather the individual components of the tensor vary with rotation
relative to the global coordinate system, such that at any position around the azimuthal
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the transformed in-plane lattice strain tensor, ε′ ij, can be found according to the following
relationship given in Equation (5).

ε′ ij(hkl) = QεijQT (5)

where

Q =

[
cos 2ϕ sin 2ϕ
− sin 2ϕ cos 2ϕ

]
. (6)

Each position around the azimuth represents a distinct (but related) realization of
the in-plane lattice strain tensor and the materials’ underlying stress state. Strain varies
sinusoidally around the azimuth and by using the full set of azimuthally arrayed data it is
possible to achieve a precise refinement of this relationship, and thereby the in-plane lattice
strain tensor.

The in-plane lattice strain tensor can, of course, then be used to calculate the strain
at the angle of interest, with utilization of the extra data reducing the total lattice strain
measurement uncertainty relative to a single peak, single slice approach. Furthermore, the
dispersion of measured lattice strain around the in-place lattice strain tensor also gave a
key indication of the total strain uncertainty. This process and associated measurement
accuracy improvements are discussed and quantified in Section 3.1.

2.4. Measurement Gauge Volume and Illuminated Grains

Given that the number of illuminated grains is potentially a controlling consideration
for achieving satisfactory lattice strain measurement precision, it is important to understand
the associated geometry of the gauge volume, V, and the grain size, D, of the material to
be studied. In the monochromatic diffraction experiments covered in this work, depth
resolved measurements were not made, which is to say the outgoing beam was not defined
(e.g., with the conical slit system) [27]. As such, the gauge length is simply the thickness of
the part being measured, z, with the remaining gauge dimensions being defined by the slit
size h1 × h2, where in most cases h = h1 = h2, such that V = zh2. Knowing the grain size,
the number of illuminated grains can then be calculated:

Ni =
6V
πD3 (7)

The precise gauge dimensions are less clear in energy dispersive diffraction, with the
gauge length varying as a function of the incoming slit dimension. Examples of energy
dispersive gauge cross sections with respect to slit size have been calculated according
to Rowles et al. [28], and are presented in Figure 3a. With a sample to detector distance
of 1 m, the gauge volume is effectively a parallelogram, with a fixed base, b = 3.2 mm.
So, while the tip-to-tip length of the gauge volume, l, increases with increasing slit size,
the actual gauge volume does not so that V = bh2, V 6= lh2. Incorrectly assuming the
gauge volume scales with l leads to a severe overestimation of gauge volume, which is
shown in Figure 3b. This is significant as an overestimation of the gauge volume leads
to an unrealistic estimation of the number of grains sampled, potentially leading to an
underestimation of expected lattice strain uncertainty.

In the experiments detailed in Table 1 the gauge volume ranges from 0.003 to 1.25 mm3,
with 4 experiments having V ≤ 0.125 mm3 and a mean gauge volume of approximately
0.5 mm3. The associated number of illuminated grains in each experiment varied from
9000 to 30,000,000.
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3. Results
3.1. Quantifying SXRD Measurement Uncertainty

An example of a 1D line profile is shown in Figure 4a; these data were acquired as part
of the FCAW experiment (see Table 1), with the diffraction peak associated with the {211}
family of planes being assessed for an azimuthal slice located at an angle ϕ = 90◦. The fit of
a Gaussian profile to this diffraction peak is shown in Figure 4b, with the peak center being
found to lie at Q = 5.365 A−1 which corresponds to a lattice spacing, d = 1.171

.
A. The

uncertainty and, more specifically, the standard deviation in the peak center location, ∆X
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(in this case ∆X is the uncertainty with respect to the scattering vector, ∆Q), can be used to
define the lattice strain uncertainty related to the peak center precision, ∆εX , such that [20]:

∆εX =

(
Q0

Q0 − ∆Q

)
− 1. (8)
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Figure 4. (a) 1D line profile associated with the FCAW residual stress data, with the diffraction peak
associated with the {211} family of planes highlighted and (b) the fit of a Gaussian profile to this peak.

The profile depicted in Figure 4 has a particularly high to background ratio, which
results in a precise measure of the peak center location and low level uncertainty, such
that ∆X = 6.9× 10−5 A−1. This introduces an associated uncertainty in lattice strain of
∆εX = 1.3× 10−5. While this certainly represents one source of error, it is not clear that
this is an upper bound on the true measurement error. Indeed, the NeT-TG4 round robin
neutron diffraction measurements highlighted much larger uncertainties in weld residual
stresses than were predicted from the uncertainties in the peak center locations [10].

In Figure 5a, the peak fitting procedure and associated strain calculation has been
applied to the full set of azimuthally arrayed data. As noted in Section 3.2.1, the strain
is seen to vary sinusoidally with respect to azimuthal angle, with the lattice strain de-
fined by the in-plane lattice strain tensor and the transformation relationship described in
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Equation (5). Figure 5a highlights both the measured strains and the best fit approximation
of εij. The difference between the in-plane lattice strain tensor and individual measurement
points is given in Figure 5b; the distribution of these errors allows us to interrogate the
total lattice strain measurement uncertainty, ∆ε, which is given by the root mean squared
difference between the in-plane lattice strain tensor and individual measures of strain.
The deviation of the strain away from the in-plane lattice strain tensor will reduce as the
peak fit error improves and the number of grains increase. In Figure 5b, ∆ε is compared
against the distribution of errors that would be expected from the uncertainty in the peak
center location. When ∆ε ∼= ∆εX the total measurement uncertainty is dominated by the
uncertainty associated with the location of the peak center. This is not the case for the data
given in Figure 5b, where ∆ε = 1.5× 10−4, which is order of magnitude larger than ∆εX . In
this case, total lattice strain measurement uncertainty is dominated by other factors, most
likely related to the microstructural suitability.
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Figure 5. (a) Measured strain with respect to azimuthal angle for a single measurement point
compared against the associated in-plane strain tensor calculated from the azimuthally varying
data. (b) The distribution of differences between the measured strain and those calculated from the
in-plane tensor—the data in (b) are for all 203 measurement points acquired for a single residual
strain mapping scan (FCAW) and are compared against the expected distribution of errors associated
with the uncertainty in the peak center location.
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While ∆ε is representative of the combined measurement error for a single azimuthal
slice, when using εij to define the strain at a given angle, the quoted error should be the
uncertainty in the in-plane lattice strain tensor, ∆εij. In the example presented in Figure 5,
the uncertainty in all three tensor components is ∆εij = 6.2× 10−5, which represents more
than a two-fold reduction in uncertainty relative to using a single azimuthal slice. In the
following sections, the described approach is applied systematically to the set of data and
experiments described in Table 1.

3.2. Systematic Analysis of Measurement Uncertainty

An extensive body of experimental data has been systematically analyzed, with mea-
surement uncertainties (∆ε, ∆εij, ∆εX) being extracted from each of the 8 experiments listed
in Table 1. For each of those experiments, measurement uncertainties have been calculated
and detailed for multiple families of lattice planes, with a total of 24 distinct crystallographic
conditions being studied across a diverse range of experimental configurations.

3.2.1. Inter-Experimental Variation in Strain Uncertainty for a Fixed Multiplicity

The variation in measurement uncertainties are shown in Figure 6 for lattice plane
families with multiplicities of 24 (i.e., {311} for fcc materials and {211} for bcc materials),
with the data for other lattice families being detailed in Section 3.2.2. Across this body of
experiments, the total lattice strain measurement uncertainty ranges from ∆ε = 3.5× 10−5

to ∆ε = 2.2× 10−4. This is, on average approximately 3 times greater than the uncertainty
associated with the precision of the diffraction peak location. (1.3× 10−5 to 1.0× 10−4).
In short, ∆εX is a non-conservative and inconsistent measure of the total lattice strain
measurement uncertainty. There was only 1 experiment (NPV) where ∆εX ∼= ∆ε and this
work being on a fine-grained material, with a relatively large number of grains being
illuminated (D = 5 µm, Ni = 106). More generally, there is a clear relationship between the
number of illuminated grains and total strain measurement error, with this systematically
decreasing while Ni < 500, 000 (N−1

i > 2× 10−6).
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The number of sampled grains are given in inverse. Uncertainty is compared against the number of illuminated grains.

The total strain measurement uncertainty was improved by over a factor of 3 when
the full set of azimuthally arrayed data was utilized and the in-plane lattice strain ten-
sor calculated.

3.2.2. Effect of Multiplicity on Strain Uncertainty

The impact of lattice plane family selection and the associated multiplicity on SXRD
measurement uncertainty is shown in Figure 7. The presented data are for a stress relaxation
(SR) experiment [18] on 316H stainless steel. The grain size in these samples was large
(around 130 µm) and the number of illuminated grains was low at approximately 104. As
expected, there is an increase in measurement precision with an increase in multiplicity. The
total lattice strain measurement error reduces from 3.8× 10−4 to 2.2× 10−4 as multiplicity
increases from 6 to 24, i.e., the {200} versus the {311}. In terms of an equivalent stress
measurement uncertainty, ∆σ, this is an improvement from approximately ∆σ = 75 MPa
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to ∆σ = 44 MPa. In all cases, calculating the in-plane lattice strain tensor reduces the
uncertainty by more than a factor of 2, bringing the uncertainty in stress for the {311} family
of lattice planes down to ∆σ = 20 MPa. Note that as multiplicity increases, ∆εX is also
decreasing, albeit only marginally. This is to be expected as increased multiplicity is also
associated with an increase in peak intensity; peak location uncertainty is inversely related
to the square root of the integrated intensity [20].
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stress relaxation carried out on 316H stainless steel.

3.2.3. Number of Multiplicity Normalized Grains vs. Strain Uncertainty

The strain measurement uncertainty for each of the 8 analyzed experiments were
detailed for between 3 and 4 lattice plane families; their multiplicities ranged between 6
and 24. Analyzing multiple lattice plane families for each experimental data set allows
measurement error to be assessed across a far wider range of crystallographic conditions,
effectively increasing the scope and extent of the measurements. Given that increased multi-
plicity is proportional to an increase in the number of illuminated grains, the measurement
uncertainty for each experiment and lattice plane family combination has been related to
the multiplicity normalized number of sampled grains, Ni. The relationship between Ni
and measurement uncertainty can be seen in Figure 8, with a systematic decrease in ∆ε and
∆εij being observed while Ni < 7× 105, with lattice strain uncertainty plateauing beyond
this point.

Again, the uncertainty in the in-plane lattice strain tensor scaled with the ∆ε, with
∆εij

∼= ∆ε/3 for all monochromatic and energy dispersive data. On a more granular level,
the improvement in accuracy is dependent on the amount of data used to fit the in-plane
strain tensor; for a 23-element EDXRD detector this improvement was by a factor of 2.7, for
the full-ring monochromatic experiments (caked into 36 slices), the improvement was by a
factor of 3.5. For monochromatic experiments where only a partial ring is captured (SR,
P91), this uncertainty improvement drops to just over a factor of 2.

∆εX is not correlated with the true measurement uncertainty across the range of
experiments and microstructural conditions sampled here. Even where Ni > 7× 105 and
grain sampling effects are no longer dominating, there is no convincing correlation between
∆εX and ∆ε, which is due to the highly precise peak centre positioning and low value of
∆εX across all of these experiments.
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4. Discussion

This work has clearly demonstrated that the uncertainty associated with the peak
fitting and the location of the peak center should be considered a lower bound, unconser-
vative estimate for the total SXRD strain measurement uncertainty. This is consistent with
the findings from the NeT-TG1 and TG4 round robin ND residual stress measurements,
where fitting errors of 20 MPa were quoted, but the actual uncertainty was approximately
double this [10,29] ∆εX does not capture variability in the detector and beamline setup
or errors in the d0 measurement and calibration, nor does it identify scenarios in which
there are insufficient grains within the gauge volume. In the latter scenario in particular,
very large errors can be masked by very low peak center uncertainties. This is particularly
problematic if the ∆εX is being used as an initial data acceptability criterion during a SXRD
diffraction experiment. Invalid uncertainty estimates can lead to bad data being collected.
The peak fit error is only expected to contribute when ∆εX > 10−4; for the majority of
SXRD strain measurements it is trivial to achieve peak location precision that is better than
this (in the experiments studied in this work, the mean value of ∆εX was under 5× 10−5).

Fitting an in-plane lattice strain tensor to azimuthally arrayed strain data offers two
key advantages: (a) it produces a better estimate of the true strain measurement uncertainty
for a single azimuthal slice, capturing the effects of detector, beamline, grain size, etc.,
and (b) it allows for the reduction in that uncertainty. The best estimate of the actual
measurement uncertainty has been quantified here as the RMSE of the in-plane tensor to
the measured strain. This represents the dispersion and variance of the strain measurements
around the best estimate of the in-plane strain state. If ∆εX captured the total measurement
uncertainty, then the RMSE would be expected to approximate to ∆εX . This was, however,
not the case and furthermore there was no relationship between ∆εX and this best estimate
of true measurement error. This ratio varied from 2.5 to almost 30, depending on the setup
and experiment and reaffirms the idea that the fitting error does not represent a good or
even consistent estimate for the measurement error.

There is a close correlation between ∆ε and ∆εij, the latter of which varies with the
number of azimuthal points that are leveraged. While this work has used a fixed 10◦

azimuthal slice for the monochromatic data, there will be an optimal number of azimuthal
slices for a given monochromatic dataset. This will be a tradeoff between the reduction in
both the H : B ratio and number of illuminated grains for a given azimuthal slice and the
improved accuracy of the least-square refinement of the in-plane tensor with an increased
number of azimuthal bins.
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The lowest errors were achieved in the UFG experiment (an overload fatigue experi-
ment on ultra-fine grain Ni); this is perhaps unsurprising given the ultra-fine grain nature of
the material, with a very large number of grains being illuminated (Ni > 107, D = 0.5 µm).
While the measurement precision was very high, it is important to recognize that the final
accuracy of the strain data were not as good as this might suggest. In this experiment
measurements were being made around a crack tip and, as such, the strain gradient was
high compared to the gauge area. The upshot of this is significant smoothing of the strain
field, particularly close to the crack-tip. While this is not unexpected, it is a good case study
for the kind of challenges that are associated with quantifying uncertainty in diffraction
experiments. It is critical that measurement uncertainty is both quantified and reduced, and
that additional sources of potential error are considered and included where appropriate.
Quoting unrealistically low (or high) errors is of significant concern as these can propagate
through into assessments procedures.

Grain size effects are a much more important consideration in synchrotron X-ray
diffraction experiments compared to their neutron diffraction equivalent. This is due to
what is typically a significant difference in the measurement gauge volume. In ND measure-
ments the gauge volume is typically of the order of 64 mm3 (4 mm × 4 mm × 4 mm) [5]. In
contrast an SXRD experiment generally utilizes a small incoming slit size, so as to define the
gauge volume to less than 0.5 mm3 (e.g., 5 mm × 0.3 mm × 0.3 mm), with this potentially
dropping below of 0.01 mm3 in many reasonable combinations of sample and slit size
(see Table 1). The difference in setup represents what is typically a two to three order of
magnitude reduction in gauge volume and, therefore, a two to three order of magnitude
reduction in the number of grains illuminated. With a 50 µm grain size, a 64 mm3 gauge
volume illuminates 106 grains, which is a regime in which microstructural effects are no
longer dominant. For a typical SXRD gauge volume of 0.5 mm3, only 6000 grains would be
illuminated for that same microstructure, and grain size effects should be expected to dom-
inate. Note that these calculations are only applicable for an un-textured microstructure.
Where texture is significant (e.g., in weld fusion zones), the number of appropriately orien-
tated grains may be much lower than would nominally be expected—it is, of course, vital
that this is taken into consideration. The increased significance of peak location precision
in ND is also likely due to the requirement for long exposure times; while it is generally
trivial to achieve high peak intensities (and high signal-to-background ratios) in SXRD, this
is not always the case in ND, as the associated neutron flux is orders of magnitude lower
than for SXRD.

5. Conclusions

• Total measurement uncertainty in synchrotron X-ray diffraction is badly characterized
by the uncertainty in the diffraction peak center location. Peak location precision is
only likely to significantly contribute to measurement uncertainty when it is the grain
size compared to gauge volume is large and the number of sampled grains is small;

• The number of illuminated grains if a far better indicator of measurement precision,
with the total SXRD measurement uncertainty being strongly correlated with the
number of illuminated grains and the associated multiplicity of the studied family of
lattice planes;

• For a single peak fit of an fcc or bcc material the {311} or {211} lattice family should
be studied where practicable. These families are not significantly affected by inter-
granular strains, and are also associated with high multiplicities, which will reduce
measurement uncertainty in many grain limited SXRD experiments;

• To achieve acceptable measurement precision (defined as less than 10−4 in strain)
across a single azimuthal slice more than 300,000 grains should be sampled. Leverag-
ing additional azimuthally arrayed data and calculating an in-plane strain tensor can
reduce this requirement by more than an order of magnitude, with similar precision
being achieved with just 40,000 grains;
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• Characterizing the in-plane lattice strain tensor not only allows experimenters to
reduce measurement uncertainty but it also provides them with a tool with which to
more robustly quantify that error.
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